Supporting Information

Synergistic Palladium/Enamine Catalysis for Asymmetric Hydrocarbon Functionalization of Unactivated Alkenes with Ketones

Chiyu Wei, ${ }^{\text {a }}$ Xiaohan Ye, ${ }^{a}$ Qingyu Xing, ${ }^{\text {a }}$ Yong Hu, ${ }^{\text {c }}$ Yan Xie, ${ }^{\text {,b }}$ and Xiaodong Shi*a
${ }^{a}$ Department of Chemistry, University of South Florida, Tampa, FL 33620, United State.
${ }^{b}$ College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China
${ }^{c}$ Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, Shanghai 200040, China.

I. General Methods and Materials S2
II. Extensive screening of catalysts for dicarbonyl compounds S6
III. Compounds Characterization S7
IV. NMR Spectra Data S27
V. HPLC Spectra Data S58

I. General Methods and Materials

All of the reactions dealing with air and/or moisture-sensitive compounds were carried out under an atmosphere of argon using oven/flame-dried glassware and standard syringe/septa techniques. Unless otherwise noted, all commercial reagents and solvents were obtained from the commercial provider and used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian 400 MHz spectrometers. Chemical shifts were reported relative to internal tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) or $\mathrm{CDCl}_{3}(\delta 7.26$ $\mathrm{ppm})$ or DMSO (2.50 ppm) for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(\delta 77.16 \mathrm{ppm})$, DMSO $(40.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$. Flash column chromatography was performed on 230-430 mesh silica gel. Analytical thin layer chromatography was performed with precoated glass baked plates (250μ) and visualized by fluorescence and by charring after treatment with potassium permanganate stain. HRMS were recorded on Agilent 6540 LC/QTOF spectrometer.

1.1 General procedure to synthesize 3a-3n:

An oven-dried vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol})$, $\mathrm{HOAc}(1$ equiv., 0.2 mmol), ketone (3 equiv., 0.6 mmol) and pyrrolidine ($20 \mathrm{~mol} \%, 0.04 \mathrm{mmol}$). The vial was placed under vacuum and charged with Ar. Alkene (1a) (1 equiv., 0.2 mmol), and toluene $(1 \mathrm{M}, 0.2 \mathrm{~mL})$ was added into the vial sequentially under Ar atmosphere. The reaction was run under $80^{\circ} \mathrm{C}$ and monitored by TLC. Once the reaction completed, the solvent was removed under vacuum, and the resulting crude mixture was loaded on a silica gel column directly and purified by flash chromatography to give desired product.

1.2 General procedure to synthesize 4a-41:

S-2

An oven-dried vial was charged with $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol})$, $\mathrm{HOAc}(1$ equiv., 0.2 mmol), ketone (4 equiv., 0.8 mmol) and $\mathbf{A 9}(30 \mathrm{~mol} \%, 0.06 \mathrm{mmol})$. The vial was placed under vacuum and charged with Ar. Alkene (1a) (1 equiv., 0.2 mmol) was added into the vial sequentially under Ar atmosphere. The reaction was run under $60{ }^{\circ} \mathrm{C}$ and monitored by TLC. Once the reaction completed, the crude mixture was loaded on a silica gel column directly and purified by flash chromatography to give desired product.

1.3 General procedure to synthesize 5a-5c:

An oven-dried vial was charged with $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol}), \mathrm{HOAc}(1$ equiv., 0.2 mmol), ketone ester (3 equiv., 0.6 mmol) and $\mathbf{A 1 0 (3 0 ~ m o l ~} \%, 0.6 \mathrm{mmol})$. The vial was placed under vacuum and charged with Ar. Alkene (1a) (1 equiv., 0.2 mmol) was added into the vial sequentially under Ar atmosphere. The reaction was run under $60{ }^{\circ} \mathrm{C}$ and monitored by TLC. Once the reaction completed, the crude mixture was loaded on a silica gel column directly and purified by flash chromatography to give desired product.

1.4 Removal of directing group: ${ }^{1}$

An oven-dried flask was added compound 3a (1 mmol), $\mathrm{Boc}_{2} \mathrm{O}$ (4 equiv., 4 mmol), DMAP (1.5 equiv., 1.5 mmol), and dry acetonitrile (15 mL) then placed under vacuum and charged with Ar. The reaction was run under room temperature and monitored by TLC. Once the reaction completed, the crude mixture was purified by flash chromatography (Hexane: Ethyl Acetate $=3: 1, \mathrm{R}_{f}=0.2$) on silica gel and the product was used in the next step.

