Supporting Information

Copper-Catalyzed Regiodivergent 1,4- and 1,6-Conjugate Silyl

Addition to the Diendioates: Access to the Functionalized

Allylsilanes
Tanveer Ahmad, ${ }^{\mathrm{a}}$ Qi Li, ${ }^{\mathrm{a}}$ Sheng-Qi Qiu, ${ }^{\text {a }}$ Jian-Lin Xu, ${ }^{\mathrm{a}}$ Yun-He-Xu ${ }^{\mathrm{a} *}$ and Teck- Peng Loh ${ }^{\text {ab }}$
${ }^{\text {a }}$ Department of Chemistry, University of Science and Technology of China, Hefei, China, 230026.
${ }^{\mathbf{b}}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
xyh0709@ustc.edu.cn,
Table of Contents

1. General information S1
2. Experimental Procedures S1
2.1 Procedure for Synthesis of Diendioates S1
2.2 Optimization of reaction conditions S3
2.2.1 Optimization of reaction conditions for the 1,4-protosilylation of diendioates S3
2.2.2 Optimization of reaction conditions for the 1,6-protosilylation of diendioates S3
2.3 Procedures for synthesis of 1,4- and 1,6-protosilylation adduct S4
2.3.1 Procedure for synthesis of 1,4-protosilylation adduct S4
2.3.2 Procedure for synthesis of 1,6-protosilylation adduct S4
2.4 Synthetic applications of compound 3a S5
3. Characterization data and spectra S6
3.1. Characterization data and spectra of 1,4-protosilylation adduct S6
3.2. Characterization data and spectra of $\mathbf{1 , 6}$-protosilylation adduct S29
3.3. Characterization data and spectra of synthetic applications S51
4. Reference S55

I. General Information

Dimethyl malonate, diethyl malonate, i-propyl malonate, n-butyl malonate, t-butyl malonate, $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{B}($ pin $)$ and all phosphine ligands were purchased from commercial suppliers and used as received unless otherwise noted. All reactions were performed under argon atmosphere unless otherwise specified. All commercial solvents and reagents were employed without further purification. Reactions were monitored through analytical thin layer chromatography ($\mathrm{SiO}_{2} 60 \mathrm{~F}-254$ plates). The spots visualization were performed under UV radiation (254 nm), further visualization was possible using a basic solution of potassium permanganate. Flash chromatography was carried out using 200-300 mesh silica gel ($\mathrm{SiO}_{2} 60$) with distilled solvents. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and Carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were recorded on Bruker Advance 400M NMR spectrometers. Chloroform- d was used as the solvent and SiMe_{4} (TMS) as an internal standard. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS ($\delta 0.00 \mathrm{ppm}$) and relative to the signal of chloroform- d ($\delta 7.260 \mathrm{ppm}$, singlet). Multiplicities are recorded as: s (singlet); d (doublet); t (triplet); q (quartet); $d d$ (doublets of doublet); m (multiplets). Coupling constants are expressed as a J value in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR are reported as δ in units of parts per million (ppm) downfield from TMS ($\delta 0.00 \mathrm{ppm}$) and relative to the signal of chloroform- d (δ 77.03 ppm , triplet). Notable, splitting signals of the ${ }^{13} \mathrm{C}$ nucleus was difficult to differentiate and ${ }^{13} \mathrm{C}$ NMR signals were reported as a singlet. High resolution mass spectral analysis (HRMS) spectra were recorded on Water XEVO-G2 Q-TOF (Waters Corporation).

2. Experimental procedures

2.1 Procedure for synthesis of diendioates

All the diendioates were prepared according to the reported literature. ${ }^{1,2,3,4}$ (1a to 1s): Method A:

An oven-dried 100 mL round bottom flask with a mixture malonate \mathbf{P} ($14 \mathrm{mmol}, 1$ equiv), piperidine ($2.8 \mathrm{mmol}, 0.2$ equiv), benzoic acid ($2.8 \mathrm{mmol}, 0.2$ equiv) and benzene (32 mL) was
added the corresponding aldehyde ($14 \mathrm{mmol}, 1$ equiv) under argon atmosphere. The mixture was refluxed for 3 to 6 h under a Dean-Stark apparatus. Then the reaction mixture was cooled to room temperature, washed with water, the aqueous phase was extracted with ethyl acetate $(20 \mathrm{~mL})$. The combined organic phase was dried over sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product, which was purified by flash column chromatography using petroleum ether/ethyl acetate (97:3) as eluent afforded the desired product ($\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 d}, \mathbf{1 e - 1 g}, \mathbf{1 i}, \mathbf{1 k - 1 v})(60-86 \%) .{ }^{1,2}$

Method B:

A flame-dried 50 mL round bottom flask charged with the catalytic amount of L-lysine (1 $\mathrm{mmol}, 20 \mathrm{~mol} \%$) in DMSO ($10 \mathrm{~mL}, 0.5 \mathrm{M}$) and then the corresponding cinnamaldehyde (5 mmol), malonate (5 mmol) were added via syringe. The mixture was stirred at room temperature and until all the consumption of the starting material monitored by thin-layer chromatography (TLC). After the reaction was completed, the mixture was diluted with dichloromethane $(60 \mathrm{~mL})$ and washed with water $(30 \mathrm{~mL} \times 2)$. The mixture was evaporated under reduced pressure and the crude product was purified by silica gel flash column chromatography using petroleum ether/ethyl acetate (97:3) ($\mathbf{1 h} \mathbf{h} \mathbf{1} \mathbf{j})(70-76 \%) .{ }^{3}$

Method C:

Malonate (6.0 mmol) and cinnamaldehyde (6.0 mmol) were added into a solution of TiCl_{4} $(12.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(4.0 \mathrm{~mL})$ and THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Then, pyridine $(1.92 \mathrm{~mL}, 24.0 \mathrm{mmol})$ in THF (4 mL) was added slowly over 1 h . The reaction mixture was stirred at room temperature for overnight. The reaction mixture was quenched with water and then extracted with ethyl acetate, dried over MgSO_{4}, filtered and evaporated under vacuum. The residue was
purified by silica gel flash column chromatography with petroleum ether/ethyl acetate (97:3) to afford the product ($\mathbf{1 c} \mathbf{c} 1 \mathbf{e}$) (65-69\%). ${ }^{4}$

2.2 Optimization of reaction conditions

2.2.1 Optimization of reaction conditions for the 1,4-protosilylation of

 diendioates

entry	cat. ($10 \mathrm{~mol} \%$)	base ($20 \mathrm{~mol} \%$)	ligand	solvent	r.r. $(3 \mathrm{a}: 4 \mathrm{a})^{\text {c }}$	yield $3 \mathrm{a}(\%)^{\text {d }}$
1	CuCN	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	-	$\mathrm{CH}_{3} \mathrm{CN}$	64:36	44
2	CuCN	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	80:20	78
3	CuCl	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	56:44	50
4	CuBr	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	68:32	66
5	Cul	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	65:35	63
6	CuTC	$\mathrm{LiO}^{\text {t }}$ Bu	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	67:33	54
7	$\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right]$	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	74:26	70
8	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{LiO}^{\text {t }}$ Bu	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	70:30	64
9	CuCl_{2}	$\mathrm{LiO}^{\text {t }}$ Bu	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	69:31	66
10	CuSO_{4}	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	66:34	58
11	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{LiO}^{\text {t }} \mathrm{Bu}$	L_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	65:35	52

