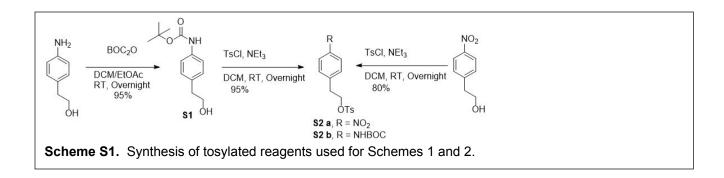
Improved Synthesis of the Bifunctional Chelator p-SCN-Bn-HOPO

N. V. S. Dinesh K. Bhupathiraju,^{a*} Ali Younes,^a Minhua Cao,^a Jafar Ali,^a Huseyin T. Cicek,^a Kathryn M. Tully,^{b,c} Shashikanth Ponnala,^d John W. Babich,^d Melissa A. Deri,^{e,f} Jason S. Lewis, ^{b,c} Lynn C. Francesconi,^{a,f} Charles Michael Drain^{a,f}

^a Department of Chemistry, Hunter College of the City University of New York. New York, New York 10065 USA

^c Department of Radiology, the Program in Pharmacology, and the Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA

* nb216@hunter.cuny.edu


Synthesis of tosylated reagent (Scheme S1 and experimental procedure)	2				
Flash chromatograms	3				
Microwave synthesis trials of compound 4 (Table S1)	4				
NMR (nuclear magnetic resonance)	5				
MS (mass spectrometry)	15				
LC-MS ILiquid chromatography-mass spectrometry)	22				
Author contributions statement					

^{b.} Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA

^{d.} Radiopharmaceutical Sciences and Department of Radiology, Weill Cornell Medicine, New York, NY, USA

^{e.} Lehman College of the City University of New York, Bronx, New York 10468

^{f.} Chemistry Program, Graduate Center of the City University of New York, New York, New York 10016 USA.

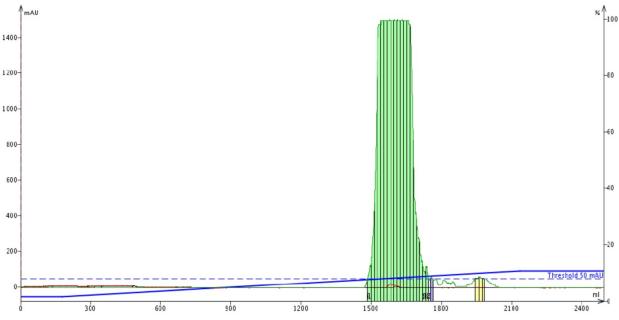
Synthesis of 2-(4-teritiarybutyl-aminophenyl)ethan-1-ol (S1) :

To 2-(4-aminophenyl)ethan-1-ol (13.7 g, 0.1 mol) in 750 mL dichloromethane was added di-tert-butyl decarbonate (43.6 g, 0.2 mol) in 750 mL dichloromethane dropwise using dropping funnel at 0° C. Then the reaction mixture was stirred at room temperature overnight. Then the solvent was evaporated under vacuum. The crude mixture is dissolved in 200 mL dichloromethane and extracted with brine using a separatory funnel. The organic layer was dried over Na₂SO₄, and evaporated to dryness to obtain crude product, which was purified using silica column chromatography eluting with 95:5 (DCM:EtOAc) resulted **S1** in 95% yield (22.6 g, 0.095 mol).

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J*=7.6 Hz, 2H), 7.10 (d, *J*=8.36 Hz, 2H), 6.57 (s, 2H), 3.77 (t, *J*=6.56 Hz, 2H), 2.77 (t, *J*=6.56 Hz, 2H), 1.74 (s, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ; 153.06, 136.85, 133.16, 129.67, 119.02, 80.62, 63.85, 36.56, 28.47;. HRMS (ESI) *m/z* calcd for C₁₃H₁₉NO₃ ([M + H]⁺), 238.1443, found 238.1434; C₁₃H₁₉NO₃ ([M + Na]⁺), 260.1263, found 260.1263.