The product from the previous step was employed in THF/ $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL}: 4.5 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$, followed by the addition of LiOH (1.1 eq.) and $\mathrm{H}_{2} \mathrm{O}_{2}$ (9 eq.). The reaction was run at $0{ }^{\circ} \mathrm{C}$ until the reaction was done, then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (aq., $1.5 \mathrm{M}, 10 \mathrm{~mL}$) was added. The solution was washed with DCM 20 mL twice. The aqueous phase was extracted with EA (25 mL) three times. The organic phase was combined, washed with brine $(20 \mathrm{~mL})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then the solvent was evaporated under vacuum. The crude mixture was purified by flash chromatography (EA: Hexanes $=3: 1, \mathrm{R}_{f}=0.32$) to give the desired product $\mathbf{6}$ with 86% overall yield for two steps.

1.5 Synthesis of $\mathbf{N (q u i n o l i n - 8 - y l) b u t - 3 - e n a m i d e ~ 1 a : ~}$

8-Aminoquinoline (10 mmol), vinyl acetic acid (1.3 eq., 13 mmol), and DCM (30 mL) were added in a 100 mL round bottom flask. 2,6-Lutidine ($2 \mathrm{eq} ., 20 \mathrm{mmol}$) and HATU (1.3 eq., 1.3 mmol) were charged sequentially at r.t. The reaction was monitored by TLC. Upon the reaction completed, $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added into the mixture and extracted by DCM $(3 * 40 \mathrm{~mL})$. The organic layer was combined, washed with sat. NaHCO_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum. The crude mixture was purified by flash chromatography (ethyl acetate: hexanes $=3: 1$) to give the desired product $1 \mathrm{a}(1.87 \mathrm{~g}, 88 \%$ yield) as a yellow oil. The physical and spectroscopic data matched with literature. ${ }^{2}$

1.6 Gram-scale synthesis of 3a:

An oven-dried 25 mL round-bottom flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 92$ $\mathrm{mg}, 0.41 \mathrm{mmol}$), HOAc (1 equiv., $0.24 \mathrm{~mL}, 4.1 \mathrm{mmol}$), alkene (1a) (1 equiv., $870 \mathrm{mg}, 4.1$ mmol), acetophenone (3 equiv., $1.48 \mathrm{~g}, 12.3 \mathrm{mmol}$), pyrrolidine ($20 \mathrm{~mol} \%, 68 \mu \mathrm{~L}, 0.82$
mmol) and toluene ($1 \mathrm{M}, 4.1 \mathrm{~mL}$). The vial was placed under vacuum and charged with Ar. The reaction was run under $80^{\circ} \mathrm{C}$ and monitored by TLC. Once the reaction completed, the solvent was evaporated by vacuum and the crude mixture was purified by flash chromatography (Hexane: Ethyl Acetate $=3: 1$) on silica gel to give desired product 3a ($1.27 \mathrm{~g}, 94 \%$).

II. Extensive screening of catalysts for dicarbonyl compounds: ${ }^{a}$

Reaction conditions: ${ }^{a}$ Reaction conditions: $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$. ($10 \mathrm{~mol} \%$), ligand A 9 ($30 \mathrm{~mol} \%$), $\mathrm{AcOH}(1 \mathrm{eq}$.), 36 hours. Yield were determined by 1 H NMR using 1,3,5-trimethoxybenzene as internal standard. The dr and ee was determined by HPLC. ${ }^{b}$ neat. ${ }^{c}$ See ref 4

III. Compounds Characterization

3a

6-oxo-6-phenyl- N-(quinolin-8-yl)hexanamide
3a was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.21$) to give white solid ($62 \mathrm{mg}, 94 \%$ yield). 36 hours. MP: $85^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.96-8.62(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.07(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.00-1.81(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.00,171.45,148.26,138.39,137.03,136.45,134.57$, $133.10,128.69,128.07,127.48,121.61,121.51,116.54,56.35,38.35,38.06,25.35,23.92$.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 333.1598$, found: 333.1601 .

3b

6-oxo-N-(quinolin-8-yl)-6-(p-tolyl)hexanamide
3b was prepared following the General Procedure 1.1 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.29$) to give white solid $(66 \mathrm{mg}, 96 \%$ yield). 36 hours. MP: $80^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.78(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.74,171.53,148.25,143.82,138.44,136.46,134.61$, $129.36,128.28,128.04,127.52,121.70,121.51,116.55,38.28,38.13,25.43,24.07,21.74$.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 347.1754$, found: 347.1762 .

3c

6-(4-methoxyphenyl)-6-oxo-N-(quinolin-8-yl)hexanamide
3c was prepared following the General Procedure 1.1 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.13$) to give white solid $(68 \mathrm{mg}, 94 \%$ yield). 36 hours. MP: $73^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.82-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.99$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.62,171.50,163.44,148.21,138.39,136.42,134.57$, $130.37,130.13,128.00,127.46,121.67,121.48,116.49,113.76,55.52,38.08,38.00$, 25.42, 24.16.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 363.1703$, found: 363.1707

3d

6-(4-(tert-butyl)phenyl)-6-oxo-N-(quinolin-8-yl)hexanamide
3d was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.36$) to give white solid ($72 \mathrm{mg}, 93 \%$ yield). 36 hours. MP: $58{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~m}, 2 \mathrm{H}), 8.19-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.38(\mathrm{~m}, 5 \mathrm{H}), 3.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05$ - 1.85 (m, 4H), 1.33 ($\mathrm{s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.67,171.45,156.69,148.18,138.36,136.39,134.55$, 134.44, 128.07, 127.97, 127.43, 125.55, 121.64, 121.46, 116.47, 38.23, 38.05, 35.12, 31.15, 25.37, 24.03.