${ }^{a}$ Reaction was performed according to following conditions: the mixture of $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a}$ ($0.3 \mathrm{mmol}, 1.5$ equiv), $[\mathrm{Cu}]\left(0.02 \mathrm{mmol}, 0.1\right.$ equiv), $\mathbf{L}_{3}\left(0.024 \mathrm{mmol}, 0.12\right.$ equiv), $\mathrm{LiO}^{\prime} \mathrm{Bu}(0.04$ mmol, 0.2 equiv), and $\mathrm{Ar}(1 \mathrm{~atm})$ in $\mathrm{MeCN}(1 \mathrm{~mL}, 0.2 \mathrm{M})$ were stirred at $30^{\circ} \mathrm{C}$ for 24 h . ${ }^{c}$ Regioselectivity ratio ($\mathbf{3 a}: \mathbf{4 a}$) determined by the crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Isolated yields.
2.2.2 Optimization of reaction conditions for the 1,6-protosilylation of diendioates

${ }^{b}$ Reaction was performed according to following conditions: the mixture of $\mathbf{1 a}(0.2 \mathrm{mmol})$, 2a $(0.3$ $\mathrm{mmol}, 1.5$ equiv), $[\mathrm{Cu}]\left(0.02 \mathrm{mmol}, 0.1\right.$ equiv), $\mathbf{L}_{5}\left(0.028 \mathrm{mmol}, 0.14\right.$ equiv), $\mathrm{LiO}^{t} \mathrm{Bu}(0.02 \mathrm{mmol}$, 0.1 equiv), and $\mathrm{Ar}(1 \mathrm{~atm})$ in $\mathrm{MeOH}(1 \mathrm{ml}, 0.2 \mathrm{M})$ were stirred at $30^{\circ} \mathrm{C}$ for 24 h . ${ }^{\circ}$ Regioselectivity ratio (4a:3a) determined by the crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Isolated yields

L_{3}

L_{5}

2.3 Procedures for synthesis of 1,4 - and 1,6-protosilylation adduct

2.3.1 Procedure for synthesis of the 1,4-protosilylation adduct

Method D: A dried 15 mL schlenk tube charged with a stir bar, MeCN ($1.0 \mathrm{~mL}, 0.2 \mathrm{M}$) was added to a mixture of $\mathrm{CuCN}(1.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{L}_{3}(11.1 \mathrm{mg}, 0.024 \mathrm{mmol}$, $12 \mathrm{~mol} \%)$ under argon atmosphere. The mixture was stirred for 40 minutes and followed by the addition of 2,2,6,6-tetramethylpiperidine (TMP) ($5.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathbf{1}(0.2 \mathrm{mmol}$, 1.0 equiv.) and [dimethylphenylsilyl pinacolatoboronate $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{B}(\mathrm{pin})$] 2a ($0.3 \mathrm{mmol}, 1.5$ equiv.). The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with ethyl acetate and the precipitate was removed by filtration through a celite pad of silica. Then the solvent was evaporated in vacuo and the crude product was purified by preparative thin layer chromatography (PTLC) (3a-3v).

2.3.2 Procedure for Synthesis of the 1,6-protosilylation adduct

Method E: A dried 15 mL schlenk tube charged with a stir bar, $\mathrm{MeOH}(1.0 \mathrm{~mL}, 0.2 \mathrm{M}$) was added to a mixture of $\mathrm{CuCN}(1.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{L}_{5}(12.4 \mathrm{mg}, 0.028 \mathrm{mmol}$, $14 \mathrm{~mol} \%$) under argon atmosphere. The mixture was stirred for 40 minutes and subsequently by the addition of TMP ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{1}\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv.) and [$\mathrm{Me}_{2} \mathrm{PhSi}-$ $\mathrm{B}(\mathrm{pin})] \mathbf{2 a}\left(0.3 \mathrm{mmol}, 1.5\right.$ equiv.). The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with ethyl acetate and the precipitate was removed by filtration through a celite pad of silica. Then the solvent was evaporated in vacuo and the crude product was obtained, which was confirmed by ${ }^{1}$ HNMR. The crude product was purified by PTLC (4a$\mathbf{4 g}, \mathbf{4 j} \mathbf{- 4 l}, \mathbf{4 0}, \mathbf{4 q})$. Some of 1,6 -protosilylation product is very difficult to purify, therefore products $(\mathbf{4 h}, \mathbf{4 i}, \mathbf{4 m}, \mathbf{4 p}, \mathbf{4 t}, \mathbf{4 u}, \mathbf{4 v})$ were obtained in a mixture.

2.4 Synthetic applications of Compound (3a)

2.4.1 Reduction of esters to alcohols ${ }^{5}$

Method F: A dried 25 mL Schlenk tube was charged with $\mathbf{3 a}(82.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry DCM ($2.0 \mathrm{~mL}, 0.1 \mathrm{M}$) under argon atmosphere cooled to $-78{ }^{\circ} \mathrm{C}$ for 10 min . Then, DIBAL-H (0.6 mL of a 1.5 M solution in toluene) was added dropwise over 5 min . After the cooling was removed and stirred for 12 h at ambient temperature. A saturated solution of potassium, sodium tartrate tetrahydrated $(5 \mathrm{~mL})$ was added and the resulting biphasic mixture stirred for further 6 h. The two phases were separated and the aqueous phase was extracted with DCM ($3 \times 5 \mathrm{~mL}$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the evaporation of the solvent in vacuo, the crude product was purified by PTLC as colorless oil $\mathbf{5}$ ($45.3 \mathrm{mg}, 0.139 \mathrm{mmol}, 70 \%$ yield)

2.4.2 Desilylation

Method G: A dried 15 mL Schlenk tube was purged with argon and charged with 3a (41.0 $\mathrm{mg}, 0.1 \mathrm{mmol}$), DMF ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv., 0.041 g). The resulting mixture was stirred at $30^{\circ} \mathrm{C}$ for 12 h . After the addition of aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with DCM for 3 times, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The crude mixture was purified by PTLC as colorless oil $\mathbf{6}(18.0 \mathrm{mg}$, $0.065 \mathrm{mmol}, 65 \%$ yield)

2.4.3 Conversion of silyl reagent to ester ${ }^{6}$

Method H: A flame dried 15 mL Schlenk tube was charged with tetrabutylammonium triphenyldifluorosilicate (TBAT) (1.1 equiv) under CO_{2} atmosphere. The dry DMSO (0.1 M) was added to stirred to make a clear solution, then 3a (1.0 equiv) in dry DMSO (0.1 M) was added via a syringe. The mixture was stirred at $30^{\circ} \mathrm{C}$ until all the consumption of $\mathbf{3 a} . \mathrm{CH}_{3} \mathrm{I}(1.2$ equiv) was then added and the reaction mixture was stirred for further 30 min . After the addition of water and the mixture was extracted with diethyl ether. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The crude mixture was purified by PTLC as colorless oil $7(38.0 \mathrm{mg}, 0.116 \mathrm{mmol}, 58 \%$ yield $)$

3. Characterization Data and Spectra

3.1 Characterization Data and Spectra of Products

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-phenylallyl)malonate (3a)

Following the Method D, 3a was obtained as a colorless oil $(70.8 \mathrm{mg}$,
$0.172 \mathrm{mmol}, 86 \%) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.48-7.50(\mathrm{~m}, 2 \mathrm{H})$,
$7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.14$ $(\mathrm{m}, 2 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73(\mathrm{ddd}, J=9.4,8.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\mathbf{C D C l}_{3}$): $\delta 169.01,168.90,137.69,136.47,134.26,130.19,129.35$, $128.45,127.75,127.72,126.81,125.93,61.35,61.23,52.87,33.92,14.10,14.00,-3.56,-4.16 \mathrm{ppm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: ~ 411.1986$, found: 411.1989.

Dimethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-phenylallyl)malonate (3b)

Following the Method D, 3b was obtained as a colorless oil (62.8 mg , $0.165 \mathrm{mmol}, 82 \%) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.53-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.28-6.11$ (m, 2H), $3.58-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=10.0,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $0.36(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.33$, $169.15,137.66,136.29,134.25,130.36,129.40,128.46,127.75,127.52$, $126.90,125.98,52.66,52.34,52.29,34.03,-3.58,-4.38 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 383.1673$, found: 383.1668.

Diisopropyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-phenylallyl)malonate (3c)

$21.55,-3.58,-3.87 \mathrm{ppm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 439.2299$, found: 439.2292.

Dibutyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-phenylallyl)malonate (3d)

Following the Method D, 3d was afforded as a colorless oil $(74.6 \mathrm{mg}$, $0.160 \mathrm{mmol}, 80 \%$) ${ }^{\mathbf{1}}{ }^{\mathbf{H}}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.53$ - $7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.25-6.15$ $(\mathrm{m}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72$ (ddd, $J=8.6,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.45$ (m, 4H), $1.34-$ $1.22(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.36(\mathrm{~s}$, 3H), $0.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.09,169.02$, $137.70,136.50,134.26,130.15,129.32,128.41,127.80,127.71,126.79,125.93,65.22,65.11,52.97,33.94$, $30.52,30.43,19.04,19.03,13.62,13.57,-3.58,-4.12 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 467.2612, found: 467.2614.

Di-tert-butyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-phenylallyl)malonate (3e)

Following the Method \mathbf{D}, $\mathbf{3 e}$ was obtained as a light green oil $(65.3 \mathrm{mg}$, $0.139 \mathrm{mmol}, 70 \%) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.53-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13$ (m, 1H), $6.33-6.09(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=9.4$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 168.45,168.36,137.93,137.00,134.26$, $129.73,129.17,128.38,127.70,126.55,125.86,81.45,81.23,54.60,33.62,27.92,27.88,-3.60 \mathrm{ppm} ;$ HRMS (ESI): m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 467.2612$, found: 467.2603.

Diethyl (\boldsymbol{E})-2-(1-(dimethyl(phenyl)silyl)-3-(p-tolyl)allyl)malonate (3f)

Following the Method D, $\mathbf{3 f}$ was isolated as a light green oil $(68.7 \mathrm{mg}$, $0.162 \mathrm{mmol}, 81 \%) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.23-6.07(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.51$ (d, J $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=9.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 169.02,168.91,136.58,136.55,134.95$, $134.27,130.09,129.30,129.14,127.69,126.61,125.84,61.31,61.19,52.95,33.85,21.13,14.10,13.99$, 3.56, -4.16. ppm; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 425.2143$, found: 425.2135 .

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(o-tolyl)allyl)malonate (3g)

Following the Method $\mathrm{D}, \mathbf{3 g}$ was isolated as a light green oil $(65.7 \mathrm{mg}$, $0.155 \mathrm{mmol}, 78 \%$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.52-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.97(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=10.8$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.19-114(\mathrm{~m}, 6 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.98,168.90,136.89,136.55$, $134.90,134.24,130.03,129.33,129.00,128.29,127.73,126.81,125.98,125.54,61.35,61.25,52.98,34.16$, 19.75, 14.08, 14.00, -3.63, -4.07 ppm; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 425.2143$, found: 425.2134 .

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(4-methoxyphenyl)allyl)malonate (3h)

Following the Method D, 3h was obtained as a light green oil (69.8 $\mathrm{mg}, 0.159 \mathrm{mmol}$, Yield: $\mathbf{7 9 \%}$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.52$ $-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.7,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=9.5,8.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 169.04,168.93,158.67,136.63,134.26,130.61,129.68,129.27,127.68,127.01$, $125.39,113.87,61.29,61.17,55.28,52.99,33.78,14.10,13.99,-3.55,-4.16 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 441.2092$, found: 441.2083.

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(2-methoxyphenyl)allyl)malonate (3i)

Following the Method $\mathrm{D}, \mathbf{3 i}$ was isolated as a light green oil $(65.5 \mathrm{mg}$, 0.148 mmol, Yield: 74%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.55-7.48$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 1 \mathrm{H})$, $6.92-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=15.9,10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $2 \mathrm{H}), 3.53(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=10.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-$ $1.12(\mathrm{~m}, 6 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\mathbf{C D C l}_{3}$): $\delta 169.04,168.96,156.35,136.75,134.29,129.21,128.17,127.75,127.65,126.99,126.40,125.07$, $120.54,110.83,61.26,61.17,55.41,53.08,34.23,14.01,13.94,-3.43,-4.16 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 441.2092$, found: 441.2088 .

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(4-fluorophenyl)allyl)malonate (3j)

Following the Method D, $\mathbf{3 j}$ was obtained as a colorless oil (71.8 mg , 0.168 mmol, Yield: 84%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.52-7.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.21-6.05(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=10.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.99,168.88,136.41,134.23,133.81,129.37$, $128.97,127.73,127.52,127.50,127.32,127.24,115.40,115.19,61.37$, $61.23,52.81,33.86,14.09,14.00,-3.61,-4.14 . \mathrm{ppm} ;{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta-115.70 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{FSi}[\mathrm{M}+\mathrm{H}]^{+}: 429.1892$, found: 429.1884 .

(a)

Diethyl (E)-2-(3-(4-chlorophenyl)-1-(dimethyl(phenyl)silyl)allyl)malonate (3k)

Following the Method D, 3k was obtained as a colorless oil (77.7 mg , 0.175 mmol, Yield: 88%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.51-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.22-6.12(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 168.95,168.84,136.31,136.13,134.22,132.36$, $129.41,128.86,128.62,128.58,127.75,127.06,61.40,61.26,52.72,34.00,14.10,14.00,-3.65,-4.13 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Cl} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 445.1596$, found: 445.1590.

