Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

4-Aminoindoles as 1,4-Bisnucleophiles for Diversity-Oriented Synthesis of Tricyclic Indoles Bearing 3,4-Fused Seven-Membered Rings

Shaomin Chen,^a Palanisamy Ravichandiran,^a Ahmed El-Harairy,^a Yves Queneau,^c Minghao Li^a and Yanlong Gu*^{a,b}

Corresponding authors: Y. Gu (klgyl@hust.edu.cn)

Supporting Information

Table of contents

1. Proposed mechanism for the formation of 5a	
2. Control experiments information	
3. Condition optimization	S3-S6
4. Characterization data of all new compounds	
5. ¹ H NMR and ¹³ C NMR spectra	S18-S56
6. References	

1. Proposed mechanism for the formation of 5a

Figure S1 Plausible mechanism for the formation of 5a

On the basis of the experimental result and previously reported works,¹ we provided the mechanism for the formation of 5a as follows: the nitrogen atom of 1a attacked the alkyne carbon of 2a and formed intermediate I, and then an intermolecular proton transfer of the carbanion of intermediate I occurred, leading to the formation of 5a.

2. Control experiments information

The reactions were conducted in a 10 mL of V-type flask equipped with oil bath and triangle magnetic stirring. **1a** (0.2 mmol) was mixed with **2a** (0.2 mmol), **3a** (0.2 mmol), and Cu(OTf)₂ (0.004 mmol, 2 mol%) in anhydrous ethanol (1.0 mL), the mixture was then stirred at 40 °C for 6 h. After the completion of the reaction, the mixture cooled to room temperature, and then subjected to an isolation with preparative TLC by using a mixture of petroleum ether and ethyl acetate as eluting solution (PE/EA = $4/1_{v/v}$). Compound **4a** was obtained in 36% (28.9 mg) yield, and compound **5a** was obtained in 53% yield (32.0 mg).

The reactions were conducted in a 10 mL of V-type flask equipped with oil bath and triangle

magnetic stirring. **1a** (0.2 mmol) was mixed with **2a** (0.2 mmol), and Cu(OTf)₂ (0.01 mmol, 5 mol%) in anhydrous ethanol (1.0 mL). The mixture was then stirred at 40 °C for 6 h. After the completion of the reaction, the mixture cooled to room temperature, and then subjected to an isolation with preparative TLC by using a mixture of petroleum ether and ethyl acetate as eluting solution (PE/EA = $4/1_{v/v}$). Compound **5a** was obtained in 78% yield (47.1 mg). Under the same conditions, compound **5a** was obtained in 87% yield (52.6 mg) without adding any catalyst.

The reactions were conducted in a 10 mL of V-type flask equipped with oil bath and triangle magnetic stirring. Compound **5a** (0.2 mmol) was mixed with **3a** (0.2 mmol), and Cu(OTf)₂ (0.01 mmol, 5 mol%) in ethanol (1.0 mL), the mixture was then stirred at 60 °C for 0.5 h. After the completion of the reaction, the mixture cooled to room temperature, and then subjected to an isolation with preparative TLC by using a mixture of petroleum ether and ethyl acetate as eluting solution (PE/EA = $4/1_{v/v}$). Compound **4a** was obtained in 63% yield (50.7 mg).

The reactions were conducted in a 10 mL of V-type flask equipped with oil bath and triangle magnetic stirring. **1a** (0.3 mmol) was mixed with **2a** (0.3 mmol), **3a** (0.2 mmol), and Cu(OTf)₂ (0.01 mmol, 5 mol%) in ethanol (1.0 mL). The mixture was then stirred under argon atmosphere at 60 °C for 6 h. After the completion of the reaction, the mixture cooled to room temperature, and then subjected to an isolation with preparative TLC by using a mixture of petroleum ether and ethyl acetate as eluting solution (PE/EA = $4/1_{v/v}$). The mixture of **4a** and **5b** was obtained in 89% yield (68.7 mg), and the molar ratio of **4a/5b** is ca. 1/4 (determined by ¹H NMR).

3. Condition optimization

NH ₂ + H H	- Сно За + - бb	Catalyst (5 mol%) Solvent, 60 °C, 6 h	H Ta
Entry	Catalyst	Solvent	Yield (7 a , %) ^b
1	—	EtOH	0
2	Cu(OTf) ₂	EtOH	0
3	Fe(OTf) ₃	EtOH	0
4	Al(OTf) ₃	EtOH	0
5	Sc(OTf) ₃	EtOH	0
6	CuCl ₂	EtOH	0
7	LiBr	EtOH	0
8	КОН	EtOH	34
9	KF·H ₂ O	EtOH	21
10	Cs_2CO_3	EtOH	16
11	K ₂ CO ₃	EtOH	< 10
12	Et ₃ N	EtOH	< 10
13	Pyridine	EtOH	< 10
14	КОН	MeCN	42
15	КОН	1,4-Dioxane	55
16	КОН	DCE	19
17	КОН	MeNO ₂	24
18°	КОН	1,4-Dioxane	48
19 ^d	КОН	1,4-Dioxane	52

Table S1 Optimization of the three-component reaction of 1a, 3a and 1,3-cyclohexanediones.^a

^a **1a**, 0.2 mmol; **3a**, 0.22 mmol; **6b**, 0.22 mmol; catalyst, 0.01 mmol; solvent, 1 mL; 60 °C; 6 h. ^b Isolated yield. ^c KOH 0.02 mmol. ^d 80 °C.

Table S2 Optimization of the three-component reaction of 1a, 3a and acetone.^a

5	Sc(OTf) ₃	1,4-Dioxane	33
6	Bi(OTf) ₃	1,4-Dioxane	35
7	Fe(OTf) ₃	1,4-Dioxane	27
8	Fe(OTf) ₃	EtOH	35
9	Fe(OTf) ₃	MeCN	52
10	Fe(OTf) ₃	Toluene	21
11 ^c	Fe(OTf) ₃	1,4-Dioxane	64
12 ^d	Fe(OTf) ₃	1,4-Dioxane	63
13 ^e	Fe(OTf) ₃	1,4-Dioxane	47
$14^{\rm f}$	Fe(OTf) ₃	1,4-Dioxane	78

^a **1a**, 0.3 mmol; **3a**, 0.2 mmol; acetone, 0.3 mmol; catalyst, 0.01 mmol; solvent, 1 mL; 60 °C; 6 h. ^b Isolated yield. ^c Fe(OTf)₃, 0.02 mmol. ^d Fe(OTf)₃, 0.04 mmol. ^e Fe(OTf)₃, 0.02 mmol, 40 °C. ^f Fe(OTf)₃, 0.02 mmol, 80 °C.