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 389.2224$, found: 389.2228.

3 e

6-(4-nitrophenyl)-6-oxo-N-(quinolin-8-yl)hexanamide
3e was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.13$) to give yellow solid ($69 \mathrm{mg}, 91 \%$ yield). 36 hours. MP: $143{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 3.17-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.34,171.27,150.32,148.32,148.19,141.38,138.37$, $136.53,134.50,129.08,128.03,127.40,123.90,121.65,116.46,38.91,37.89,25.10$, 23.59.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 378.1448$, found: 378.1454
$3 f$

6-oxo-N-(quinolin-8-yl)-6-(4-(trifluoromethyl)phenyl)hexanamide

3f was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.27$) to give white solid ($73 \mathrm{mg}, 91 \%$ yield). 36 hours. MP: $89^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.84-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.40(\mathrm{~m}, 3 \mathrm{H}), 3.08(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.63(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.88,171.31,148.17,139.59,138.34,136.44,134.50$, $134.26(\mathrm{q}, J=32.6 \mathrm{~Hz}), 128.37,127.99,127.44,125.65,123.69(\mathrm{q}, J=274.0 \mathrm{~Hz}), 121.72$, 121.62, 116.45, 38.61, 37.91, 25.15, 23.64.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.16.
HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}(\mathrm{M}+\mathrm{H})^{+}: 401.1471$, found: 401.1477

3g

6-(4-fluorophenyl)-6-oxo-N-(quinolin-8-yl)hexanamide
3g was prepared following the General Procedure 1.1 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.20$) to give white solid ($64 \mathrm{mg}, 92 \%$ yield). 36 hours. MP: $86^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.31,171.37,165.69(\mathrm{~d}, J=254.3 \mathrm{~Hz}), 148.16,138.34$, $136.40,134.51,133.40,130.71$ (d, $J=7.4 \mathrm{~Hz}$), 127.97, 127.44, 121.61, 121.52 (d, $J=4.0$ Hz), 116.44, 115.65 (d, $J=21.4 \mathrm{~Hz}$), $38.22,37.97,25.26,23.85$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.56,-105.57,-105.58,-105.60,-105.60,-105.61$, 105.62, -105.63.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 351.1503$, found: 351.1509

3h

6-(4-chlorophenyl)-6-oxo-N-(quinolin-8-yl)hexanamide

3h was prepared following the General Procedure 1.1 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.21$) to give white solid ($68 \mathrm{mg}, 91 \%$ yield). 36 hours. MP: $82{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.84-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.35(\mathrm{~m}, 5 \mathrm{H}), 3.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2H), $1.97-1.84(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.67,171.34,148.27,139.41,138.35,136.45,135.28$, $134.52,129.58,129.01,127.98,127.56,121.76,121.57,116.54,38.29,37.97,25.24$, 23.80 .

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}: 367.1208$, found: 367.1215

$3 i$

6-(4-bromophenyl)-6-oxo-N-(quinolin-8-yl)hexanamide

$\mathbf{3 i}$ was prepared following the General Procedure 1.1 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.26$) to give white solid ($75 \mathrm{mg}, 92 \%$ yield). 36 hours. MP: $87^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.63(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.39(\mathrm{~m}, 4 \mathrm{H}), 3.02(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=5.5 \mathrm{~Hz}$, 2H), $1.97-1.81(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.83,171.32,148.21,138.32,135.65,134.49,131.83$, 129.64, 128.12, 127.96, 127.43, 121.70, 121.60, 116.49, 38.25, 37.94, 25.20, 23.75.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}: 411.0703$, found: 411.0706

6-(4-iodophenyl)-6-oxo-N-(quinolin-8-yl)hexanamide

3j was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.21$) to give white solid ($48 \mathrm{mg}, 52 \%$ yield). 36 hours. MP: $103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.63(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, \mathrm{J}=8.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.42(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.26,171.40,148.25,138.42,137.98,136.49,136.26$, $134.56,129.57,128.04,127.52,121.72,121.56,116.55,101.00,77.16,38.28,38.03$, 25.28, 23.83.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 359.0564$, found: 359.0569 .