Diethyl (E)-2-(3-(4-bromophenyl)-1-(dimethyl(phenyl)silyl)allyl)malonate (31)

Following the Method D, $\mathbf{3 1}$ was obtained as a colorless oil (79.8 mg , 0.163 mmol, Yield: 82%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.51-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.23-6.10(\mathrm{~m}, 2 \mathrm{H})$, $4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{dd}, J=8.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $\delta 168.93,168.83,136.58,136.29,134.21,131.52,129.40,128.89$, $128.80,127.74,127.39,120.45,61.39,61.25,52.69,34.02,14.09,13.99,-3.67,-4.12 \mathrm{ppm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{BrSi}[\mathrm{M}+\mathrm{H}]^{+}$: 489.1091, found: 489.1089.

Diethyl (E)-2-(3-(4-cyanophenyl)-1-(dimethyl(phenyl)silyl)allyl)malonate (3m)

Following the Method D, $\mathbf{3 m}$ was obtained as a light brownish oil (69.8 $\mathrm{mg}, 0.160 \mathrm{mmol}$, Yield: 80%); ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.54$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{dd}, J=15.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{ddd}, J=10.5,8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 168.82,168.74,142.07,135.97,134.16,132.68,132.36,129.55,128.33,127.82,126.24$, 119.11, 109.92, 61.49, 61.34, 52.46, 34.44, 14.07, 13.99, -3.74, -4.07 ppm; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 436.1939$, found: 436.1936.

Diethyl (\boldsymbol{E})-2-(1-(dimethyl(phenyl)silyl)-3-(4-nitrophenyl)allyl)malonate (3n)

Following the Method D, 3n was obtained as a light brown oil (64. 8 $\mathrm{mg}, 0.142 \mathrm{mmol}$, Yield: 71%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.15$ $8.10(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.46(\mathrm{dd}, J=$ $15.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.01$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=10.5,8.1$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}$, $3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 168.79, $168.72,146.38,144.07,135.90,134.16,133.87,129.59,127.90,127.84,126.17,124.02,61.52,61.37,52.41$, 34.66, 14.07, 14.00, -3.76, -4.03 ppm ; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 456.1836$, found: 456.1827.

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(4-(trifluoromethyl)phenyl)allyl)malonate (30)

Following the Method D, $\mathbf{3 o}$ was obtained as a brownish oil $(74.6 \mathrm{mg}$, 0.156 mmol , Yield: 78%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.54-7.46$ $(\mathrm{m}, 4 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.38-6.19(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 2 \mathrm{H})$, $4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=10.2$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) 0.37(\mathrm{~s}$, $3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 168.89, $168.79,141.04,136.13,134.20,130.96,129.48,128.67,127.79$, $125.93,125.45,125.42,61.45,61.31,52.60,34.21,14.09,14.00,-3.70$,
$-4.11 \mathrm{ppm} ;{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-62.41 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 479.1860$, found: 479.1862 .

$--62.4121$

Diethyl (E)-2-(3-([1,1'-biphenyl]-4-yl)-1-(dimethyl(phenyl)silyl)allyl)malonate (3p)

Following the Method D, 3p was obtained as a white solid (78.8 mg , 0.162 mmol, Yield: $81 \%)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.60-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 6 \mathrm{H})$, $6.30-6.20(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=8.8,7.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.13(\mathrm{~m}$, $6 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $169.01,168.90,140.83,139.62,136.76,136.49,134.28,129.72$, $129.37,128.76,127.99,127.75,127.17,126.88,126.34,61.37,61.25$, 52.90, 34.06, 14.13, 14.02, -3.54, -4.10 ppm ; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 487.2299$, found: 487.2297.

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(naphthalen-2-yl)allyl)malonate (3q)

Following the Method D, $\mathbf{3 q}$ was obtained as a light brown solid (76.8 $\mathrm{mg}, 0.167 \mathrm{mmol}$, Yield: 84%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.79$ $7.71(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H})$, $7.44-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.42-6.28(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=9.1,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H})$, $0.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.04,168.91$, $136.47,135.14,134.28,133.66,132.64,130.27,129.36,128.26,128.02,127.80,127.74,127.60,126.15$, $125.48,125.27,123.56,61.37,61.25,52.90,34.15,14.11,14.01,-3.56,-4.10 \mathrm{ppm}$; HRMS (ESI): m/z Calcd.

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-4,4-dimethylpent-2-en-1-yl)malonate (3r)

Following the Method D, 3r was obtained as a colorless oil (59.5 mg , 0.152 mmol, Yield: 76%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.49-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.33-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=9.6$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, 9H), $0.30(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $169.04,168.97,142.49,136.96,134.22,129.09,127.55,121.43,61.14$, 60.97, 53.22, 33.08, 32.67, 29.68, 14.11, 13.97, -3.76, -4.19 ppm ; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 391.2299$, found: 391.2296.

Diethyl-2-(1-(dimethyl(phenyl)silyl)-3-methylbut-2-en-1-yl)malonate (3s)

Following the Method D, 3s was isolated as a colorless oil (52.2 mg , 0.144 mmol, Yield: 72%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.50-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.95-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=11.7$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}$, $J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 169.27, 169.08, 137.21, 134.16, $132.46,129.03,127.52,120.93,61.13,60.96,53.38,28.76,25.88,17.94,14.02,13.92,-3.67,-4.29 \mathrm{ppm} ;$ HRMS (ESI): m/z Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 363.1986$, found: 363.1980.

Diethyl (E)-2-(3-cyclohexyl-1-(dimethyl(phenyl)silyl)allyl)malonate (3t)

Following the Method D, 3t was obtained as a light green oil (65.7 mg , 0.158 mmol, Yield: 79%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.50-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.35-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=9.6$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.08(\mathrm{~m}$, 10H), $1.03-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 169.06,168.99,137.63,136.99,134.22,129.08$, $127.55,124.10,61.13,60.99,53.20,40.88,33.22,33.19,32.77,26.16,25.99,14.10,13.97,-3.62,-4.25 \mathrm{ppm} ;$ HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 417.2456$, found: 417.2449.

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(furan-2-yl)allyl)malonate (3u)

Following the Method D, $\mathbf{3 u}$ was obtained as a light brown oil (63.6 $\mathrm{mg}, 0.159 \mathrm{mmol}$, Yield: 80%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.51$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=$ $3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.02(\mathrm{~m}, 2 \mathrm{H})$, $4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.68(\mathrm{dd}, J=10.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17-1.13(\mathrm{~m}, 6 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H})$, 0.35 (s, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 168.91,168.79$, $153.10,141.28,136.41,134.25,129.32,127.69,126.65,118.85,111.01,106.00,61.31,61.23,52.82,33.80$, 14.01, 13.93, -3.49, -4.27 ppm ; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 401.1779, found:

Diethyl (E)-2-(1-(dimethyl(phenyl)silyl)-3-(thiophen-2-yl)allyl)malonate (3v)

Following the Method D, 3v was isolated as a brown oil $(65.7 \mathrm{mg}$, 0.158 mmol, Yield: 79%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.51-7.47$ (m, 2H), $7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=$ $5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=10.6$, $8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.36$
(s, 3H), 0.36 (s, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.93$, $168.79,142.90,134.27,129.36,127.72,127.20,124.18,123.40,123.14,61.36,61.26,52.77,33.84,14.07$, 13.97, -3.61, -4.16 ppm; HRMS (EI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}: 417.155$, found: 417.1546.