^a **1a**, 0.3 mmol; chalcone, 0.3 mmol; catalyst, 0.015 mmol; solvent, 1 mL; 60 °C; 6 h. ^b Isolated yield. ^c Fe(OTf)₃, 0.03 mmol. ^d Fe(OTf)₃, 0.06 mmol. ^e Fe(OTf)₃, 0.03 mmol, 80 °C. ^f Fe(OTf)₃, 0.03 mmol, 100 °C.

Table S4 Optimization of the three-component reaction of 1a, 3a and Meldrum's acid.^a

NH ₂	H + H + H +	Catalyst (5 mol%) Solvent, 60 °C, 3 h	
Entry	Catalyst	Solvent	Yield (8a, %) ^b
1	_	EtOH	52
2	Cu(OTf) ₂	EtOH	31
3	Fe(OTf) ₃	EtOH	24
4	CuBr ₂	EtOH	0
5	_	MeCN	76
6	Cu(OTf) ₂	MeCN	22
7	Fe(OTf) ₃	MeCN	14
8	_	1,4-Dioxane	37
9	_	Toluene	< 10
10	_	THF	0
11°	_	MeCN	74
12 ^d	_	MeCN	78

^a **1a**, 0.3 mmol; **3a**, 0.3 mmol; Meldrum's acid, 0.3 mmol; catalyst, 0.015 mmol; solvent, 1 mL; 60 °C; 3 h. ^b Isolated yield. ^c 80 °C. ^d 4 h.

4. Characterization data of all new compounds

Diethyl 4-(*p*-tolyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4a**): yellow solid (69.9 mg, 87% yield), mp: 167–169 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.96 (s, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 9.0 Hz, 1H), 7.58–7.54 (m, 3H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.19 (s, 1H), 4.47 (q, *J* = 7.1 Hz, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.39 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.05 ppm (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.4, 166.4, 154.2, 143.7, 139.2, 138.3, 137.2, 135.7, 128.9, 128.4, 125.1, 123.3, 120.3, 117.3, 116.7, 116.0, 102.2, 62.2, 61.5, 20.9, 13.9, 13.5 ppm; IR (KBr) ν = 3369, 2980, 1728, 1550, 1376, 1248, 1027, 747, 501 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₃N₂O₄⁺, [M + H]⁺ 403.1652, found 403.1651.

Diethyl 2-((1*H*-indol-4-yl)amino)maleate (**5a**): yellow oil; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) $\delta = 11.29$ (s, 1H), 9.92 (s, 1H), 7.36 (t, J = 2.8 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 7.00 (t, J = 7.8 Hz, 1H), 6.47–6.41 (m, 2H), 5.26 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 4.07 (q, J = 7.0 Hz, 2H), 1.23 (t, J =7.0 Hz, 3H), 0.96 ppm (t, J = 7.1 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) $\delta = 169.0$, 163.9, 149.0, 136.9, 131.8, 125.4, 121.3, 121.2, 109.7, 108.3, 97.7, 91.6, 61.8, 59.7, 14.3, 13.4 ppm; IR (KBr) v = 3778, 2923, 1731, 1605, 1272, 1211, 1027, 749, 587, 482 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₁₆H₁₉N₂O₄⁺, [M + H]⁺ 303.1339, found 303.1342.

The mixture of **4a** and **5b**: yellow oil (68.7 mg, 89% yield); ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) $\delta = 11.96$ (s, 1H), 11.17 (s, 4H), 7.86 (d, J = 9.0 Hz, 1H), 7.62 (s, 1H), 7.60–7.48 (m, 8H), 7.34 (s, 2H), 7.20 (s, 6H), 7.14 (d, J = 2.6 Hz, 4H), 7.04 (d, J = 7.8 Hz, 8H), 6.65 (d, J = 8.6 Hz, 8H), 6.59 (d, J = 8.6 Hz, 4H), 5.57 (d, J = 2.9 Hz, 4H), 4.47 (q, J = 7.1 Hz, 2H), 4.31 (q, J = 7.1 Hz, 8H), 4.10 (q, J = 6.8 Hz, 8H), 4.02 (t, J = 7.2 Hz, 2H), 2.40 (s, 2H), 2.20 (s, 12H), 1.35 (d, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 12H), 1.16 (t, J = 7.1 Hz, 12H), 1.06 ppm (d, J = 7.1 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) $\delta = 168.0$, 167.4, 166.4, 164.6, 154.2, 143.7, 141.7, 141.3, 139.8, 139.3, 138.3, 138.2, 137.2, 136.6, 135.7, 129.7, 128.9, 128.5, 125.7, 125.1, 123.5, 123.3, 120.3, 120.3, 117.3, 116.7, 116.0, 114.7, 111.1, 105.0, 102.3, 102.2, 100.2, 62.3, 61.6, 60.9, 60.3, 59.8, 51.9, 20.9, 20.6, 14.1, 14.0, 13.9, 13.5 ppm; IR (KBr) $\nu = 3362, 2925, 1732, 1550, 1354, 1248, 1027, 826, 750, 522 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₅N₂O₄⁺ ($ **5b**), [M + H]⁺ 405.1809, found 405.1810.

Diethyl 4-phenyl-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4b**): yellow solid (41.9 mg, 54% yield), mp: 150–152 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.99 (s, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 7.68–7.62 (m, 3H), 7.57 (t, *J* = 2.7 Hz, 1H), 7.53 (q, *J* = 7.0 Hz, 3H), 7.21 (s, 1H), 4.47 (q, *J* = 7.2 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.00 ppm (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.3, 166.4, 154.4, 143.7, 140.1, 139.4, 135.8, 128.7, 128.5, 128.3, 125.2, 123.3, 120.4, 117.3, 116.8, 116.2, 102.3, 62.3, 61.5, 13.9, 13.4 ppm; IR (KBr) *v* = 3380, 2980, 1717, 1549, 1246, 1213, 1017, 737, 696, 597, 499 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₃H₂₁N₂O₄⁺, [M + H]⁺ 389.1496, found 389.1495.

Diethyl 4-(4-(*tert*-butyl)phenyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4c**): yellow oil (54.2 mg, 61% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.97 (s, 1H), 7.88 (d, *J* = 9.0 Hz, 1H), 7.65–7.60 (m, 2H), 7.58 (d, *J* = 7.2 Hz, 3H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.21 (s, 1H), 4.47 (q, *J* = 7.1 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 1.36 (d, *J* = 7.1 Hz, 3H), 1.33 (s, 9H), 0.98 ppm (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.4, 166.4, 154.3, 151.3, 143.8, 139.3, 137.3, 135.7, 128.2, 125.1, 125.0, 123.4, 120.3, 117.3, 116. 7, 116.1, 102.3, 62.2, 61.5, 34.3, 31.1, 13.8, 13.3 ppm; IR (KBr) *v* = 3209, 2961, 1732, 1412, 1362, 1249, 1028, 747, 593, 447 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₇H₂₉N₂O₄⁺, [M + H]⁺ 445.2122, found 445.2121.