3k

6-oxo-N-(quinolin-8-yl)-6-(o-tolyl)hexanamide

3k was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.27$) to give white solid ($62 \mathrm{mg}, 89 \%$ yield). 36 hours. MP: $80^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.83-8.74(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.24,171.44,148.18,138.40,138.18,137.97,136.42$, $134.57,131.99,131.21,128.48,128.36,128.01,127.49,125.75,121.62,116.47,41.35$, 38.08, 25.33, 24.05, 21.40.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 347.1754$, found: 347.1759 .

31

6-(2-chlorophenyl)-6-oxo-N-(quinolin-8-yl)hexanamide

31 was prepared following the General Procedure 1.1 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.26$) to give white solid ($60 \mathrm{mg}, 82 \%$ yield). 36 hours. MP: $99^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.3,1 \mathrm{H})$, $7.61-7.22(\mathrm{~m}, 7 \mathrm{H}), 3.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.20,171.27,148.13,139.57,138.30,136.35,134.48$, $131.56,130.73,130.47,128.70,127.92,127.33,126.93,121.57,121.49,116.38,42.67$, 37.90, 25.09, 23.73.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}: 367.1208$, found: 367.1216

3m

6-oxo-N-(quinolin-8-yl)-6-(m-tolyl)hexanamide
3m was prepared following the General Procedure 1.1 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.27$) to give white solid ($65 \mathrm{mg}, 94 \%$ yield). 36 hours. MP: $66^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.90-8.64(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.24,171.44,148.18,138.40,138.18,137.97,136.42$, $134.57,131.99,131.21,128.48,128.36,128.01,127.49,125.75,121.62,116.47,41.35$, 38.08, 25.33, 24.05, 21.40.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 347.1754$, found: 347.1763

3n

6-(3-nitrophenyl)-6-oxo-N-(quinolin-8-yl)hexanamide

3n was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.12$) to give white solid ($62 \mathrm{mg}, 82 \%$ yield). 36 hours. MP: $165{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.69(\mathrm{~m}, 3 \mathrm{H}), 8.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.42(\mathrm{~m}$, $3 \mathrm{H}), 3.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.64,171.30,148.56,148.29,138.41,138.25,136.51$, $134.54,133.69,129.97,128.06,127.52,127.37,123.03,121.75,121.61,116.55,38.62$, 37.95, 25.14, 23.58.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 378.1448$, found: 378.1455

30
Tert-butyl (2-oxo-2-((4-(6-0xo-6-(quinolin-8-ylamino)hexanoyl)phenyl)amino)ethyl) carbamate

30 was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=1: 1, \mathrm{R}_{f}=0.1$) to give white solid ($96 \mathrm{mg}, 95 \%$ yield). 36 hours. MP: $140^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.82-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.37(\mathrm{~m}, 3 \mathrm{H}), 5.59$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.97-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 198.81,171.63,168.43,156.72,148.27,142.06,138.40$, $136.44,134.47,132.75,129.45,128.01,127.43,121.71,121.61,119.19,116.54,80.83$, 45.62, 38.08, 28.40, 25.37, 23.96.

HRMS (ESI): Calculated for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 505.2445$, found: 505.2474

6-cyclohexyl-6-oxo-N-(quinolin-8-yl)hexanamide
4a was prepared following the General Procedure $\mathbf{1 . 1}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.31$) to give yellow gum $(59 \mathrm{mg}, 95 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.41(\mathrm{~m}, 3 \mathrm{H}), 2.67-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.45-$ $2.24(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.62$ (m, 2H), $1.48-1.30(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.25,171.69,148.27,138.47,136.49,134.66,128.07$, 127.56, 121.72, 121.51, 116.56, 50.78, 42.23, 38.38, 34.09, 29.16, 28.20, 25.14, 23.43.

HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 311.1754$, found: 311.1754 .
The enantiomeric excess was determined by chiral HPLC: 88% ee, (CHIRALPAK AS-H, hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate $\left.1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right), \mathrm{t}_{\mathrm{R}}($ major $)=19.317 \mathrm{~min}$,
$t_{R}($ minor $)=15.009 \mathrm{~min}$. The absolute configuration was assigned tentatively based on analogy.

4b

4-(2-oxo-5-phenylcyclohexyl)-N-(quinolin-8-yl)butanamide

4b was prepared following the General Procedure $\mathbf{1 . 2}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.30$) to give yellow gum ($70 \mathrm{mg}, 91 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.64(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.65$ $-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.11(\mathrm{~m}, 5 \mathrm{H}), 3.25-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.31$ (m, 1H), 2.28-2.12 (m, 2H), $2.11-1.61$ (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.04,171.16,148.22,144.44,138.36,136.43,128.66$, $127.45,126.82,126.74,121.68,121.52,116.49,49.28,43.50,41.91,41.38,38.44,38.30$, 33.42, 28.74, 23.28.

