Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting information

Convertible and Conformationally Constrained Dinucleotides (C₂NAs) Based on Neutral Dioxo-1,3,2-Oxaza-Phosphorinane Modified Backbone, Synthesis, Structural Studies, Behaviour Within Deoxyoligonucleotides and Conjugation

Jean-Marc Escudier^{*[a]}, Corinne Payrastre^[a], Béatrice Gerland^[a] and Nathalie Tarrat^[b] ^[a]Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France.^[b] CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, Toulouse 31055, France. E-mail: escudier@chimie.ups-tlse.fr

Contents:

¹ H, ¹³ C and ³¹ P NMR spectra of compounds 2 to 16	2-39
MS data for modified ODNs and reference	40
HPLC profile of CuAAC of ODN 4 with azido-fluorescein	41
Thermal denaturation curves of ODNs 1, 2 and 7	42
Thermal denaturation curves of ODNs 3 to 6	43
Thermal denaturation curves of ODNs 8 to 12	44
Thermal denaturation curves of unmodified bulges ODN 13/14 to 20	45
Thermal denaturation curves of α , β -C ₂ NA modified bulges ODN 13/ 14 to 20	46
Thermal denaturation curves of unmodified bulges ODN 13/21 to 26	47
Thermal denaturation curves of α , β -C ₂ NA modified bulges ODN 13/ 21 to 26	48
Thermal denaturation curves of f-ODNs	49

Table S1: MALDI-Tof MS of oligonucleotides and retention time in HPLC (column Waters X-bridge OST C_{18} 2.5 μ , 50 x 4.5mm, gradient 95% of A to 85% of A in B, A: TEAA buffer 50 mM, pH 7.0; B: ACN

Entry	Name	Seq	Mass Th	Mass Obs	Rt HPLC (min)
1 2	ODN1	GCGCTTGCCG CGGCAAGCGC	3020.0 3038.0	3016.9 3034.5	4.00 3.02
3	ODN2	GCGCTTGCCG	3084.1	3080.2	4.94
4	ODN 7	GCGC <mark>TT</mark> GCCG	3084.1	3080.5	4.94
5 6	ODN 3	GCGTTTTTTGCT AGCAAAAAACGC	3633.4 3656.5	3632.3 3655.0	5.17 4.13
7	ODN 4	GCGTTTTTTGCT	3697.4	3695.8	6.11
8	ODN 5	GCGTT TT TTGCT	3697.4	3695.3	6.23
9	ODN 6	GCGTTTTTTGCT	3697.4	3695.7	6.16
10	ODN 8	ATCCTATTTTTAGGAT	4861.2	4859.1	5.96
11	ODN 9	ATCCTATTTTAGGAT	4925.2	4921.9	6.68
12	ODN 10	ATCCTATTTTAGGAT	4925.2	4922.1	6.52
13	ODN 11	ATCCTAT TT TTAGGAT	4925.2	4921.6	6.88
14	0DN 12	ATCCTATTTTAGGAT	4925.2	4922.9	7.40
15	ODN 13	GAT TTG CAT A TT CAT GAG	5592.7	5590.5	6.92

16	f-ODN 2	GCGC <mark>TT</mark> GCCG Fluorescein	3544.4	3544.2	4.65
17	f-ODN 4	GCGTTTTT <mark>TT</mark> GCT I Fluorescein	4157.8	4151.9	6.10
18	f-ODN 10	ATCCTATT <mark>TT</mark> TAGGAT I Fluorescein	5385.6	5390.5	6.97
19	f-0DN 13	GAT TTG CAT A <mark>TT</mark> CAT GAG Fluorescein	6053.1	6124.5 (+3 Na)	6.83

Figure S1: Typical HPLC profile and UV spectra of synthesis of f-ODN 4 from ODN 4 by CuAAC. a) t=o, b) t=1h and c) After NAP G25 filtration

Figure S6. Thermal denaturation curves for bulges made with GATTTGCATA*TT*CATGAG (Table 5) Abs where $TT = \alpha, \beta$ -C₂NA gauche(+), and ODN 14 to 20 of decreasing size.

Figure S8. Thermal denaturation curves for bulges made with GATTTGCATA*TT*CATGAG (Table 6) Abs where $TT = \alpha, \beta$ -C₂NA gauche(+), and ODN 21 to 26 of increasing size.

Figure S9. Thermal denaturation curves for ODNs conjugated with fluorescein and featuring Abs an α , β -C₂NA.