Diethyl 4-(4-methoxyphenyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4d**): yellow oil (58.5 mg, 70% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.95 (s, 1H), 7.85 (d, *J* = 9.0 Hz, 1H), 7.62 (t, *J* = 9.6 Hz, 3H), 7.56 (t, *J* = 2.7 Hz, 1H), 7.20 (s, 1H), 7.09 (d, *J* = 8.3 Hz, 2H), 4.47 (q, *J* = 7.1 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.84 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.09 ppm (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.5, 166.4, 159.9, 153.8, 143.7, 139.3, 135.7, 132.3, 129.9, 125.0, 123.3, 120.2, 117.3, 116.5, 115.9, 113.8, 102.2, 62.2, 61.5, 55.3, 13.9, 13.6 ppm; IR (KBr) *v* = 3381, 2929, 2844, 1731, 1607, 1513, 1251, 1103, 1031, 749, 557, 425 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₃N₂O₅+, [M + H]⁺ 419.1601, found 419.1601.

Diethyl 4-(4-methylthiophenyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4e**): yellow oil (53.8 mg, 62% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.97 (s, 1H), 7.87 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 3H), 7.57 (t, *J* = 2.7 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.20 (s, 1H), 4.47 (q, *J* = 7.3 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.54 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.08 ppm (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.3, 166.4, 153.7, 143.7, 139.5, 139.4, 136.3, 135.8, 129.0, 125.5, 125.2, 123.3, 120.1, 117.3, 116.8, 116.1, 102.3, 62.2, 61.6, 14.5,

13.9, 13.5 ppm; IR (KBr) v = 3380, 2982, 1730, 1592, 1494, 1249, 1141, 1027, 747, 505 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₃N₂O₄S⁺, [M + H]⁺ 435.1373, found 435.1365.

Diethyl 4-(4-chlorophenyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4f**): yellow oil (57.4 mg, 68% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 12.01 (s, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.67 (t, J = 7.6 Hz, 3H), 7.64–7.55 (m, 4H), 7.20 (s, 1H), 4.47 (q, J = 7.1 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.05 ppm (t, J = 7.1 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.1, 166.3, 153.2, 143.8, 139.6, 138.9, 135.9, 133.7, 130.3, 128.4, 125.3, 123.3, 120.1, 117.3, 117.1, 116.4, 102.3, 62.3, 61.7, 13.9, 13.5 ppm; IR (KBr) v = 3379, 2927, 1731, 1549, 1412, 1250, 1142, 1027, 778, 502 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₃H₂₀ClN₂O₄⁺, [M + H]⁺ 423.1106, found 423.1105.

Diethyl 4-(4-(bromophenyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4g**): yellow oil (49.4 mg, 53% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 12.01 (s, 1H), 7.90 (d, *J* = 9.0 Hz, 1H), 7.74 (d, *J* = 8.1 Hz, 2H), 7.66–7.56 (m, 4H), 7.20 (s, 1H), 4.47 (q, *J* = 7.1 Hz, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.05 ppm (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.0, 166.3, 153.3, 143.8, 139.6, 139.2, 135.8, 131.3, 130.6, 125.3, 123.3, 122.4, 120.0, 117.3, 117.1, 116.4, 102.3, 62.3, 61.7, 13.9, 13.5 ppm; IR (KBr) *v* = 3381, 2927, 1730, 1588, 1489, 1250, 1142, 1027, 748, 500 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₃H₂₀BrN₂O₄⁺, [M + H]⁺ 467.0601, found 467.0600.

Diethyl 4-(4-(ethoxycarbonyl)phenyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4h**): yellow oil (74.5 mg, 81% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 12.03 (s, 1H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.91 (d, *J* = 9.0 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 9.0 Hz, 1H), 7.59 (t, *J* = 2.8 Hz, 1H), 7.21 (t, *J* = 2.5 Hz, 1H), 4.48 (q, *J* = 7.0 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 1.36 (td, *J* = 7.2, 2.3 Hz, 6H), 1.02 ppm (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 166.9, 166.3, 165.5, 153.4, 144.5, 143.7, 139.7, 135.9, 129.9, 129.1, 128.9, 125.4, 123.3, 120.1, 117.3, 117.2, 116.5, 102.3, 62.3, 61.7, 60.9, 14.2, 13.8, 13.4 ppm; IR (KBr) *v* = 3377, 2927, 1722, 1609, 1550, 1363, 1227, 1179, 872, 746, 526 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₆H₂₅N₂O₆⁺, [M + H]⁺ 461.1707, found 461.1706.

Diethyl 4-(4-cyanophenyl)-4,6-dihydro-3*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4i**): yellow solid (43.0 mg, 52% yield), mp: 168–170 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 12.04 (s, 1H), 8.01 (d, *J* = 7.9 Hz, 2H), 7.93 (d, *J* = 9.0 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 2H), 7.65 (d, *J* = 9.0 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.83 (d, J

1H), 7.59 (t, J = 2.7 Hz, 1H), 7.20 (s, 1H), 4.48 (q, J = 7.1 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.02 ppm (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) $\delta = 166.7$, 166.2, 152.9, 144.6, 143.7, 140.0, 135.9, 132.3, 129.5, 125.5, 123.3, 119.9, 118.7, 117.4, 117.3, 116.7, 111.3, 102.3, 62.3, 61.8, 13.8, 13.4 ppm; IR (KBr) v = 3201, 2925, 2228, 1730, 1607, 1548, 1250, 1224, 1028, 779, 539 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₀N₃O₄⁺, [M + H]⁺ 414.1448, found 414.1447.

Diethyl 4-(4-nitrophenyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4j**): yellow solid (34.7 mg, 40% yield), mp: 169–171 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 12.06 (s, 1H), 8.39 (d, *J* = 8.3 Hz, 2H), 7.93 (t, *J* = 8.6 Hz, 3H), 7.66 (d, *J* = 9.0 Hz, 1H), 7.60 (t, *J* = 2.7 Hz, 1H), 7.22 (s, 1H), 4.49 (q, *J* = 7.1 Hz, 2H), 4.14 (q, *J* = 7.0 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.03 ppm (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 166.6, 166.2, 152.6, 147.5, 146.4, 143.8, 140.0, 136.0, 130.0, 125.5, 123.5, 123.3, 119.8, 117.6, 117.4, 116.8, 102.4, 62.4, 61.9, 13.9, 13.4 ppm; IR (KBr) *v* = 3389, 2927, 1729, 1602, 1520, 1347, 1250, 1027, 857, 745, 527 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₃H₂₀N₃O₆⁺, [M + H]⁺ 434.1347, found 434.1345.