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 387.2067$, found: 387.2086.
The enantiomeric excess was determined by chiral HPLC: Major: 93\% ee, Minor: 73\% $e e\left(\right.$ CHIRALPAK AS-H, hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), Minor: $\mathrm{t}_{\mathrm{R}}($ major $)=19.853 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=34.417 \mathrm{~min} ;$ Major: $\mathrm{t}_{\mathrm{R}}($ major $)=40.780 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=60.310 \mathrm{~min}$; dr: 3.5/1. The absolute configuration was determined based on the comparison of the literature. ${ }^{3}$
$4 c$

4-(2-oxo-5-(p-tolyl)cyclohexyl)-N-(quinolin-8-yl)butanamide

4c was prepared following the General Procedure 1.2 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.30$) to give yellow gum ($77 \mathrm{mg}, 96 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.64(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.65$ - $7.38(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.11(\mathrm{~m}, 5 \mathrm{H}), 3.25-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.31$ $(\mathrm{m}, 1 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.61(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.93,171.04,148.10,141.27,138.22,136.30,135.88$, $134.41,129.22,127.87,127.31,126.57,121.57,121.41,116.37,49.15,38.44,38.34$, $37.48,36.83,33.38,30.65,23.18,20.95$.

HRMS (ESI): Calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 401.2224$, found: 401.2247 .
The enantiomeric excess was determined by chiral HPLC: Major: 93\% ee, Minor: 70\% $e e\left(\right.$ CHIRALPAK OJ-H, hexane $/ i-\mathrm{PrOH}=70: 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), Major: $\mathrm{t}_{\mathrm{R}}($ major $)=25.653 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=41.974 \mathrm{~min} ;$ Minor: $\mathrm{t}_{\mathrm{R}}($ major $)=33.155 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=57.709 \mathrm{~min}$; dr: 8.2/1. The absolute configuration was determined based on the comparison of the literature. ${ }^{3}$

4d

Methyl 4-oxo-3-(4-oxo-4-(quinolin-8-ylamino)butyl)cyclohexane-1-carboxylate
4d was prepared following the General Procedure $\mathbf{1 . 2}$ and purified by flash Chromatography (hexanes/ethyl acetate $=2: 1, \mathrm{R}_{f}=0.17$) to give yellow gum ($70 \mathrm{mg}, 95 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.86-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.41(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.26(\mathrm{~m}, 7 \mathrm{H}), 2.04-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 212.21,174.80,171.45,148.27,138.46,136.50,134.62$, 128.07, 127.54, 121.73, 121.55, 116.57, 52.18, 47.49, 38.69, 38.36, 38.07, 34.28, 29.30, 28.76, 23.19.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 369.1809$, found: 369.1829 .
The enantiomeric excess was determined by chiral HPLC: Major: 96\% ee, Minor: 43\% ee (CHIRALPAK AS-H, hexane $/ i-\mathrm{PrOH}=82 / 18$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), Minor: $\mathrm{t}_{\mathrm{R}}($ major $)=45.983 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=105.002 \mathrm{~min} ;$ Major: $\mathrm{t}_{\mathrm{R}}($ major $)=66.030$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=59.002 \mathrm{~min} ; \mathbf{d r}: 2.6 / 1$. The absolute configuration was determined based on the comparison of the literature. ${ }^{3}$
$4 e$

4-(8-oxo-1,4-dioxaspiro[4.5]decan-7-yl)-N-(quinolin-8-yl)butanamide

4e was prepared following the General Procedure 1.2 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.17$) to give yellow gum ($65 \mathrm{mg}, 88 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.42(\mathrm{~m}, 3 \mathrm{H}), 4.12-3.90(\mathrm{~m}, 4 \mathrm{H}), 2.76-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.41,171.51,148.21,138.39,136.42,134.58,128.00$, $127.47,121.67,121.47,116.49,107.46,64.84,64.68,46.32,40.60,38.36,38.21,34.85$, 28.62, 23.12.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 369.1809$, found: 369.1826 .
The enantiomeric excess was determined by chiral HPLC: 87% ee, (CHIRALPAK OJ-H, hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), t_{R} (major) $=104.713 \mathrm{~min}$, $t_{R}($ minor $)=117.955 \mathrm{~min}$. The absolute configuration was assigned tentatively based on analogy.

4-(4-oxotetrahydro-2H-pyran-3-yl)-N-(quinolin-8-yl)butanamide
4f was prepared following the General Procedure $\mathbf{1 . 2}$ and purified by flash Chromatography (hexanes/ethyl acetate $=1: 1, \mathrm{R}_{f}=0.26$) to give yellow solid $(56 \mathrm{mg}, 90 \%$ yield). 24 hours. MP: $108^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.37(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{td}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.30(\mathrm{~m}$, 1H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.24,171.17,148.18,138.38,136.47,136.43,134.51$, $128.01,127.46,121.63,116.48,72.75,68.75,51.58,42.55,38.01,25.41,23.19$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 313.1547$, found: 313.1565 .
The enantiomeric excess was determined by chiral HPLC: $88 \% e e$, (CHIRALPAK OJ-H, hexane $/ i-\mathrm{PrOH}=70: 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), t_{R} (major) $=35.458 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=43.327 \mathrm{~min}$. The absolute configuration was assigned tentatively based on analogy.
$4 g$