3.2 Characterization Data and Spectra of 1,6 -addition Products

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-phenylprop-1-en-1-yl)malonate (4a)

Following the Method E, 4 a was isolated as a colorless oil. ($67.5 \mathrm{~g}, 0.164$ mmol, 82\%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.19$ $-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{dd}, J=$ $15.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=15.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H})$, 0.25 (s, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 168.41, 168.34, $141.02,136.23,136.08,134.36,129.23,128.19,127.51,127.33,124.87$, $119.71,61.60,61.51,55.98,42.92,14.14,14.04,-4.31,-4.74 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 411.1986$, found: 411.1992.

29

Dimethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-phenylprop-1-en-1-yl)malonate (4b)

Following the Method E, 4b was isolated as a colorless oil $(58.3 \mathrm{mg}$, $0.152 \mathrm{mmol}, 76 \%) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.38-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.86$ (m, 2H), 5.97 (ddd, $J=15.3,10.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (ddd, $J=15.2,9.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\mathbf{C D C l}_{3}$): $\delta 168.75,168.70,140.92,136.32,134.33,129.24,128.23$, 127.52, 127.31, 124.92, 119.43, 55.56, 52.65, 52.62, 42.96, $-4.31,-4.87 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 383.1673$, found: 383.1670.

Diisopropyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-phenylprop-1-en-1-yl)malonate (4c)

Following the Method E, $\mathbf{4 c}$ was obtained as colorless oil $(61.3 \mathrm{mg}, 0.140$ mmol, 70%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19$ $-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{ddd}, J=$ $15.3,9.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (ddd, $J=15.3,9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.04$ $(\mathrm{m}, 1 \mathrm{H}), 5.04-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=8.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.21-1.19$ (m, 6H), 0.28 (s, 3H), 0.25 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathbf{C} \mathbf{N M}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 167.97,167.91,141.11$, $136.26,135.89,134.39,129.21,128.14,127.49,127.35,124.82,119.90,69.10,68.94,56.39,42.87,21.70$, 21.67, 21.61, 21.57, -4.30, -4.61 ppm; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 439.2299$, found: 439.2294.

			com	年	- ®

Dibutyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-phenylprop-1-en-1-yl)malonate (4d)

Following the method E, $\mathbf{4 d}$ was obtained as colorless oil $(67.3 \mathrm{mg}, 0.144$ mmol, 72%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.19$ $-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{dd}, J=$ $15.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=15.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 2 \mathrm{H})$, $4.11-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.67-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 168.47,168.42,141.00,136.24,136.01,134.36,129.22,128.17,127.50,127.35,124.85,119.80$, $65.45,65.35,55.99,42.90,30.56,30.47,19.06,18.99,13.69,13.65,-4.33,-4.73 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 467.2612$, found: 467.2618 .

Di-tert-butyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-phenylprop-1-en-1-yl)malonate (4e)

Following the Method E, $\mathbf{4 e}$ was obtained as light green oil $(55.5 \mathrm{mg}$, $0.119 \mathrm{mmol}, 60 \%) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.36-7.28(\mathrm{~m}, 6 \mathrm{H})$, $7.15(\mathrm{dd}, J=7.4,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{dd}, J=15.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=15.3,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.42$ $(\mathrm{s}, 9 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $167.73,167.72,141.25,136.34,135.28,134.40,129.17,128.10,127.49$, $127.38,124.75,120.55,81.61,81.51,58.08,42.81,28.19,28.11,27.96,27.90,27.83,27.73,-4.27,-4.54$ ppm; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 467.2612$, found: 467.2605 .

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(p-tolyl)prop-1-en-1-yl)malonate (4f)

Following the Method E, $\mathbf{4 f}$ was obtained as light greenish oil (62.8 mg , $0.148 \mathrm{mmol}, 74 \%)$ as light yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 7.39-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 5.93 (ddd, $J=15.3,9.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (ddd, $J=15.3,9.1,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.20 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.15(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\mathbf{C D C l}_{3}$): $\delta 168.42,168.34,137.85,136.45,136.37,134.37,134.23,129.16,128.89,127.48,127.24,119.49$, $61.55,61.45,55.99,42.32,20.89,14.12,14.02,-4.22,-4.73 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 425.2143$, found: 425.2134 .

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(o-tolyl)prop-1-en-1-yl)malonate (4g)

Following the Method E, $\mathbf{4 g}$ was obtained as light green oil $(54.5 \mathrm{mg}$, $0.128 \mathrm{mmol}, 64 \%$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.35-7.27(\mathrm{~m}, 5 \mathrm{H})$, $7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (dd, $J=15.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (ddd, $J=15.2,9.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), 0.29 (s, 3H), 0.27 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$): δ $168.43,168.35,136.80,134.87,134.27,130.44,129.22,127.50,126.69,125.75,124.69,119.66,61.58$, 61.47, 55.96, 37.64, 20.15, 14.13, 14.02, $-4.08,-4.89 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 425.2143, found: 425.2136 .

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(4-methoxyphenyl)prop-1-en-1-yl) malonate (4h)

Following the Method E, the mixture of $\mathbf{4 h}$ and $\mathbf{3 h}$ were obtained as a greenish oil ($67.3 \mathrm{mg}, 0.151 \mathrm{mmol}$, Yield: 76\%); The 1,6 (4h) and 1,4 (3h) addition ratio was determined after purification to be approximately $88: 12$ by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $7.50-7.48(\mathrm{~m}, 2 \mathrm{H} \times 0.12), 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H} \times$ $0.12), 6.81-6.82(\mathrm{~m}, 2 \mathrm{H} \times 0.12), 6.80-6.77(\mathrm{~m}, 2 \mathrm{H} \times 0.88) 6.75-$ $6.71(\mathrm{~m}, 2 \mathrm{H} \times 0.88), 6.18(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.12), 6.02(\mathrm{dd}, J=$ $15.7,10.4 \mathrm{~Hz}, 1 \mathrm{H} \times 0.12), 5.91(\mathrm{ddd}, J=15.3,9.8,0.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.88)$, $5.58(\mathrm{ddd}, J=15.3,9.1,1.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.88), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.88), 4.18-4.13(\mathrm{~m}, 2 \mathrm{H} \times 0.88)$, $4.05(\mathrm{~m}, 2 \mathrm{H} \times 0.12), 3.99(\mathrm{dd}, J=9.1,0.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.88), 3.96(\mathrm{~m}, 2 \mathrm{H} \times 0.12), 3.79(\mathrm{~s}, 3 \mathrm{H} \times 0.12), 3.76(\mathrm{~s}$, $3 \mathrm{H} \times 0.88), 3.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.12), 3.13(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.88), 2.69(\mathrm{ddd}, J=9.5,8.9,0.6 \mathrm{~Hz}$, $1 \mathrm{H} \times 0.12), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.88), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.88), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.12)$, $1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.12), 0.36(\mathrm{~s}, 3 \mathrm{H} \times 0.12), 0.35(\mathrm{~s}, 3 \mathrm{H} \times 0.12), 0.25(\mathrm{~s}, 3 \mathrm{H} \times 0.88), 0.24(\mathrm{~s}, 3 \mathrm{H} \times$ 0.88) ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.06,168.93,168.43,168.36,158.66,157.08,136.47,136.45$, $134.36,134.26,132.99,130.59,129.67,129.28,129.18,128.25,127.68,127.51,127.01,125.37,119.48$, $113.87,113.68,61.58,61.48,61.30,61.18,55.98,55.29,55.23,52.98,41.69,33.79,14.13,14.04,14.00$, 3.54, $-4.24,-4.69 \mathrm{pm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 441.2092$, found: 441.2093.