Diethyl 4-(4-trifluoromethyl)phenyl)-6*H*-azepino[4,3,2-cd]indole-2,3-dicarboxylate (**4k**): yellow solid (39.2 mg, 43% yield), mp: 126–128 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 12.04 (s, 1H), 7.93 (d, *J* = 9.1 Hz, 1H), 7.92–7.84 (m, 4H), 7.66 (d, *J* = 9.0 Hz, 1H), 7.59 (t, *J* = 2.6 Hz, 1H), 7.21 (s, 1H), 4.49 (q, *J* = 7.1 Hz, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 0.99 ppm (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 166.8, 166.3, 153.2, 144.1, 143.8, 139.9, 135.9, 129.0 (d, ²*J*_{*C-F*} = 32 Hz), 129.4, 125.4, 125.2 (q, ³*J*_{*C-F*} = 4 Hz), 124.3 (d, ¹*J*_{*C-F*} = 270 Hz), 123.3, 120.0, 117.3, 117.3, 116.6, 102.3, 62.3, 61.7, 13.8, 13.2 ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆, 25 °C) δ = -61.1 ppm; IR (KBr) *v* = 3379, 2984, 1730, 1615, 1551, 1324, 1128, 1028, 852, 746, 606 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₀F₃N₂O₄⁺, [M + H]⁺ 457.1370, found 457.1361.

Diethyl 4-(2-methoxyphenyl)-6*H*-azepino[4,3,2-cd]indole-2,3-dicarboxylate (**4l**): yellow solid (46.8 mg, 56% yield), mp: 125–127 °C; ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 11.97 (s, 1H), 7.88 (d, J = 9.0 Hz, 1H), 7.62–7.53 (m, 3H), 7.45 (t, J = 7.7 Hz, 1H), 7.13 (d, J = 7.4 Hz, 2H), 7.05 (d, J = 8.3 Hz, 1H), 4.46 (q, J = 7.0 Hz, 2H), 4.05 (q, J = 6.7 Hz, 2H), 3.67 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) δ = 166.9,

166.3, 156.2, 153.0, 144.0, 139.5, 135.7, 130.9, 130.1, 129.6, 125.1, 123.4, 121.0, 120.6, 117.4, 116.6, 116.3, 110.4, 102.2, 62.0, 61.0, 55.0, 13.9, 13.4 ppm; IR (KBr) v = 3202, 2982, 1730, 1589, 1551, 1355, 1246, 1028, 753, 599 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{24}H_{23}N_2O_5^+$, $[M + H]^+$ 419.1601, found 419.1600.

Diethyl 4-(naphthalen-2-yl)-6H-azepino[4,3,2-cd]indole-2,3-dicarboxylate (4m): yellow solid (60.5 mg, 69% yield), mp: 199–201 °C; ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 12.02 (s, 1H), 8.18 (s, 1H), 8.06 (t, J = 6.7 Hz, 2H), 8.02-7.98 (m, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.85 (dd, J = 8.4, 1.8 Hz, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.59 (t, J = 4.6 Hz, 3H), 7.26 (s, 1H), 4.50 (q, J = 7.1 Hz, 2H), 4.11 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H), 0.94 ppm (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) δ = 167.3, 166.4, 154.3, 143.3, 139.6, 137.5, 135.9, 132.8, 132.6, 128.4, 127.9, 127.9, 127.6, 126.9, 126.6, 126.4, 125.2, 123.4, 120.5, 117.4, 116.9, 116.3, 102.4, 62.3, 61.6, 13.9, 13.4 ppm; IR (KBr) v = 3381, 2980, 1727, 1550, 1243, 1021, 750, 479 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{27}H_{23}N_2O_4^+$, $[M + H]^+$ 439.1652, found 439.1644.

Diethyl 4-(furan-2-yl)-6H-azepino[4,3,2-cd]indole-2,3-dicarboxylate (4n): yellow solid (39.3 mg, 52% yield), mp: 150–152 °C; ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 11.98 (s, 1H), 7.92 (s, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.64–7.56 (m, 2H), 7.30 (d, J = 2.8 Hz, 1H), 7.25 (s, 1H), 6.74 (dd, J = 2.8 Hz, 1H), 7.25 (s, 1H), 6.74 (dd, J = 2.8 Hz, 1H), 7.86 (d, J = 2.8 Hz, 1H), 7.8 = 3.5, 1.8 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.25 ppm (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) $\delta = 167.0$, 166.0, 152.4, 145.0, 143.6, 143.1, 138.7, 135.7, 125.1, 123.1, 118.8, 117.4, 116.8, 116.3, 112.4, 111.4, 102.4, 62.3, 61.7, 13.9, 13.8 ppm; IR (KBr) v = 3382, 2983, 1728, 1550, 1254, 1017, 748, 594, 437 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{21}H_{19}N_2O_5^+$, $[M + H]^+$ 379.1288, found 379.1289.

Diethyl 4-(thiophen-2-yl)-6H-azepino[4,3,2-cd]indole-2,3-dicarboxylate (40): yellow solid (36.2 mg, 46% yield), mp: 152–154 °C; ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 11.99 (s, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 5.1 Hz, 1H), 7.64-7.56 (m, 2H), 7.38 (d, J = 3.6 Hz, 1H), 7.19 (d, J = 3.6 Hz, 1Hz), 7.19 (d, J = 3.6 Hz, 1Hz), 7.19 (d, J = 3.6 Hz, 1Hz), 7.19 (d, J = 3.6 Hz), 7.19 (d, J = 3.6*J* = 3.9 Hz, 2H), 4.48 (q, *J* = 6.9 Hz, 2H), 4.33 (q, *J* = 7.0 Hz, 2H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.23 ppm (t, J = 7.0 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) $\delta = 167.3$, 166.1, 146.4, 143.4, 142.8, 138.8, 135.8, 129.7, 128.3, 127.4, 125.2, 122.9, 119.2, 117.4, 116.8, 116.2, 102.2, 62.4, 62.0, 13.9, 13.6 ppm; IR (KBr) v = 3388, 2981, 1727, 1549, 1252, 1025, 748, 534 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{21}H_{19}N_2O_4S^+$, $[M + H]^+$ 395.1060, found 395.1059.

Diethyl 4-phenethyl-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (4**p**): yellow solid (35.8 mg, S11

43% yield), mp: 172–174 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.93 (s, 1H), 7.83 (d, *J* = 9.0 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.32–7.23 (m, 5H), 7.18 (d, *J* = 6.1 Hz, 1H), 4.45 (q, *J* = 7.1 Hz, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.44 (t, *J* = 6.3 Hz, 2H), 3.20–3.12 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.29 ppm (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 166.8, 166.6, 156.4, 143.9, 141.5, 139.4, 135.7, 128.3, 125.9, 124.9, 123.0, 119.9, 117.6, 116.1, 116.0, 102.3, 62.0, 61.7, 38.1, 34.7, 13.9, 13.8 ppm; IR (KBr) *v* = 3369, 2982, 1721, 1555, 1242, 1019, 742, 508 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₅H₂₅N₂O₄⁺, [M + H]⁺ 417.1809, found 417.1808.

Diethyl 4-cyclopropyl-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4q**): yellow solid (40.8 mg, 58% yield), mp: 130–132 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.85 (s, 1H), 7.74 (d, *J* = 9.0 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.49 (t, *J* = 2.7 Hz, 1H), 7.09 (s, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.54 (dt, *J* = 8.1, 3.6 Hz, 1H), 1.34 (dt, *J* = 8.8, 7.1 Hz, 6H), 1.27 (q, *J* = 3.6 Hz, 2H), 1.08 ppm (dq, *J* = 6.9, 3.3 Hz, 2H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 167.0, 166.6, 157.4, 144.0, 138.5, 135.6, 124.7, 122.8, 120.5, 117.6, 115.6, 115.5, 102.1, 62.1, 61.8, 14.9, 13.9, 13.9, 11.0 ppm; IR (KBr) ν = 3381, 2983, 1726, 1556, 1418, 1248, 1181, 1023, 865, 744, 667, 533 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₀H₂₁N₂O₄⁺, [M + H]⁺ 353.1496, found 353.1495.

Diethyl 8-fluoro-4-(*p*-tolyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4r**): yellow oil (28.6 mg, 34% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.98 (s, 1H), 7.71 (d, *J* = 12.1 Hz, 1H), 7.56 (dd, *J* = 10.6, 5.2 Hz, 3H), 7.34 (d, *J* = 7.7 Hz, 2H), 7.17 (s, 1H), 4.42 (q, *J* = 7.1 Hz, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.40 (s, 3H), 1.35 (t, *J* = 7.0 Hz, 3H), 1.04 ppm (t, *J* = 7.0 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 166.8, 166.6, 155.5, 152.3 (d, ¹*J*_{C-F} = 245.0 Hz), 142.6 (d, ³*J*_{C-F} = 3.0 Hz), 138.7, 136.7, 136.6, 133.7 (d, ²*J*_{C-F} = 14.0 Hz), 129.0, 128.4, 125.3 (d, ⁴*J*_{C-F} = 3.0 Hz), 120.5, 120.4, 107.0 (d, ³*J*_{C-F} = 15.0 Hz), 102.3, 101.1 (d, ²*J*_{C-F} = 25.0 Hz), 62.1, 61.8, 20.9, 13.8, 13.4 ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆, 25 °C) δ = -123.6, -123.6 ppm; IR (KBr) *v* = 3381, 2925, 1725, 1549, 1356, 1230, 1013, 752, 502 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₂FN₂O₄⁺, [M + H]⁺ 421.1558, found 421.1557.

Diethyl 8-bromo-4-(*p*-tolyl)-6*H*-azepino[4,3,2-*cd*]indole-2,3-dicarboxylate (**4s**): yellow oil (43.2 mg, 45% yield); ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 11.98 (s, 1H), 8.19 (s, 1H), 7.61–7.55 (m, 3H), 7.35 (d, *J* = 7.8 Hz, 2H), 7.19 (s, 1H), 4.40 (q, *J* = 6.3, 5.8 Hz, 2H), 4.15–4.09 (m, 2H), 2.40 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.05 ppm (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, 500 MHz, 500 MHz).

DMSO- d_6 , 25 °C) δ = 167.1, 166.5, 154.2, 144.2, 139.2, 138.8, 136.4, 134.9, 129.0, 128.4, 126.1, 123.8, 122.6, 122.1, 114.4, 109.0, 102.7, 62.3, 61.8, 20.9, 13.5, 13.4 ppm; IR (KBr) v = 3384, 2926, 1731, 1548, 1334, 1245, 1027, 775, 498 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₂BrN₂O₄⁺, [M + H]⁺ 481.0757, found 481.0756.

2,3-Diethyl 8-methyl 4-(p-tolyl)-6H-azepino[4,3,2-cd]indole-2,3,8-tricarboxylate (4t): yellow oil (47.9 mg, 52% yield); ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 12.20 (s, 1H), 8.27 (s, 1H), 7.74 (t, J = 2.8 Hz, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.34 (d, J = 7.7 Hz, 2H), 7.21 (t, J = 2.4 Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 2.40 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.09 ppm (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) $\delta = 168.0$, 167.4, 166.0, 154.0, 144.1, 138.5, 137.0, 136.5, 133.0, 128.8, 128.4, 128.1, 126.0, 123.8, 121.4, 119.9, 114.2, 103.0, 61.9, 61.7, 52.2, 20.9, 13.5, 13.5 ppm; IR (KBr) v = 3382, 2926, 1728, 1549, 1370, 1228, 1133, 753, 499 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{26}H_{25}N_2O_6^+$, $[M + H]^+$ 461.1707, found 461.1706.

Diethyl 6-methyl-4-(p-tolyl)-6H-azepino[4,3,2-cd]indole-2,3-dicarboxylate (4u): yellow oil (44.9 mg, 54% yield); ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 7.93 (d, J = 9.1 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.57 (d, J = 7.8 Hz, 2H), 7.53 (d, J = 2.9 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 2.9 Hz, 1H), 4.48 (q, J = 7.1 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 3.97 (s, 3H), 2.38 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H), 1.06 ppm (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) $\delta =$ 167.3, 166.3, 154.4, 143.5, 139.2, 138.3, 137.1, 136.0, 129.4, 128.8, 128.4, 123.6, 120.5, 117.3, 116.0, 114.9, 101.5, 62.2, 61.5, 33.1, 20.8, 13.8, 13.4 ppm; IR (KBr) *v* = 3380, 2981, 1732, 1543, 1295, 1107, 1026, 744, 496 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₅H₂₅N₂O₄⁺, [M + H]⁺ 417.1809, found 417.1808.

Dimethyl 4-(p-tolyl)-6H-azepino[4,3,2-cd]indole-2,3-dicarboxylate (4v): yellow oil (49.4 mg, 66%) yield); ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 11.97 (s, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.64– 7.55 (m, 4H), 7.34 (d, J = 7.7 Hz, 2H), 7.20 (s, 1H), 4.00 (s, 3H), 3.70 (s, 3H), 2.39 ppm (s, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) δ = 168.0, 166.9, 154.0, 143.8, 139.2, 138.4, 136.9, 135.8, 129.0, 128.4, 125.1, 123.3, 120.1, 117.4, 116.7, 116.0, 102.2, 53.3, 52.7, 20.9 ppm; IR (KBr) $v = 3383, 2924, 1735, 1351, 1252, 1141, 1028, 749, 497 \text{ cm}^{-1}$; HRMS (ESI, TOF) m/z: calcd for $C_{22}H_{19}N_2O_4^+$, $[M + H]^+$ 375.1339, found 375.1339.

Methyl 4-(p-tolyl)-6H-azepino[4,3,2-cd]indole-3-carboxylate (4w): yellow solid (33.5 mg, 53%) S13

yield), mp: 194–196 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.85 (s, 1H), 8.77 (s, 1H), 7.74 (q, *J* = 8.7 Hz, 2H), 7.55 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 2.8 Hz, 1H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.15 (s, 1H), 3.72 (s, 3H), 2.39 ppm (s, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 168. 4, 155.2, 143.9, 138.7, 137.8, 137.7, 136.2, 128.7, 128.6, 124.5, 123.1, 121.6, 121.2, 120.4, 115.3, 102.0, 52.2, 20.9 ppm; IR (KBr) ν = 3379, 2925, 1721, 1603, 1378, 1258, 1112, 749, 585 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₀H₁₇N₂O₂⁺, [M + H]⁺ 317.1285, found 317.1284.

Ethyl 3-acetyl-4-(*p*-tolyl)-6*H*-azepino[4,3,2-*cd*]indole-2-carboxylate (**4x**): yellow solid (40.9 mg, 55% yield), mp: 191–193 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.95 (s, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 9.0 Hz, 1H), 7.56 (d, *J* = 7.3 Hz, 3H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.20 (s, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 2.40 (s, 3H), 2.05 (s, 3H), 1.31 ppm (t, *J* = 7.0 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 203.6, 166.7, 153.2, 143.6, 139.0, 137.9, 137.0, 135.5, 129.4, 129.3, 129.0, 125.0, 123.3, 117.4, 116.6, 116.4, 102.2, 62.0, 31.3, 20.9, 13.7 ppm; IR (KBr) *v* = 3212, 2982, 1731, 1692, 1544, 1353, 1218, 1029, 762, 501 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₃H₂₁N₂O₃⁺, [M + H]⁺ 373.1547, found 373.1541.

8,8-Dimethyl-11-(*p*-tolyl)-2,6,7,8,9,11-hexahydro-10*H*-benzo[6,7]azepino[4,3,2-*cd*]indol-10-one (7**a**): yellow oil (39.2 mg, 55% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.03 (s, 1H), 9.17 (s, 1H), 7.25 (t, *J* = 2.7 Hz, 1H), 7.05 (d, *J* = 7.7 Hz, 2H), 6.93 (d, *J* = 8.2 Hz, 3H), 6.81 (s, 1H), 6.77 (d, *J* = 8.3 Hz, 1H), 5.07 (s, 1H), 2.58 (s, 2H), 2.19 (d, *J* = 16.2 Hz, 2H), 2.15 (s, 3H), 1.06 (s, 3H), 0.97 ppm (s, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 193.0, 151.5, 147.0, 135.3, 134.0, 128.4, 127.6, 126.9, 124.3, 122.9, 116.5, 114.8, 107.3, 106.7, 98.5, 50.4, 40.4, 39.5, 32.1, 29.3, 26.8, 20.5 ppm; IR (KBr) *v* = 3203, 2925, 1682, 1542, 1405, 1026, 755, 553 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₄H₂₅N₂O⁺, [M + H]⁺ 357.1961, found 357.1957.

11-(4-Chlorophenyl)-8,8-dimethyl-2,6,7,8,9,11-hexahydro-10H-benzo[6,7]azepino[4,3,2-

cd]indol-10-one (**7b**): yellow oil (38.4 mg, 51% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.08 (s, 1H), 9.26 (s, 1H), 7.27 (t, *J* = 2.8 Hz, 1H), 7.22–7.15 (m, 4H), 6.96 (d, *J* = 8.3 Hz, 1H), 6.83 (s, 1H), 6.77 (d, *J* = 8.3 Hz, 1H), 5.15 (s, 1H), 2.59 (s, 2H), 2.21 (d, *J* = 16.0 Hz, 1H), 2.01 (d, *J* = 18.0 Hz, 1H), 1.05 (s, 3H), 0.96 ppm (s, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 193.1, 151.8, 148.7, 135.4, 129.8, 128.9, 127.8, 127.6, 124.5, 122.9, 116.5, 114.0, 107.0, 106.8, 98.6, 50.3, 40.4, 39.4, 2.1, 29.2, 26.8 ppm; IR (KBr) v = 3278, 2927, 1602, 1487, 1259, 1026, 888,

782, 529 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{23}H_{22}ClN_2O^+$, $[M + H]^+$ 377.1415, found 377.1415.

4-(8,8-Dimethyl-10-oxo-6,7,8,9,10,11-hexahydro-2H-benzo[6,7]azepino[4,3,2-cd]indol-11yl)benzonitrile (7c): yellow oil (26.4 mg, 36% yield); ¹H NMR (400 MHz, CDCl₃ TMS, 25 °C) δ = 8.57 (s, 1H), 7.43–7.35 (m, 4H), 7.19 (t, J = 2.9 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H), 6.93 (s, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.53 (s, 1H), 5.44 (s, 1H), 2.55-2.44 (m, 2H), 2.25 (q, J = 16.4 Hz, 2H), 1.10 (s, 3H), 0.99 ppm (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25 °C) δ = 195.1, 153.9, 151.1, 135.7, 132.2, 128.6, 127.7, 124.5, 124.2, 119.5, 116.3, 114.5, 109.3, 108.6, 107.7, 97.9, 50.8, 42.2, 40.7, 32.8, 29.5, 27.4 ppm; IR (KBr) v = 3285, 2957, 2226, 1602, 1485, 1257, 1150, 887, 751, 558 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{24}H_{22}N_3O^+$, $[M + H]^+$ 368.1757, found 368.1758. 11-(p-Tolyl)-2,6,7,8,9,11-hexahydro-10H-benzo[6,7]azepino[4,3,2-cd]indol-10-one (7d): yellow oil (33.1 mg, 53% yield); ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 11.03 (s, 1H), 9.22 (s, 1H), 7.25 (t, J = 2.8 Hz, 1H), 7.03 (d, J = 7.7 Hz, 2H), 6.93 (d, J = 7.6 Hz, 3H), 6.80 (t, J = 6.2 Hz, 2H), 5.10 (s, 1H), 2.77 (dt, J = 17.0, 4.8 Hz, 1H), 2.67–2.59 (m, 1H), 2.25–2.17 (m, 2H), 2.15 (s, 3H), 1.95 (dd, J = 8.6, 4.1 Hz, 1H), 1.85 ppm (dd, J = 11.3, 6.2 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO- d_6 , 25 °C) δ = 193.4, 153.3, 146.9, 135.2, 134.0, 128.4, 127.6, 126.9, 124.2, 122.8, 116.4, 114.7, 108.5, 106.7, 98.5, 36.8, 27.0, 21.1, 20.5 ppm; IR (KBr) v = 3275, 2924, 1602, 1486, 1413, 1356, 1181, 1025, 762, 522 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for $C_{22}H_{21}N_2O^+$, $[M + H]^+$ 329.1648, found 329.1643.

Methyl 2,8,8-Trimethyl-11-(p-tolyl)-2,6,7,8,9,11-hexahydro-10H-benzo[6,7]azepino[4,3,2-cd]indol-10-one (7e): yellow solid (43.7mg, 59% yield), mp: 273–275 °C; ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) δ = 9.17 (s, 1H), 7.23 (d, J = 3.2 Hz, 1H), 7.03 (d, J = 7.7 Hz, 2H), 6.92 (d, J = 7.6 Hz, 3H), 6.83 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 3.2 Hz, 1H), 5.07 (s, 1H), 3.69 (s, 3H), 2.57 (s, 2H), 2.19 (d, J = 16.5 Hz, 1H), 2.15 (s, 3H), 1.98 (d, J = 8.0 Hz, 1H), 1.05 (s, 3H), 0.96 ppm (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6 , 25 °C) δ = 193.0, 151.4, 146.9, 135.8, 134.0, 128.5, 128.4, 127.7, 126.9, 123.0, 116.6, 115.1, 107.3, 104.9, 97.7, 50.3, 40.4, 32.5, 32.1, 29.3, 26.7, 20.5 ppm; IR (KBr) v = 3280, 2925, 1712, 1598, 1483, 1385, 1265, 1028, 758, 592 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₅H₂₇N₂O⁺, [M + H]⁺ 371.2118, found 371.2115.

2-Methyl-4-(p-tolyl)-6H-azepino[4,3,2-cd]indole (4y): yellow oil (42.5 mg, 78% yield); ¹H NMR

(400 MHz, DMSO- d_6 , 25 °C) δ = 11.61 (s, 1H), 8.24 (d, J = 7.9 Hz, 2H), 7.87 (s, 1H), 7.68 (q, J = 8.9 Hz, 2H), 7.45 (t, J = 2.7 Hz, 1H), 7.35 (d, J = 7.8 Hz, 2H), 7.21 (t, J = 2.4 Hz, 1H), 2.76 (s, 3H), 2.39 ppm (s, 3H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 25 °C) δ = 153.5, 144.7, 143.3, 138.5, 136.6, 135.0, 129.3, 126.8, 124.1, 123.8, 121.4, 116.9, 116.3, 113.7, 102.0, 20.9, 19.3 ppm; IR (KBr) v = 3257, 2922, 1596, 1361, 1092, 822, 745, 562, 478 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₁₉H₁₇N₂⁺, [M + H]⁺ 273.1386, found 273.1386.

10-(*p*-Tolyl)-2,7,8,9-tetrahydrocyclopenta[6,7]azepino[4,3,2-*cd*]indole (**4z**): yellow oil (38.2 mg, 64% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.58 (s, 1H), 7.86 (d, *J* = 7.7 Hz, 2H), 7.66 (d, *J* = 8.7 Hz, 1H), 7.52 (d, *J* = 8.7 Hz, 1H), 7.42 (t, *J* = 2.6 Hz, 1H), 7.34 (d, *J* = 7.7 Hz, 2H), 7.12 (s, 1H), 3.31 (t, *J* = 7.5 Hz, 2H), 3.25 (t, *J* = 7.3 Hz, 2H), 2.40 (s, 3H), 2.19 ppm (p, *J* = 7.4 Hz, 2H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 152.4, 151.3, 142.5, 137.9, 137.5, 134.5, 131.3, 128.8, 128.6, 123.9, 123.5, 119.5, 117.4, 114.0, 101.8, 33.3, 31.2, 24.7, 20.9 ppm; IR (KBr) *v* = 3220, 2924, 1602, 1367, 1026, 825, 749, 563, 485 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₁H₁₉N₂⁺, [M + H]⁺ 299.1543, found 299.1542.

11-(*p*-Tolyl)-7,8,9,10-tetrahydro-2*H*-benzo[6,7]azepino[4,3,2-*cd*]indole (**4aa**): yellow oil (42.5 mg, 68% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.54 (s, 1H), 7.66 (s, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 2.6 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 2H), 7.02 (d, *J* = 2.4 Hz, 1H), 3.20 (t, *J* = 6.6 Hz, 2H), 2.71 (t, *J* = 6.1 Hz, 2H), 2.39 (s, 3H), 1.90 (q, *J* = 6.4, 6.0 Hz, 2H), 1.74–1.65 ppm (m, 2H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 157.7, 141.8, 140.9, 138.8 136.8, 134.4, 128.9, 128.5, 125.1, 124.1, 123.6, 120.9, 115.8, 113.7, 101.6, 28.3, 25.9, 22.6, 22.1, 20.9 ppm; IR (KBr) *v* = 3189, 2926, 1510, 1363, 1115, 1019, 743, 575, 442 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₂H₂₁N₂⁺, [M + H]⁺ 313.1699, found 313.1699.

11-(*p*-Tolyl)-2,7,8,10-tetrahydropyrano[3',4':6,7]azepino[4,3,2-*cd*]indole (**4ab**): yellow oil (50.3 mg, 80% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.63 (s, 1H), 7.73–7.62 (m, 2H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 2.7 Hz, 1H), 7.32 (d, *J* = 7.7 Hz, 2H), 7.07 (s, 1H), 4.72 (s, 2H), 4.08 (t, *J* = 5.9 Hz, 2H), 3.24 (t, *J* = 5.9 Hz, 2H), 2.40 ppm (s, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 154.4, 141.5, 139.2, 137.5, 137.2, 134.7, 128.7, 128.7, 124.0, 123.9, 123.3, 120.3, 115.6, 114.2, 101.7, 66.4, 64.0, 25.1, 20.9 ppm; IR (KBr) *v* = 3217, 2924, 1594, 1361, 1115, 1026, 879, 754, 580, 465 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₁H₁₉N₂O⁺, [M + H]⁺ 315.1492, found 315.1486.

12-(*p*-Tolyl)-2,7,8,9,10,11-hexahydrocyclohepta[6,7]azepino[4,3,2-*cd*]indole (**4ac**): yellow oil (34.6 mg, 53% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.54 (s, 1H), 7.86 (d, *J* = 9.1 Hz, 1H), 7.65 (d, *J* = 9.0 Hz, 1H), 7.39 (t, *J* = 6.9 Hz, 3H), 7.31 (d, *J* = 7.6 Hz, 2H), 7.02 (s, 1H), 3.34 (s, 2H), 2.98–2.89 (m, 2H), 2.40 (s, 3H), 1.85 (q, *J* = 5.8 Hz, 2H), 1.71 (p, *J* = 5.4 Hz, 2H), 1.59 ppm (p, *J* = 5.5 Hz, 2H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 156.8, 149.3, 141.7, 139.4, 136.6, 134.3, 130.7, 129.0, 128.5, 124.1, 123.5, 120.4, 116.5, 114.0, 101.8, 31.3, 30.0, 28.0, 27.1, 26.2, 20.8 ppm; IR (KBr) *v* = 3216, 2921, 1507, 1359, 1003, 759, 577, 485 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₃H₂₃N₂⁺, [M + H]⁺ 327.1856, found 327.1850.

2,4-Diphenyl-6*H*-azepino[4,3,2-*cd*]indole (**4ad**): colorless oil (45.1 mg, 47% yield); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.70 (s, 1H), 8.40 (d, *J* = 7.6 Hz, 2H), 7.89 (s, 1H), 7.64 (q, *J* = 6.8, 4.9 Hz, 4H), 7.60 (s, 1H), 7.58 (d, *J* = 3.0 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 3H), 7.30 ppm (s, 1H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 153.6, 148.7, 144.0, 139.2, 139.0, 134.9, 129.6, 129.1, 128.7, 128.6, 128.2, 127.1, 124.1, 119.9, 118.1, 115.9, 114.5, 102.1 ppm; IR (KBr) *v* = 3224, 2924, 1557, 1407, 1364, 1027, 876, 746, 699, 602 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₂₃H₁₇N₂⁺, [M + H]⁺ 321.1386, found 321.1380.

4-(*p*-Tolyl)-1,3,4,6-tetrahydro-2*H*-azepino[4,3,2-*cd*]indol-2-one (**8a**): black solid (63.0 mg, 76% yield), mp: 106–108 °C; ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ = 11.08 (s, 1H), 10.26 (s, 1H), 7.26 (t, *J* = 2.7 Hz, 1H), 7.09–7.01 (m, 4H), 6.98 (d, *J* = 8.2 Hz, 1H), 6.84 (s, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 4.28 (t, *J* = 5.7 Hz, 1H), 2.91 (dd, *J* = 15.8, 6.5 Hz, 1H), 2.69 (dd, *J* = 15.8, 5.3 Hz, 1H), 2.24 ppm (s, 3H); ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆, 25 °C) δ = 169.7, 140.9, 136.1, 135.4, 129.5, 129.0, 127.2, 124.6, 121.6, 117.1, 114.6, 105.7, 98.8, 40.7, 39.2, 20.6 ppm; IR (KBr) *v* = 3214, 2924, 1671, 1590, 1495, 1377, 1026, 749, 501 cm⁻¹; HRMS (ESI, TOF) m/z: calcd for C₁₈H₁₇N₂O⁺, [M + H]⁺ 277.1335, found 277.1338.

4a

the mixture of 4a and 5b

S22

4c

4d

4e

4f

4g

4h

4i

4k

Parameter 1 Origin 2 Spectrometer 3 Solvent 4 Temperature 5 Pulse Sequence 6 Experiment 7 Number of	Value Bruker BioSpin GmbH spect DMSO 295.7 zgflqn 1D
1 Origin 2 Spectrometer 3 Solvent 4 Temperature 5 Pulse Sequence 6 Experiment 7 Number of	Bruker BioSpin GmbH spect DMSO 295.7 zgflqn 1D
2 Spectrometer 3 Solvent 4 Temperature 5 Pulse Sequence 6 Experiment 7 Number of	spect DMSO 295.7 zgflqn 1D
3 Solvent 4 Temperature 5 Pulse Sequence 6 Experiment 7 Number of	DMSO 295.7 zgflqn 1D
4 Temperature 5 Pulse Sequence 6 Experiment 7 Number of	295.7 zgflqn 1D
5 Pulse Sequence 6 Experiment 7 Number of	zgflqn 1D
6 Experiment 7 Number of	1D
7 Number of	
Scans	64
8 Receiver Gain	206
9 Relaxation Delay	1.5000
10 Pulse Width	14.0000
11 Presaturation Frequency	
12 Acquisition Time	0.5767
13 Spectrometer Frequency	376.50
14 Spectral Width	113636.
15 Lowest Frequency	-75644.
16 Nucleus	19F
17 Acquired Size	65536
18 Spectral Size	131072

-58.0 -58.2 -58.4 -58.6 -58.8 -59.0 -59.2 -59.4 -59.6 -59.8 -60.0 -60.2 -60.4 -60.6 -60.8 -61.0 -61.2 -61.4 -61.6 -61.8 -62.0 -62.2 -62.4 -62.6 -62.8 -63.0 f1 (ppm)

S33

S34

S36

S37

4s

4t

4u

4v

7a

7b

7e

4y

4z

4ab

100 90 f1 (ppm)

4ad

8a

6. References

(1) (a) H. Imoto, K. Nohmi, K. Kizaki, S. Watase, K. Matsukawa, S. Yamamoto, M. Mitsuishi and

K. Naka, RSC Adv., 2015, 5, 94344; (b) D. Ramanathan and K. Pitchumani, Eur. J. Org. Chem.,

2015, 2015, 463; (c) W. Wu, Y. Guo, X. Xu, Z. Zhou, X. Zhang, B. Wu and W. Yi, Org. Chem.

Front., 2018, **5**, 1713; (d) Q. Zhu, H. Jiang, J. Li, M, Zhang, X. Wang and C. Qi, *Tetrahedron*, 2009, **65**, 4604.