4-(1-benzyl-4-oxopiperidin-3-yl)-N-(quinolin-8-yl)butanamide

4 g was prepared following the General Procedure $\mathbf{1 . 2}$ and purified by flash Chromatography (hexanes/ethyl acetate $=2: 1, \mathrm{R}_{f}=0.17$) to give yellow gum $(58 \mathrm{mg}, 72 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.84-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.64(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.32(\mathrm{~m}, 2 \mathrm{H})$, $2.25(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.72,171.43,148.24,138.42,138.20,136.47,136.43$, $134.59,128.96,128.50,128.03,127.45,121.75,121.63,121.50,116.53,61.96,59.03$, 58.95, 53.61, 49.79, 41.11, 38.20, 27.11, 23.34.

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 402.2176$, found: 402.2196 .
The enantiomeric excess was determined by chiral HPLC: $0 \% e e$, (CHIRALPAK OJ-H, hexane $/ i$ - $\mathrm{PrOH}=75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}=33.561 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=$ 51.758 min.

4h

Tert-butyl 3-oxo-4-(4-oxo-4-(quinolin-8-ylamino)butyl)piperidine-1-carboxylate
4h was prepared following the General Procedure 1.2 and purified by flash Chromatography (hexanes/ethyl acetate $=2: 1, \mathrm{R}_{f}=0.15$) to give yellow gum ($66 \mathrm{mg}, 80 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.41(\mathrm{~m}, 3 \mathrm{H}), 4.80-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.27-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.02(\mathrm{~s}, 1 \mathrm{H}), 2.76-$ $2.55(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.73(\mathrm{~m}, 7 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.64,148.39,148.11,138.41,136.44,134.53,128.03$, $127.66,127.30,121.88,121.54,116.66,116.41,80.61,37.31,36.96,30.42,28.57,28.39$, 23.37, 23.29, 21.82.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 412.2231$, found: 412.2252 .
The enantiomeric excess was determined by chiral HPLC: $47 \% e e$, (CHIRALPAK OD-H, hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=30.184 \mathrm{~min}$, $t_{R}($ major $)=34.668 \mathrm{~min}$. The absolute configuration was assigned tentatively based on analogy.
$4 i$

Tert-butyl 3-oxo-4-(4-oxo-4-(quinolin-8-ylamino)butyl)piperidine-1-carboxylate
4 i was prepared following the General Procedure 1.2 and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.27$) to give white solid ($68 \mathrm{mg}, 95 \%$ yield). 24 hours. MP: $103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{dt}, J=21.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-2.93$ $(\mathrm{m}, 5 \mathrm{H}), 2.72-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 3 \mathrm{H})$, $1.73-1.61(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.15,171.61,148.27,144.10,138.47,136.47,134.65$, $133.29,132.62,128.81,128.06,127.56,126.69,121.69,121.52,116.56,47.58,38.35$, 29.26, 28.64, 28.44, 23.28.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 359.1754$, found: 359.1767 .
The enantiomeric excess was determined by chiral HPLC: $0 \% e e$, (CHIRALPAK OD-H, hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate $\left.1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right), \mathrm{t}_{\mathrm{R}}=50.978 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=$ 70.594 min

4j

Tert-butyl 3-oxo-4-(4-oxo-4-(quinolin-8-ylamino)butyl)piperidine-1-carboxylate
$\mathbf{4 j}$ was prepared following the General Procedure $\mathbf{1 . 2}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.31$) to give yellow gum ($55 \mathrm{mg}, 92 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.42(\mathrm{~m}, 3 \mathrm{H}), 2.66-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.95-$ $1.71(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 221.17,171.43,148.23,138.41,136.46,134.57,128.03$, $127.49,121.69,121.52,116.52,49.15,38.22,38.17,29.65,29.43,23.75,20.85$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 297.1598$, found: 297.1597.
The enantiomeric excess was determined by chiral HPLC: $0 \% \mathrm{ee}$, (CHIRALPAK OD-H, hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}=16.946 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=$ 23.041 min

4k

4-(2-oxocyclobutyl)-N-(quinolin-8-yl)butanamide

4k was prepared following the General Procedure $\mathbf{1 . 2}$ and purified by flash Chromatography (hexanes/ethyl acetate $=3: 1, \mathrm{R}_{f}=0.31$) to give yellow gum ($54 \mathrm{mg}, 95 \%$ yield). 24 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.86-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.40(\mathrm{~m}, 3 \mathrm{H}), 3.43-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.66-$ $2.50(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.82,171.31,148.24,138.45,136.50,134.57,128.07$, $127.52,121.79,121.68,116.54,60.42,60.36,44.67,37.87,29.19,23.26,17.02$.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 283.1441$, found: 283.1447 .
The enantiomeric excess was determined by chiral HPLC: $0 \% e e$, (CHIRALPAK AS-H, hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $\left.1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right)$, $\mathrm{t}_{\mathrm{R}}($ major $)=18.859 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=25.859 \mathrm{~min}$.

41

Ethyl 3-oxo-2-(4-oxo-4-(quinolin-8-ylamino)butyl)cyclobutane-1-carboxylate

41 was prepared following the General Procedure 1.2 and purified by flash Chromatography (hexanes/ethyl acetate $=2: 1, \mathrm{R}_{f}=0.16$) to give yellow gum ($51 \mathrm{mg}, 72 \%$ yield). 24 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.83-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.39(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=17.4,7.8$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=17.4,8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.48(\mathrm{~m}$, $2 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.18,173.77,170.92,148.18,138.30,136.39,134.45$, $127.95,127.36,121.66,121.50,116.39,64.99,61.36,53.55,48.32,37.46,34.34,28.21$, 22.73, 14.20.

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 355.1652$, found: 355.1674.
The enantiomeric excess was determined by chiral HPLC: 45\% ee, (CHIRALPAK OD-H, hexane $/ i-\operatorname{PrOH}=85: 15$, flow rate $\left.1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right), \mathrm{t}_{\mathrm{R}}($ minor $)=40.124 \mathrm{~min}$, $t_{R}($ major $)=44.126 \mathrm{~min}$. The absolute configuration was assigned tentatively based on analogy.

5a-B

Ethyl 2-acetyl-2-methyl-6-oxo-6-(quinolin-8-ylamino)hexanoate 5a-L

Ethyl 2-methyl-3,8-dioxo-8-(quinolin-8-ylamino)octanoate
5a-B and 5a-L were prepared following the General Procedure $\mathbf{1 . 3}$ and purified by flash Chromatography as an inseparable mixture with 47:53 ratio. Hexanes/ethyl acetate $=3: 1$, $\mathrm{R}_{f}=0.33$. Yellow gum ($68 \mathrm{mg}, 95 \%$ yield). 36 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.40(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.47(\mathrm{~m}, 0.5 \mathrm{H}), 2.74-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.18$
$(\mathrm{s}, 1 \mathrm{H}), 2.07-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 205.67,172.92,171.36,170.96,170.67,148.24,138.41$, $136.48,134.56,128.04,127.50,121.72,121.55,116.52,61.47,59.68,52.98,41.20,38.09$, 37.95, 34.37, 26.27, 25.06, 23.22, 20.45, 18.92, 14.21, 12.90.

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 357.1809$, found: 357.1831 .
The enantiomeric excess was determined by chiral HPLC: 5a-B: 63\% ee, (CHIRALPAK OD-H, hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ major $)=$ $38.724 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=44.544 \mathrm{~min} .5 \mathrm{a}-\mathrm{L}: \mathrm{t}_{\mathrm{R}}=54.610 \mathrm{~min} .5 \mathrm{a}-\mathrm{B}: 5 \mathrm{a}-\mathrm{L}=47: 53$.

5b-B

Isopropyl 2-acetyl-2-methyl-6-oxo-6-(quinolin-8-ylamino)hexanoate

5b-L

Isopropyl 2-methyl-3,8-dioxo-8-(quinolin-8-ylamino)octanoate

5b-B and 5b-L were prepared following the General Procedure $\mathbf{1 . 3}$ and purified by flash Chromatography as an inseparable mixture with 52:48 ratio. Hexanes/ethyl acetate $=3: 1$, $\mathrm{R}_{f}=0.28$. Yellow gum ($70 \mathrm{mg}, 95 \%$ yield). 36 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.86-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.39(\mathrm{~m}, 3 \mathrm{H}), 5.13-4.97(\mathrm{dp}, J=12.4,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.5 \mathrm{H})$, $2.73-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1.5 \mathrm{H}), 2.06-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~s}, 1.5 \mathrm{H}), 1.32(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1.5 \mathrm{H}), 1.24(\mathrm{t}, J=5.4,2.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 205.45,205.35,172.12,171.10,170.71,169.96,148.01$, $138.11,136.22,134.33,134.30,127.78,127.18,121.50,121.34,116.24,68.75,59.45$, $52.91,40.95,37.83,37.68,34.07,26.00,24.85,23.01,21.56,21.45,20.17,18.63,12.61$.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 371.1965$, found: 357.1987.
The enantiomeric excess was determined by chiral HPLC: 5b-B: 74\% ee, (CHIRALPAK OD-H, hexane $/ i-\mathrm{PrOH}=92: 08$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), t_{R} (major) $=$ $30.231 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=36.600 \mathrm{~min} . \mathbf{5 b}-\mathbf{L}: \mathrm{t}_{\mathrm{R}}=41.909 \mathrm{~min} . \mathbf{5 b}-\mathbf{B}: \mathbf{5 b}-\mathrm{L}=52: 48$.

5c-B

Tert-butyl 2-acetyl-2-methyl-6-oxo-6-(quinolin-8-ylamino)hexanoate
5c-L

Tert-butyl 2-methyl-3,8-dioxo-8-(quinolin-8-ylamino)octanoate
5c-B and 5c-L were prepared following the General Procedure $\mathbf{1 . 3}$ and purified by flash Chromatography as an inseparable mixture with 51:49 ratio. Hexanes/ethyl acetate $=3: 1$, $\mathrm{R}_{f}=0.26$. Yellow gum ($73 \mathrm{mg}, 95 \%$ yield). 36 hours.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.40(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.73-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1.6 \mathrm{H}), 2.02-$ $1.67(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 4.5 \mathrm{H}), 1.45(\mathrm{~s}, 4.5 \mathrm{H}), 1.35(\mathrm{~s}, 1.5 \mathrm{H}), 1.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1.5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.60,171.15,148.12,138.27,136.33,134.43,127.90$, $127.35,121.58,121.40,116.38,48.88,41.29,38.43,37.57,32.37,31.48,30.79,27.41$, 26.80, 23.22.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 407.1941, found: 407.1941.
The enantiomeric excess was determined by chiral HPLC: 5c-B: 74\% ee, (CHIRALPAK OJ-H, hexane $/ i-\mathrm{PrOH}=95: 05$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$), t_{R} (major) $=31.039$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=41.822 \mathrm{~min} . \mathbf{5 c}-\mathrm{L}: \mathrm{t}_{\mathrm{R}}=54.620 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=66.851 \mathrm{~min} . \mathbf{5 c} \mathbf{- B}: \mathbf{5 c}-\mathrm{L}=51: 49$

6-oxo-6-phenylhexanoic acid
6 were prepared following the General Procedure 1.4 and purified by flash Chromatography. White solid ($177 \mathrm{mg}, 86 \%$ yield). MP: $70{ }^{\circ} \mathrm{C} .{ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.68(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.00,179.67$, 136.91, 133.11, 128.65, 128.22, 128.08, 38.12, 33.95, 24.34, 23.59.

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}:$207.1016, found: 207.1017.

Reference:

1. Y. Feng and G. Chen, Angew. Chem., Int. Ed., 2010, 49, 958-961.
2. J. A. Gurak, K. S. Yang, Z. Liu and K. M. Engle, J. Am. Chem. Soc., 2016, 138, 58055808.
3. H. Shen, L. Zhang, S. Chen, J. Feng, B. Zhang, Y. Zhang, X. Zhang, Y. Wu and L. Gong, ACS Catal., 2019, 9, 791-797.
4. (a) H. Wang, Z. Bai, T. Jiao, Z. Deng, H. Tong, G. He, Q. Peng and G. Chen, J. Am. Chem. Soc., 2018, 140, 3542-3546; (b) Z. Liu, X. Li, T. Zeng and K. M. Engle, ACS Catal., 2019, 9, 3260-3265.
5. Reported MP: $66-68^{\circ}$ C. Y.-S. Hon, S.-W. Lin, L. Lu and Y.-J. Chen, Tetrahedron, 1995, 51, 5019.

IV. NMR Spectra

																1								
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$3 e$

$\stackrel{\text { N }}{\stackrel{\circ}{\infty}}$)

$\begin{array}{llllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

	$\stackrel{\bar{m}}{\underset{\sim}{c}}$	 	$\stackrel{\varrho}{\underset{1}{\circ}}$	$\begin{aligned} & \text { Б. } \\ & \substack{\infty\\ } \end{aligned}$

3h

$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$		$\stackrel{\bullet}{\stackrel{\circ}{1}}$	Non

N

$\begin{array}{lllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

3j

:

3k

31

S-40

(

[^0]

4b

咢

$\begin{array}{lllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$4 g$

$\begin{array}{llllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

|
|

4h

+

	耳 寸 	$\begin{aligned} & \overline{0} 00 \\ & \dot{\infty} \\ & 1 \\ & 1 \end{aligned}$	

$\begin{array}{lllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

4j

$\stackrel{\text { N }}{\text { N }}$

S-53

| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

5b-B

5b-L

$\begin{array}{lllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

5c-L

$\begin{array}{lllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

V. HPLC Spectra for Products

4a

4b

4c

4d

4e

4f

$4 g$

4h

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.184 MF	1.8963	1.47203 e 4	129.37396	26.4216
2	34.668 FM	2.5873	4.09928 e 4	264.06158	73.578

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	28.550	BB	1.5488	5198.08984	50.08681	50.9248
2	33.578	BB	1.8639	5009.29980	38.80861	49.0752

4i

4k

41

5a-B \& 5a-L

5b-B \& 5b-L

5c-B \& 5c-L

[^0]: $\begin{array}{lllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