4-nitrophenethyl 4-methylbenzenesulfonate (S2a):

To a solution of 2-(4-nitrophenyl)ethanol (2.07 g, 12.4 mmol) and triethyl amine (5.85 g, 57.8 mmol) in dichloromethane (80 mL) was added p-toulnesulfonylchloride (2.36 g, 12.4 mmol) in THF (60 mL) drop wise at 0°C under N₂. The resulting solution was stirred at room temperature for overnight. Then the solvent was evaporated under reduced pressure. The resulting residue was dissolved in methylene chloride, washed with water, dried over anhydrous sodium sulfate, and evaporated to dryness. The crude compound was purified by silica column chromatography using hexane:DCM 30:70 as eluent to obtain white yellowish solid. Yield: 80%. (3.18 g, 9.91 mmol)


¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J*=10.9 Hz, 2H), 7.67 (d, 7.10 *J*=10.35 Hz, 2H), 7.27-7.30 (m, 4H), 4.29 (t, *J*=8 Hz, 2H), 3.08 (t, *J*=8 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ; 147.22, 145.26, 144.37, 132.87, 130.02, 129.98, 127.98, 127.98, 127.98, 123.92, 69.61, 42.19, 35.30, 21.79, 14.33;.

HRMS (ESI) *m*/*z* calcd for C₁₅H₁₅NO₅S ([M + H]⁺), 322.07, found 322.076; C₁₅H₁₅NO₅S ([M + Na]⁺), 344.04, found 344.056.

Synthesis of Synthesis of 2-(4-teritiarybutyl aminophenyl)ethyl 4-methylbenzenesulfonate (S2b):

To compound **S1** (2.37 g, 10 mmol) in 75 mL dichloromethane and triethyl amine (3.3 g, 33 mmol) was added ptoulenesulfonylchloride (2 g, 10.5 mmol) in 50 mL THF dropwise using dropping funnel at 0° C. Then the reaction mixture is stirred at room temperature for overnight. Then the solvent was evaporated under vacuum. The obtained product **S2b** (3.7 g) 95% was used in next step without further purification. There is about 5% of unreacted compound **S1** (monitored via TLC using DCM:Hexanes 3:1). Column purification results in degradation of compound **S2b** to compound **S1** so it is not ideal to run the mixture through a silica column.

¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, *J*=8.34 Hz, 2H), 7.23 (d, , *J*=8.04 Hz, 2H), 7.19 (d, *J*=7.98, 2H), 6.96 (d, *J*=8.58, 2H), 6.49 (s, 1H), 4.11 (t, *J*=7.14 Hz, 2H), 2.84 (t, *J*=7.08 Hz, 2H), 2.38 (s, 3H), 1.47 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ; 152.75,

144.73, 137.20, 132.80, 129.81, 129.43, 127.83, 127.04, 118.65, 80.53, 70.77, 42.01, 34.65, 28.35, 21.65, 14.17;. HRMS (ESI) m/z calcd for C₂₀H₂₅NO₅S ([M + H]⁺), 392.1532, found 392.1534; C₂₀H₂₅NO₅S ([M + Na]⁺), 414.1351, found 414.135.

Figure S1. Flash chromatography purification of compound **4** using an eluent of DCM: MeOH over a SNP-silica gel column.

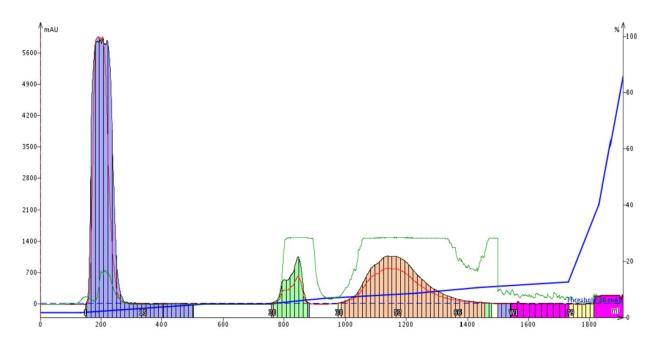


Figure S2: Flash purification of compound 5 using an eluent of DCM: MeOH over a SNP-silica gel column.