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(2-methoxyphenyl)prop-1-en-1-yl)malonate (4i)

Following the Method E, the mixture of $\mathbf{4 i}$ and $\mathbf{3 i}$ were obtained as a greenish oil ($61.5 \mathrm{mg}, 0.139 \mathrm{mmol}$, Yield: 70%); The 1,6 ($\mathbf{4 i}$) and 1,4 (3i) addition ratio was determined after purification to be approximately $73: 27$ by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $7.52-7.50(\mathrm{~m}, 2 \mathrm{H} \times 0.27), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H} \times$ $0.27), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H} \times 0.73), 6.89-6.87(\mathrm{~m}, 1 \mathrm{H} \times 0.73), 6.83-$ $6.79(\mathrm{~m}, 3 \mathrm{H} \times 0.27), 6.72(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.73), 6.58(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.27), 6.16(\mathrm{dd}, J=15.9,10.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.27), 6.00$ (ddd, $J=15.3,10.1,0.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.73), 5.61(\mathrm{ddd}, J=15.2,9.1,1.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.73), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$ $\times 0.73), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.73), 4.07-4.02(\mathrm{~m}, 2 \mathrm{H} \times 0.27), 3.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.73), 3.96-$ $3.91(\mathrm{~m}, 1 \mathrm{H} \times 0.27), 3.78(\mathrm{~s}, 3 \mathrm{H} \times 0.27), 3.75(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H} \times 0.73), 3.59(\mathrm{~s}, 3 \mathrm{H} \times 0.73), 3.52(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.27), 2.76(\mathrm{ddd}, J=9.9,8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.27), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.73), 1.22(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H} \times 0.73), 1.17-1.12(\mathrm{~m}, 6 \mathrm{H} \times 0.27), 0.37(\mathrm{~s}, 3 \mathrm{H} \times 0.27), 0.35(\mathrm{~s}, 3 \mathrm{H} \times 0.27), 0.24(\mathrm{~s}, 3 \mathrm{H} \times 0.73), 0.23$ $(\mathrm{s}, 3 \mathrm{H} \times 0.73) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.04,168.96,168.51,168.42,156.34,155.71,137.20$, $136.04,134.30,134.22,129.68,129.22,128.90,128.15,127.76,127.66,127.35,127.28,126.39,125.55$, $125.06,120.53,120.23,119.61,110.80,110.10,61.54,61.44,61.27,61.19,56.08,55.40,54.82,53.08,34.52$, 34.23, 14.14, 14.04, -3.41, -4.16, -4.32, -4.87 ppm; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 441.2092, found: 441.2084.

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(4-fluorophenyl)prop-1-en-1-yl)malonate (4j)

Following the Method E, $\mathbf{4} \mathbf{j}$ was obtained as a light green oil (61.7 mg , 0.144 mmol, Yield: 72\%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.39-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}$, $2 \mathrm{H}), 5.91(\mathrm{dd}, J=15.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddd}, J=15.2,9.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.27,168.23,139.60,135.77,135.41,134.30,130.49,129.39$, $128.56,128.23,127.60,120.21,61.61,61.52,55.86,42.36,14.10,14.01,-4.49,-4.75$. ppm; ${ }^{19}$ F NMR (376 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta-115.70 \mathrm{ppm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{FSi}[\mathrm{M}+\mathrm{H}]^{+}: 429.1892$, found:

Diethyl (E)-2-(3-(4-chlorophenyl)-3-(dimethyl(phenyl)silyl)prop-1-en-1-yl)malonate (4k)

Following the Method $\mathrm{E}, \mathbf{4} \mathbf{k}$ was obtained as a light brown oil (62.5 $\mathrm{mg}, 0.14 \mathrm{mmol}$, Yield: 70%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.39$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.90$ (dd, $J=15.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddd}, J=15.2,9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ $-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.27$ (s, 3H), 0.24 (s, 3H) ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C D C l} 3$): δ 168.30, $168.26,139.59,135.74,135.44,134.32,130.47,129.41,128.55$, 128.24, 127.61, 120.17, 61.65, 61.56, 55.87, 42.37, 14.13, 14.03, $-4.48,-4.75 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Cl} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 445.1596$, found: 445.1589 .

Diethyl (E)-2-(3-(4-bromophenyl)-3-(dimethyl(phenyl)silyl)prop-1-en-1-yl)malonate (41)

Following the general procedure, $\mathbf{4 l}$ was obtained as a brown solid ($62.5 \mathrm{mg}, 0.128 \mathrm{mmol}$, Yield: 64%); ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.89$ (ddd, $J=15.3,9.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddd}, J=15.3,9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{dd}, J=9.0,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\mathbf{C D C l}_{3}$): $\delta 168.29,168.25,140.13,135.69,135.33,134.32,131.17$, $129.42,128.97,127.61,120.20,118.42,61.65,61.56,55.86,42.45,14.12,14.03,-4.49,-4.76 \mathrm{ppm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{BrSi}[\mathrm{M}+\mathrm{H}]^{+}: 489.1091$, found: 489.1086.

Diethyl (E)-2-(3-(4-cyanophenyl)-3-(dimethyl(phenyl)silyl)prop-1-en-1-yl)malonate (4m)

Following the Method E, the mixture of $\mathbf{4 m}$ and $\mathbf{3 m}$ were obtained as a greenish oil ($67.7 \mathrm{mg}, 0.155 \mathrm{mmol}$, Yield: 78%); The 1,6 (4 m) and $1,4(\mathbf{3 m})$ addition ratio was determined after purification to be approximately $86: 14$ by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ $7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H} \times 0.14), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H} \times 0.14), 7.45-7.42$ $(\mathrm{m}, 2 \mathrm{H} \times 0.86), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.86)$, $7.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H} \times 0.14), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H} \times 0.86), 6.39$ (dd, $J=15.8,10.4 \mathrm{~Hz}, 1 \mathrm{H} \times 0.14), 6.19(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.14)$, $5.93(\mathrm{ddd}, J=10.8,10.0,0.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.86), 5.66(\mathrm{ddd}, J=9.9,9.0,0.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.86), 4.25-4.21(\mathrm{~m}, 2 \mathrm{H}$ $\times 0.86), 4.19-4.14(\mathrm{~m}, 2 \mathrm{H} \times 0.86), 4.09-4.04(\mathrm{~m}, 2 \mathrm{H} \times 0.14), 4.02(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.86), 4.01-3.97$ $(\mathrm{m}, 2 \mathrm{H} \times 0.14), 3.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H} \times 0.14), 3.28(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.86), 2.76(\mathrm{dd}, J=10.4,8.2 \mathrm{~Hz}$, $1 \mathrm{H} \times 0.14), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.86), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.86), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.14)$, $1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.14), 0.37(\mathrm{~s}, 3 \mathrm{H} \times 0.14), 0.36(\mathrm{~s}, 3 \mathrm{H} \times 0.14) 0.29(\mathrm{~s}, 3 \mathrm{H} \times 0.86), 0.26(\mathrm{~s}, 3 \mathrm{H} \times$ 0.86) ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 168.15,168.12,147.17,134.94,134.21,134.17,134.08,132.67$, $132.36,131.92,129.69,129.56,128.32,127.82,127.77,127.73,126.24,121.04,119.18,108.43,61.74$, $61.65,61.50,61.35,55.76,52.45,43.92,34.44,14.13,14.03,-3.73,-4.07,-4.75 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 436.1939$, found: 436.1933.

