Role of conserved Arginine in GH70 family: A Computational study on the Structural Features and its Implications on the Catalytic Mechanism of GTF-SI from Streptoccocus mutans

Leslie Sanchez ${ }^{\text {a }}$, Fernanda Mendoza, ${ }^{\text {b }}$ Joel B. Alderete, ${ }^{\text {c }}$ Verónica A. Jiménez. ${ }^{\text {b }}$ Gonzalo A. Jaña, ${ }^{\text {b }}$
${ }^{\text {a }}$ Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Republica 275, Santiago, Chile.
${ }^{\text {b }}$ Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
${ }^{\mathrm{c}}$ Instituto de Química de Recursos Naturales, Universidad de Talca, Avenida Lircay s/n, Casilla 747, Talca, Chile.
KEYWORDS: GH70, GTF-SI, glucansucrase, glucans, QM/MM, mechanism, enzymatic catalysis.

Corresponding author: gonzalo.jana@unab.cl

Supporting Information

1. Root Means Square Displacements (RMSD) from MD simulations....................p. 1
2. Average number of water molecules within the active site................................. 2
3. $\mathrm{QM} / \mathrm{MM}$ scan along the reaction coordinate defined as $\mathrm{RC}=d\left(\mathrm{C} 1-\mathrm{O}_{\mathrm{G}}\right)-d(\mathrm{C} 1-$

4. Minimum energy path (MEP) for the formation of CGE.............................. 3

Figure S1. Root Means Square Displacements (RMSD) of the MD simulations carried out.

Figure S2. Average of water molecules in the active site along of MD simulations

Figure S3. $\mathrm{QM} / \mathrm{MM}$ scan along the reaction coordinate defined as $\mathrm{RC}=d\left(\mathrm{C} 1-\mathrm{O}_{\mathrm{G}}\right)-$ $d(\mathrm{C} 1-\mathrm{OD} 1)-d\left(\mathrm{HE} 2-\mathrm{O}_{\mathrm{G}}\right)$.

Figure S4. Minimum energy path (MEP) for the formation of CGE. The energy values are relative to the energy of the reactant and were obtained at BP86/6-31G(d) level of theory. The reaction coordinate is based on the structural difference between points along the CPR trajectory and the reactant structure. It was normalized between 0 for the reactant and 1 for the product.