Trial	4-nitrophenylethyl- bromide equiv.	K ₂ CO ₃ equiv.	compound 3 (g)	Time	Power	Temp °C	% yield	
A3S4-O1	1	5	0.2	5min -	50 W	25-> 40 °C	3.1	
				1h	25 W	40 °C		
				10mi n	25 W	40- >25 °C		
A3S4-O2	2 2	5	0.2	5min	50 W	25-> 40 °C	3.5	
				1h	25 W	40 °C		
				10mi n	25 W	40- >25 °C		
A3S4-O3	3	5	5 0.3	5min	50 W	25-> 40 °C	12.3	
						1h	25 W	40 °C
				10mi n	25 W	40- >25 °C		
A3S4-O4	4	5	5 0.3	5min	50 W	25-> 40 °C	2.3	
				1h	25 W	40 °C		
				10mi n	25 W	40- >25 °C		

Table S1. Microwave reaction for the synthesis of tert-butyl (4-((tert-butoxycarbonyl)(3-((4-
nitrophenethyl)amino)propyl)amino)butyl)(3-((tert-butoxycarbonyl)amino)propyl)carbamate(4,
Scheme 2)

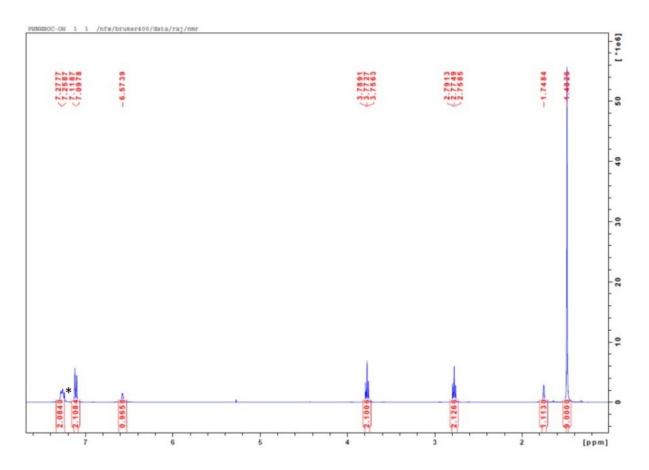


Figure S3. ¹H NMR of compound S1 in *CDCl₃.

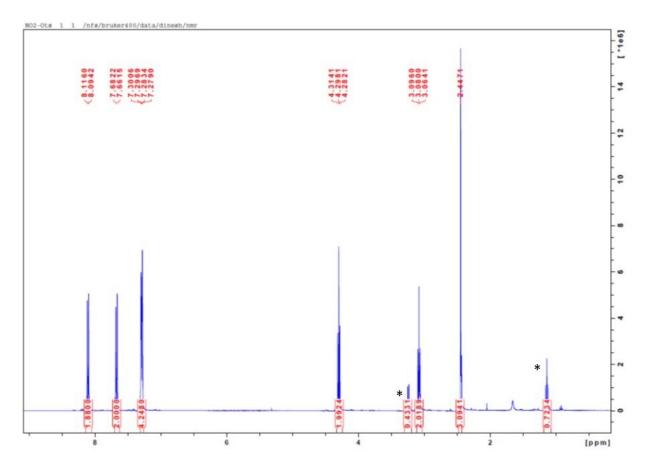


Figure S4. ¹H NMR of compound S2a in CDCl₃, * ethylacetate.

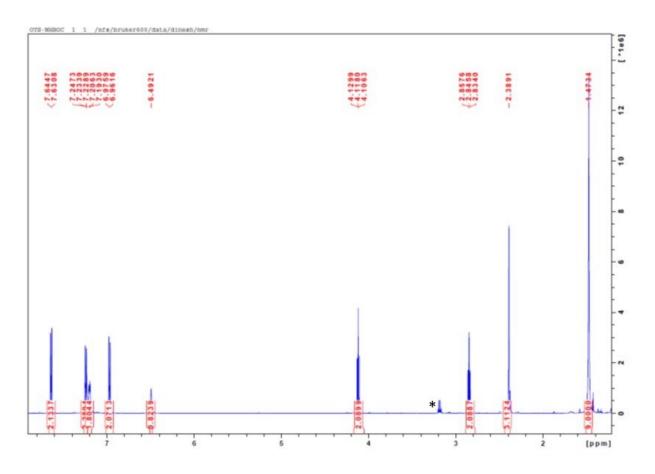


Figure S5. ¹H NMR of compound S2b in CDCl₃. *ethylacetate

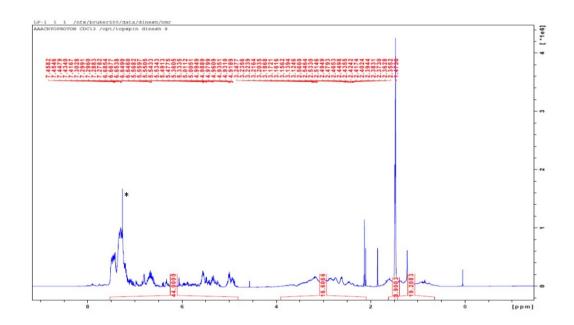


Figure S6. ¹H NMR of compound 1 in *CDCl₃.

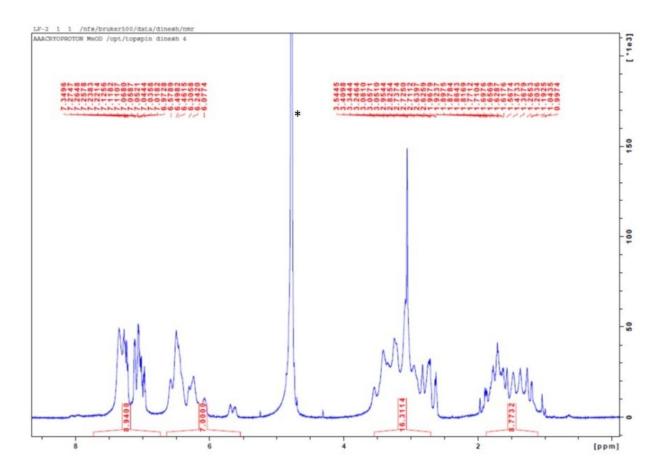


Figure S7. ¹H NMR of compound 2 in CD₃OD*

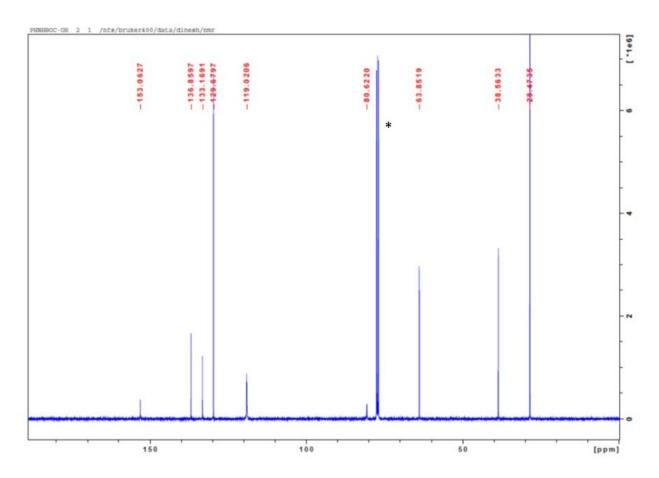


Figure S8. 13 C NMR of compound S1 in *CDCl₃.

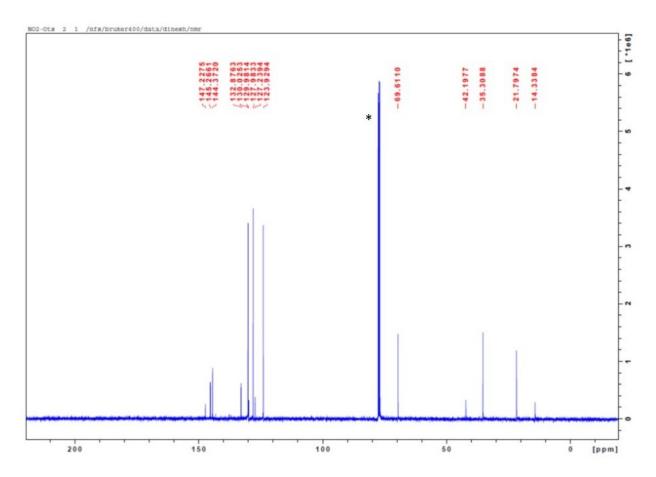


Figure S9. ¹³C NMR of compound S2a in *CDCl₃.

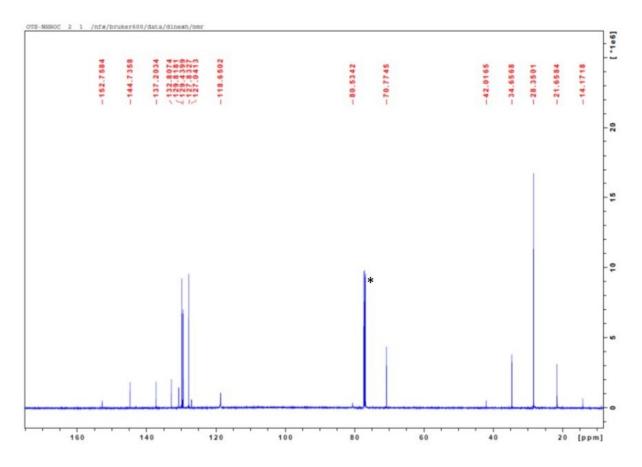


Figure S10. ¹³C NMR of compound S2b in *CDCl₃.

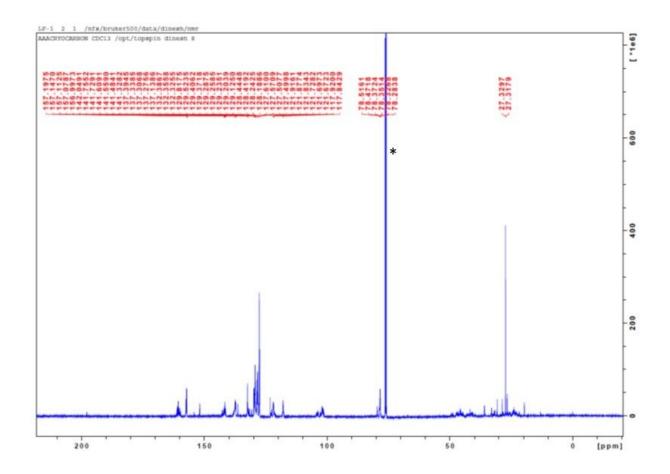


Figure S11. ¹³C NMR of Compound 1 in *CDCl₃.

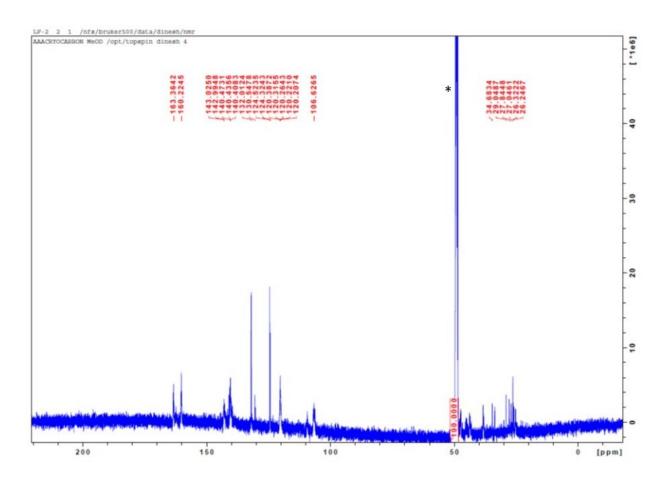


Figure S12. ¹³C NMR of compound 2 in *CD₃OD

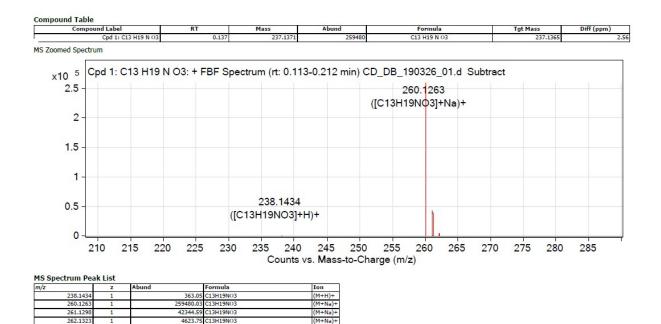


Figure S13. HRMS of Compound S1

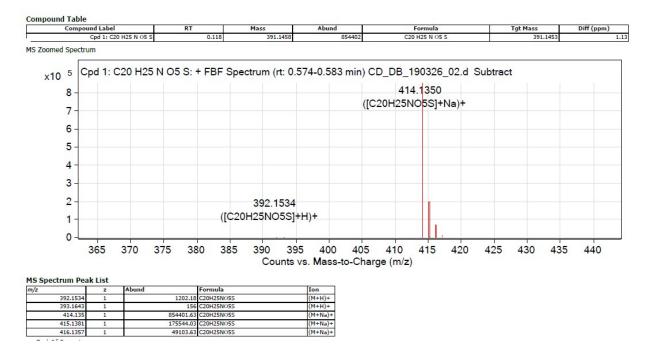


Figure S14. HRMS of Compound S2b

15

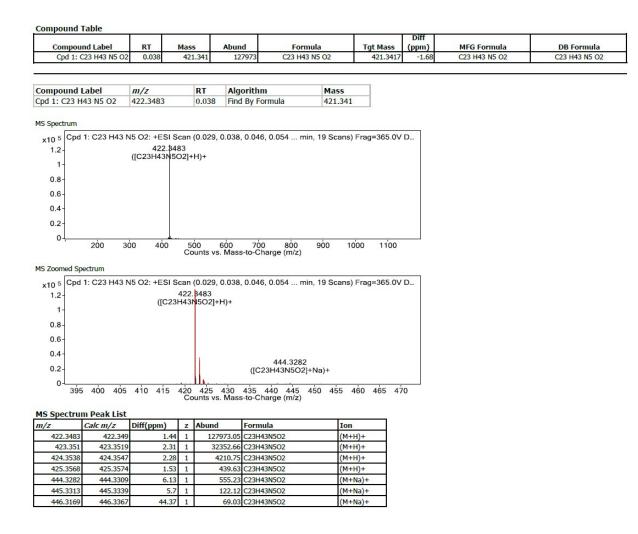
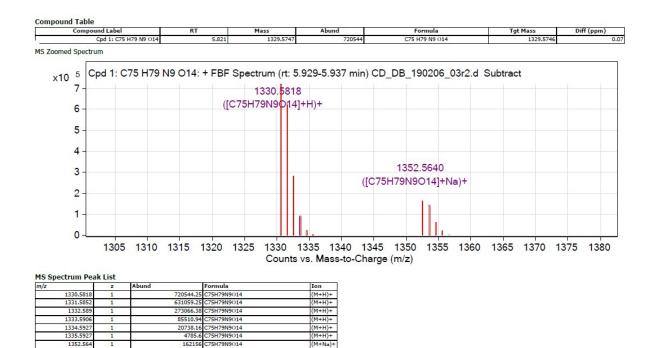



Figure S15. HRMS of Spermine mono Ph-NHBOC (Intermediate for compound 1)

(M+Na)+ (M+Na)+

(M+Na)+

Figure S16. HRMS of compound 1

145619.59

64523.

C75H79N9O14

75H79N9O14 20166.56 C75H79N9O14

1353.567

1354.569

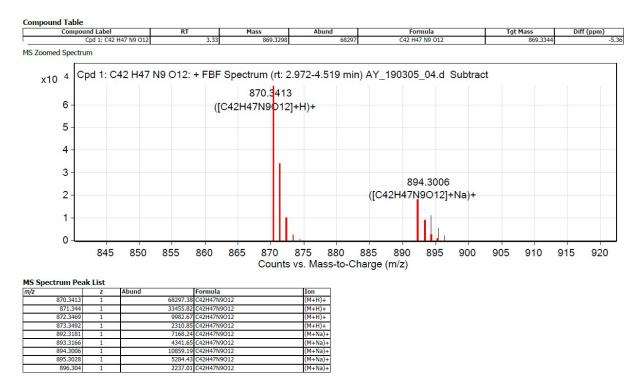
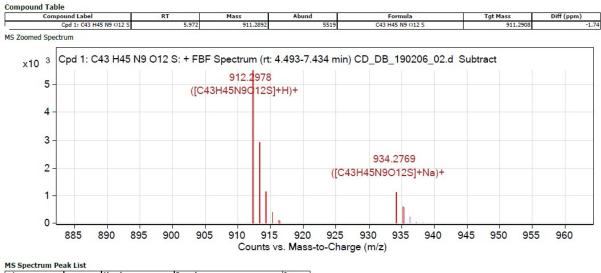
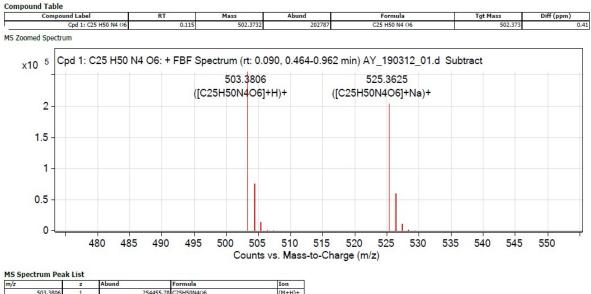
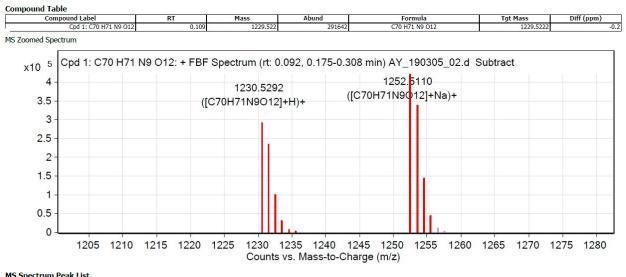




Figure S17. HRMS of Compound 2

m/z	z	Abund	Formula	Ion
912.2978	1	5518.52	C43H45N9O125	(M+H)+
913.3007	1	2926.74	C43H45N9O125	(M+H)+
914.2999	1	1135.67	C43H45N9O125	(M+H)+
915.2907	1	395.78	C43H45N9O125	(M+H)+
916.279	1	107.02	C43H45N90125	(M+H)+
934.2769	1	1094.94	C43H45N9O125	(M+Na)+
935.2777	1	593.23	C43H45N90125	(M+Na)+

Figure S18. HRMS of Compound 3

m/z	z	Abund	Formula	Ion
503.3806	1	254455.78	C25H50N4O6	(M+H)+
504.3836	1	65923.58	C25H50N4O6	(M+H)+
505.3861	1	12195.28	C25H50N4O6	(M+H)+
506.3882	1	1613.74	C25H50N4O6	(M+H)+
507.389	1	169.6	C25H50N4O6	(M+H)+
525.3625	1	202787.02	C25H50N4O6	(M+Na)+
526.3653	1	56712.75	C25H50N4O6	(M+Na)+
527.3678	1	10332.87	C25H50N4O6	(M+Na)+
528.3703	1	1396.42	C25H50N4O6	(M+Na)+
529.3719	1	162.67	C25H50N406	(M+Na)+


Figure S19. HRMS of Compound 4

19

Cor	npound Label	RT	Mass	Abund	Formula		Tgt Mass	Diff (ppm)
	Cpd 1: C33 H57 N5 O8	0.135	651.4211	859526	C33 H57 N5 08		651.4207	
Zoomed Sp	ectrum							
x10 5	Cpd 1: C33 H57 N5	08: + FBF S	pectrum (rt: 0.44	13-0.459 min)	AY_190312_02.d	Subtract		
8			652.4284		674.4102			
7		([0	33H57N5O8]+	H)+ ([C33H57N5D8]+N	la)+		
6	-							
5								
4								
3								
1								
0								
0	625 630 635	640 64				680 685	690 695	700
			Counts v	s. Mass-to-Ch	arge (m/z)			

m/z	z	Abund	Formula	Ion
652.4284	1	849852.94	C33H57N508	(M+H)+
653.4319	1	297926.72	C33H57N508	(M+H)+
654.4342	1	63774.71	C33H57N508	(M+H)+
655.4366	1	10315.5	C33H57N508	(M+H)+
656.4387	1	1462.34	C33H57N508	(M+H)+
674.4102	1	859525.94	C33H57N508	(M+Na)+
675.4136	1	306508.88	C33H57N508	(M+Na)+
676.4159	1	66397.7	C33H57N508	(M+Na)+
677.4181	1	10765.14	C33H57N508	(M+Na)+
678.4211	1	1767.19	C33H57N508	(M+Na)+

Figure S20. HRMS of Compound 5

m/z	z	Abund	Formula	Ion
1230.5292	1	291642.47	C70H71N9O12	(M+H)+
1231.5322	1	234697.89	C70H71N9O12	(M+H)+
1232.5354	1	96760.02	C70H71N9O12	(M+H)+
1233.5379	1	27606.99	C70H71N9O12	(M+H)+
1234.5437	1	7242.72	C70H71N9O12	(M+H)+
1235.5522	1	2086.66	C70H71N9O12	(M+H)+
1252.511	1	421751.31	C70H71N9O12	(M+Na)+
1253.5144	1	322793.06	C70H71N9O12	(M+Na)+
1254.5179	1	143499.13	C70H71N9O12	(M+Na)+
1255.5205	1	42572.86	C70H71N9O12	(M+Na)+

Figure S21. HRMS of Compound 6

S22

LCMS for HOPO-NH2

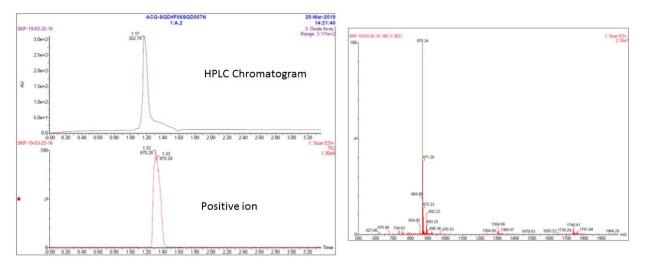
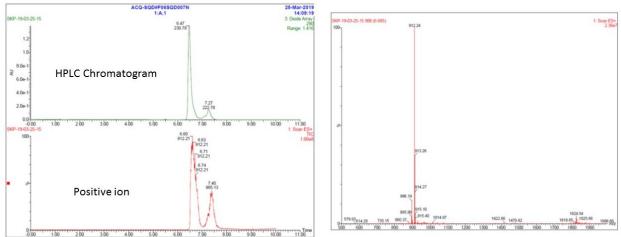



Figure S22. LCMS of compound 2

Figure S23. LCMS of compound **3**. Peak at 7.30 min is the Fe(III) HOPO-Bn-pNCS. Fe(III) is picked up in the HPLC assay.

Author Contributions:

N. V. S. D. K. B is the principal investigator, lead the study, designed, conducted experiments on the new four step scheme and helped improve yields on 9-step synthesis

A. Y : conducted experiments to improve yields on 9-step synthesis; supervised undergraduates who also performed experiments to improve yields on 9-step synthesis

M. C: performed experiments represented in Tables 1,2 and Table S1 to improve yields on 9-step synthesis under guidance of A.Y.

J. A: performed experiments represented in Tables 1,2 and Table S1 to improve yields on 9-step synthesis under guidance of A.Y.

H. T. C: performed experiments on new four step synthesis under guidance of N.V.S.D.K.B.

K. M. T: performed experiments represented in Tables 1,2 and Table S1 to improve yields on 9-step synthesis.

M. A. D: provided leadership, direction and insight towards improvement on 9-step synthesis that made possible the experiments represented in Tables 1,2. Contributed to preparation of manuscript.

S. P: developed and implemented HPLC purification of final product.

J. W. B: provided guidance and direction on the purification of final product.

J. S. L: provided overall leadership, direction and focus of the entire project.

L. C. F: initiated entire project; provided day-to-day management; contributed to writing of manuscript.

C. M. D: provided leadership and hands-on direction of project, specifically the new four step synthesis and also improvements on the nine-step synthesis, provided guidance on outlining manuscript and writing of manuscript.

The manuscript was written by N. V. S. D. K. B; A. Y; L. C. F; and C.M.D.; and commented by all authors.