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(4-(trifluoromethyl)phenyl)prop-1-en-1yl)malonate (40)

Following the Method E, 40 was obtained as a colorless oil (64.3 mg , 0.134 mmol, Yield: 67%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 7.41 (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{dd}, J$ $=15.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=15.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}$, $4 \mathrm{H}), 4.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 168.24,168.19,145.45,135.39,134.86$, $134.28,134.04,129.52,127.66,127.37,125.07,125.04,120.57,61.69$, $61.59,55.83,43.24,14.12,14.02,-4.55,-4.79 \mathrm{ppm} ;{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-62.18 \mathrm{ppm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 479.1860$, found: 479.1866.

Diethyl (E)-2-(3-([1,1'-biphenyl]-4-yl)-3-(dimethyl(phenyl)silyl)prop-1-en-1-yl)malonate (4p)

Following the Method E, $\mathbf{4 p}$ was obtained as a white solid $(68.5 \mathrm{mg}$, 0.140 mmol , Yield: 70%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.56(\mathrm{~d}, ~ J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{dd}, J=15.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=15.2,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J$ $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ MHz, $\mathbf{C D C l}_{3}$): $\delta 168.41,168.33,140.93,140.23,137.65,136.16$, $135.91,134.40,129.29,128.70,127.70,127.54,126.91,126.83,126.81,119.85,61.63,61.53,55.99,42.64$, $14.15,14.04,-4.29,-4.68 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 487.2299$, found: 487.2295 .

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(naphthalen-2-yl)prop-1-en-1-yl)malonate (4q)

Following the Method E, the mixture of $\mathbf{4 q}$ and $\mathbf{3 q}$ were obtained as a light brownish soild ($73.5 \mathrm{mg}, 0.159 \mathrm{mmol}$, Yield: 80%); The 1,6 (4q) and $1,4(\mathbf{3 q})$ addition ratio was determined after purification to be approximately 77:23 by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.01$ (dd, $J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.77$), $6.41-6.28(\mathrm{~m}, 2 \mathrm{H} \times 0.23), 6.08$ (ddd, $J=10.8,10.0,0.88 \mathrm{~Hz}, 1 \mathrm{H} \times 0.77), 5.66(\mathrm{ddd}, J=10.0,9.1,1.0 \mathrm{~Hz}$, $1 \mathrm{H} \times 0.77), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.77), 4.17-4.12(\mathrm{~m}, \mathrm{~Hz}, 2 \mathrm{H} \times$ $0.77), 4.09-4.04(\mathrm{~m}, 2 \mathrm{H} \times 0.23), 4.03(\mathrm{dd}, J=9.1,0.7 \mathrm{~Hz}, 1 \mathrm{H} \times 0.77), 3.98(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.23), 3.56$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.23), 3.35(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.77), 2.79(\mathrm{dd}, J=9.7,8.7 \mathrm{~Hz}, 1 \mathrm{H} \times 0.23), 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.77), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} \times 0.77), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.23), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times$ $0.23), 0.39(\mathrm{~s}, 3 \mathrm{H} \times 0.23), 0.38(\mathrm{~s}, 3 \mathrm{H} \times 0.23), 0.29(\mathrm{~s}, 3 \mathrm{H} \times 0.77), 0.26(\mathrm{~s}, 3 \mathrm{H} \times 0.77) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 169.02,168.89,168.38,168.30,138.68,136.13,135.95,134.40,134.26,133.56,131.43$, $130.25,129.36,129.29,128.22,128.01,127.78,127.72,127.58,127.52,127.49,127.25,126.76,126.14$, $125.81,125.47,125.26,124.96,124.78,123.52,119.91,61.60,61.49,61.36,61.23,55.96,52.86,43.08$, 34.13, 14.12, 14.10, 14.01, -3.57, -4.12, -4.25, -4.66 ppm ; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 461.2143, found: 461.2136 .

Diethyl (E)-2-(3-cyclohexyl-3-(dimethyl(phenyl)silyl)prop-1-en-1-yl)malonate (4t)

Following the Method E, the mixture of $\mathbf{4 t}$ and $\mathbf{3 t}$ were obtained as a light greenish oil ($65.8 \mathrm{mg}, 0.158 \mathrm{mmol}$, Yield: 79\%); The 1,6 (4t) and $1,4(\mathbf{3 t})$ addition ratio was determined after purification to be approximately 77:23 by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ $7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{dd}, J=15.2,10.7 \mathrm{~Hz}$, $1 \mathrm{H} \times 0.77$), $5.45(\mathrm{dd}, J=15.3,8.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.77), 5.30(\mathrm{dd}, J=15.6$, $9.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.22$), $5.22(\mathrm{dd}, J=15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H} \times 0.22), 4.22-4.15$ $(\mathrm{m}, 4 \mathrm{H} \times 0.77), 4.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} \times 0.22), 3.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H} \times 0.77), 3.94-3.88(\mathrm{~m}, 2 \mathrm{H} \times 0.22), 3.40(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} \times 0.22), 2.46(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.22), 1.75$ $(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H} \times 0.77), 1.64-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.27-0.91(\mathrm{~m}, 12 \mathrm{H}), 0.28(\mathrm{~s}$,

6H), 0.27 ($\mathrm{s}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 169.06,168.99,168.63,168.51,138.55,137.64$, $136.21,134.23,133.91,129.09,128.79,127.60,127.56,124.08,120.22,61.45,61.40,61.14,61.01,56.02$, $53.19,40.79,38.55,34.16,33.23,33.19,32.77,31.46,26.64,26.19,26.16,26.00,14.11,14.07,-2.69,-3.46$, $-3.61,-4.26 \mathrm{ppm}$; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 417.2456$, found: 417.2448.

[^0]
Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(furan-2-yl)prop-1-en-1-yl)malonate (4u)

Following the Method E, the mixture of $\mathbf{4 u}$ and $\mathbf{3 u}$ were obtained as a light brownish oil ($66.7 \mathrm{mg}, 0.166 \mathrm{mmol}$, Yield: 83%). The 1,6 (4u) and $1,4(\mathbf{3 u})$ addition ratio was determined after purification to be approximately 60:40 by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $7.51-7.48(\mathrm{~m}, 2 \mathrm{H} \times 0.40), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{dd}, J=1.9,0.9$ $\mathrm{Hz}, 1 \mathrm{H} \times 0.60), 6.32(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.40), 6.24(\mathrm{dd}, J=3.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.60), 6.14(\mathrm{dd}, J=15.8,10.2 \mathrm{~Hz}, 1 \mathrm{H} \times 0.40), 6.07-$ $6.02(\mathrm{~m}, 1 \mathrm{H} \times 0.40), 5.82-5.75(\mathrm{~m}, 2 \mathrm{H} \times 0.60), 5.57(\mathrm{ddd}, J=15.4$, $9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.60), 4.21-4.13(\mathrm{~m}, 4 \mathrm{H} \times 0.60), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.40), 3.97(\mathrm{dd}, J=9.0,0.8$ $\mathrm{Hz}, 1 \mathrm{H} \times 0.60), 3.92(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.40), 3.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.40), 3.33(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H} \times$ $0.60), 2.68(\mathrm{dd}, J=10.2,8.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.40), 1.26(\mathrm{t}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.60), 1.24(\mathrm{t}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.60)$, $1.16-1.13(\mathrm{~m}, 6 \mathrm{H} \times 0.40), 0.34(\mathrm{~s}, 6 \mathrm{H} \times 0.40), 0.29(\mathrm{~s}, 6 \mathrm{H} \times 0.60) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $168.93,168.79,168.28,168.26,154.71,153.09,141.29,140.34,136.40,136.34,134.26,134.04,133.53$, $129.33,129.28,127.70,127.61,127.59,126.63,120.38,118.86,111.03,110.33,106.04,104.29,61.57$, $61.54,61.33,61.25,55.84,52.81,35.56,33.80,14.08,14.05,14.02,13.94,-3.47,-4.20,-4.28,-4.38 \mathrm{ppm} ;$ HRMS (ESI): m / z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 401.1779$, found: 401.1771 .

Diethyl (E)-2-(3-(dimethyl(phenyl)silyl)-3-(thiophen-2-yl)prop-1-en-1-yl)malonate (4v)
Following the Method E, the mixture of $\mathbf{4 v}$ and $\mathbf{3 v}$ were obtained as a brownish oil ($66.4 \mathrm{mg}, 0.159 \mathrm{mmol}$, Yield: 80%). The $1,6(4 \mathbf{v})$ and 1,4 (3v) addition ratio was determined after purification to be approximately $63: 37$ by ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.51-7.48$ $(\mathrm{m}, 2 \mathrm{H} \times 0.37), 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.37)$, $6.99(\mathrm{dd}, J=5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.63), 6.91(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} \times$ $0.37), 6.85(\mathrm{dd}, J=5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.63), 6.80(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H} \times$ $0.37), 6.49(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.63), 5.84(\mathrm{ddd}, J=15.3,9.5,0.8 \mathrm{~Hz}$, $1 \mathrm{H} \times 0.63), 5.61(\mathrm{ddd}, J=15.2,8.9,1.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.63), 4.23-4.14(\mathrm{~m}, 3 \mathrm{H} \times 0.63), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$ $\times 0.37), 4.01-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.63), 3.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.37), 2.68(\mathrm{ddd}, J=$ $10.6,8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.37), 1.28(\mathrm{t}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H} \times 0.63), 1.24(\mathrm{t}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H} \times 0.63), 1.17(\mathrm{t}, J=4.4$ $\mathrm{Hz}, 3 \mathrm{H} \times 0.37), 1.14(\mathrm{t}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H} \times 0.37), 0.36(\mathrm{~s}, 3 \mathrm{H} \times 0.63), 0.35(\mathrm{~s}, 3 \mathrm{H} \times 0.63), 0.33(\mathrm{~s}, 3 \mathrm{H} \times 0.37)$, $0.31(\mathrm{~s}, 3 \mathrm{H} \times 0.37) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.94,168.80,168.25,168.22,143.83,142.90$, $136.28,136.05,135.92,134.29,134.28$, $129.38,127.74,127.70,127.61,127.22,126.73,124.21,123.41$, $123.16,122.84,121.68,120.09,61.62,61.56,61.38,61.28,55.76,52.77,37.43,33.85,14.11,14.08,14.06$, 13.98, $-3.59,-4.15,-4.43,-4.60 \mathrm{ppm}$; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}: 417.155$, found: 417.1549 .

3.3 Characterization Data and Spectra of Synthetic Applications

(E)-2-(1-(dimethyl(phenyl)silyl)-3-phenylallyl)propane-1,3-diol (5)

Following the Method F, $\mathbf{5}$ was obtained as a colorless oil $(45.3 \mathrm{mg}$, 0.139 mmol, Yield: 70%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.55-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H})$, $6.26(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=15.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J$ $=10.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.07(\mathrm{~m}, 3 \mathrm{H}), 2.06-$ 1.97 (m, 1H), $0.38(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR (101 MHz , $\mathbf{C D C l}_{3}$): $\delta 137.67,133.89,130.05,129.33,129.04,128.56,127.99$, 126.82, 125.80, 66.91, 65.33, 42.80, 33.73, -2.75, -3.94 ppm; HRMS
(ESI): m / z Calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 327.1775, found: 327.1768.

Diethyl 2-cinnamylmalonate (6)

Following the Method G, $\mathbf{6}$ was obtained as a colorless oil (18.0 mg , $0.065 \mathrm{mmol}, 65 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.34-7.27$ $(\mathrm{m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.78(\mathrm{~m}$, 2H), $1.27-1.24$ (m, 6H) ppm; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.90$, 137.04, 132.78, 128.49, 127.36, 126.17, 125.59, 61.47, 52.03, 32.23, 14.12 ppm ; HRMS (ESI): m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 277.1434$, found: 277.1436.

1,1-diethyl 2-methyl (E)-4-phenylbut-3-ene-1,1,2-tricarboxylate (7)

Following the Method H, 7 was obtained as a colorless oil (39.4 mg , 0.118 mmol, Yield: 58\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.36-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 6.60(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.8,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta 172.17,167.65$, $167.35,136.06,135.38,128.58,128.11,126.53,122.56,61.91,61.67$, 54.15, 52.54, 48.74, 14.10, 14.00 ppm ; HRMS (ESI): m/z Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 335.1489$, found: 335.1482.

5. References

1. R. Singh, S. K. Ghosh, Org. Lett., 2007, 9, 5071.
2. L. Liu, R. Sarkisian, Z. Xu, H. Wang, J. Org. Chem., 2012, 77, 7693.
3. Y.-H. He, Y. Hu, Z. Guan, Synth. Commun., 2011, 41, 1617.
4. X. Wei, J. Lu, W.-L. Duan. Synthesis, 2016, 48, 4155.
5. T. A. Dineen, W. R. Roush, Org. Lett., 2004, 6, 2043.
6. (a) F.-F. Meng, J.-H. Xie, Y.-H. Xu, T.-P. Loh, ACS Catal., 2018, 8, 5306.
(b) D.-K. Wang, Y.-G. Zhou, Y. Tang, X.-L. Hou, L.-X. Dai. J. Org. Chem., 1999, 64, 4233.

[^0]:

