Electronic Supplementary Information

Bimetallic Cu/Pd-catalyzed three-component azide-alkyne cycloaddition/isocyanide insertion: synthesis of fully decorated tricyclic triazoles K. Shiva Kumar, ${ }^{* a}$ Praveen Kumar Naikawadi, ${ }^{\text {a }}$ Ramanna Jatoth, ${ }^{\text {a }}$ D. Rambabu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Osmania University, Hyderabad 500 007, India. E-mail: shivakumarkota@yahoo.co.in; Tel: +91 4027682337
${ }^{\mathrm{b}}$ Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, IOCBhubaneswar Campus, Samantpuri, Bhubaneswar-751013, India

Table of content Page No

1. Table S1: Reaction scope for 1,2,3-triazole fused oxazine (4a-l). S2-S4
2. Table S2: Reaction scope for 1,2,3-triazole fused oxazepine ($\mathbf{4 m} \mathbf{m}$) S4-S4
3. Reaction scope for 1,2,3-triazole fused indol-ylidene (5) S4-S7
4. General information S7-S8
5. Procedure for the synthesis of 2-azido-1-bromo-4-(trifluoromethyl)benzene and characterization of $\mathbf{1 k}$. S8
6. General procedure and characterization of 4 S8-S15
7. General procedure and characterization of 5 S15-S22
8. Procedure and characterization of Ia. S22-S23
9. Procedure and characterization of IIa S23
10. X-Ray Crystallography Information $\mathbf{4 b}$ and $\mathbf{5 b}$. S23-S26
11. References S27
12. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds. S28-S60
13. Table S1: Reaction scope for $\mathbf{1 , 2 , 3 - t r i a z o l e}$ fused oxazine (4a-I). ${ }^{\text {a,b }}$

(10

				4l, 70%

${ }^{\text {a }}$ Conditions: 1a-c $(0.37 \mathrm{mmol}), 2(0.37 \mathrm{mmol}), \mathrm{CuI}(0.04 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.44 \mathrm{mmol})$, DMF (2 $\mathrm{mL}), 120^{\circ} \mathrm{C}, 2 \mathrm{~h}$, and then $3(0.28 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{O}_{2}$ balloon; ${ }^{\mathrm{b}}$ Isolated yields; ${ }^{\mathrm{c}}$ Reaction performed on 1 mmol scale.
2. Table S2: Reaction scope for 1,2,3-triazole fused oxazepine (4m-o). ${ }^{\text {a,b }}$
Entry
$a_{\text {Conditions: }} 1 d-e(0.37 \mathrm{mmol}), 2(0.37 \mathrm{mmol}), \mathrm{CuI}(0.04 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.44 \mathrm{mmol}), \mathrm{DMF}(2$ $\mathrm{mL}), 120^{\circ} \mathrm{C}, 2 \mathrm{~h}$, and then $3(0.28 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{O}_{2}$ balloon. ${ }^{\mathrm{b}}$ Isolated yields.
3. Table S3: Reaction scope for $\mathbf{1 , 2 , 3}$-triazole fused indol-ylidene (5a-o). ${ }^{a, b}$
Entry $\left.\begin{array}{c}\text { 1-Azido-2- } \\ \text { bromobenzene } \\ \text { (1f-k) }\end{array}\right)$

6	1 g	2c	3a	 5f, 70\%
7	 1h	2a	3a	
8	1h	2b	3a	 5h, 70\%
9	1h	2c	3a	 5i, 72%
10	1h	2c	3b	 5j, 70\%
11	 $1 i$	2b	3a	
12	 1j	2a	3a	

				51, 70\%
13	1j	2b	3a	
14	 1k	2 a	3a	 5n, 70\%
15	1f		3a	 50, 70\%

${ }^{a}$ Conditions: $\mathbf{1 f}-\mathrm{k}(0.25 \mathrm{mmol}), 2(0.25 \mathrm{mmol}), \mathrm{CuI}(0.03 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.30 \mathrm{mmol})$, DMF (2 mL), $120{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, and then $3(0.19 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(0.015$ $\mathrm{mmol}), \mathrm{N}_{2}, 120^{\circ} \mathrm{C}, 18 \mathrm{~h} ; b_{\text {Isolated yields; }}{ }^{c}$ Reaction performed on 1 mmol scale.
4. General methods. Unless stated otherwise, solvents and chemicals were obtained from commercial sources and were used without further purification. Reactions were monitored by thin layer chromatography (TLC) on silica gel plates (60 F254), visualizing with ultraviolet light or iodine spray. Flash chromatography was performed on silica gel (100-200 mesh) using hexane and ethyl acetate. IR spectra were recorded on a Thermo Scientific iD7 ATR FT IR spectrometer. Melting points were recorded on a DBK digital melting point apparatus and were uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz Bruker Biospin Avance III FT-NMR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were determined in CDCl_{3} and DMSO- d_{6} solutions by using 400 or 126 or 100 MHz spectrometers, respectively. Proton chemical shifts (δ) are relative to tetramethylsilane (TMS, $\delta=0.00$) as internal standard and expressed in ppm. Spin multiplicities are given as s (singlet), d (doublet), t (triplet) and m (multiplet). Coupling constants (J) are given in hertz. Melting points were determined using a melting point apparatus and are uncorrected. LC-MS spectra were recorded on a Agilent 1290

Infinity II. HPLC chromatogram were recorded on a Waters 2695. High-resolution mass spectra were recorded on a Bruker maxis-TOF mass spectrometer. Starting materials 2-azidophenols (1a), ${ }^{[1 a]}$ 2-azido-4-(tert-butyl)phenol (1b), ${ }^{1 a, 1 b}$ 2-azido-4-chlorophenol (1c), ${ }^{1 \mathrm{a}}$ azidophenyl)methanol (1d), ${ }^{1 a, 1 c}$ (2-azido- 5chlorophenyl)methanol (1e), 1a,1d 1-azido-2bromobenzene (1f), 1a,2 1-azido-2-bromo-4- methylbenzene (1g), 1a,2 2-azido-1-bromo-3,5-
 fluorobenzene (1 j$)^{1 \mathrm{a}, 2}$ were synthesized according to known procedures.

5. Procedure for the synthesis of $\mathbf{2}$-azido-1-bromo-4-(trifluoromethyl)benzene ($\mathbf{1 k})^{\text {1a }}$

To a solution of 2-bromo-5-(trifluoromethyl)aniline ($1.0 \mathrm{~g}, 4.16 \mathrm{mmol}$) in water (10.0 mL) was added concentrated aqueous $\mathrm{HCl}(2.0 \mathrm{~mL})$ was added drop wise at $0^{\circ} \mathrm{C}$ for 10 min . To this a solution of $\mathrm{NaNO}_{2}(5.0 \mathrm{mmol})$ in water $(2.0 \mathrm{~mL})$ was added drop wise at $0-5^{\circ} \mathrm{C}$ and stirred for 10 min . A solution of $\mathrm{NaN}_{3}(6.2 \mathrm{mmol})$ in water $(2.0 \mathrm{~mL})$ was added drop wise at $0-5^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After completion of the reaction, the mixture was diluted with water (20 ml), extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), and the combined EtOAc layer was washed with brine solution (30 ml). Then the organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with EtOAc / hexane as eluent to give the corresponding pure products $\mathbf{1 k}$.
Yellow liquid; Yield: $886 \mathrm{mg}, 80 \% ; \mathrm{R}_{f}=0.8(5 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2926, 2852, 1734, 1360, 1220; 731; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.8,134.5,131.4(\mathrm{~d}, J=$ 26.6 Hz), $124.3(\mathrm{~d}, J=217.2 \mathrm{~Hz}$), 122.4, 117.8, 116.2; HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrF}_{3} \mathrm{~N}_{3}\right]^{+}=\left[\mathrm{M}+\mathrm{Na}-\mathrm{BrN}_{2}\right]^{+}$181.0116, found 181.1181.
6. General procedure for the synthesis of 1,2,3-triazole fused oxazin/oxazepin (4). In an oven-dried 25 mL schlenck tube containing the corresponding 2 -azidophenol/2-(2azidophenyl)methanol (1a-e) (0.37 mmol), acetylene (2) (0.37 mmol), in DMF (2 mL) were added $\mathrm{CuI}(0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.44 \mathrm{mmol})$. The resulting reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 2 h under open air atmosphere. After completion of the reaction was monitored by TLC. Up on cooling to room temperature, to the same pot $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, isocyanide (3)
$(0.28 \mathrm{mmol})$ were added. Subsequently, the vessel was back filled with O_{2}. The resulting reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h . After completion of the reaction, the reaction mixture was filtered through celite, and the residue was washed with diethyl ether ($2 \times 10 \mathrm{~mL}$). The filtrate was washed with 30 mL of water, and the organic layer was collected. The aqueous phase was extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$. The combined organic phases was washed with brine solution ($2 \times 20 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel with EtOAc / hexane as eluent to give the corresponding pure products 4.

(Z)-N-(tert-Butyl)-3-phenyl-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazin-4-imine (4a).

Following the general procedure, the desired product $\mathbf{4 a}(84 \mathrm{mg}, 72 \%)$ was obtained as white solid; mp: $148-152{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3066, 2967, 1692, 1359, 1216, 1136, 1029, $756 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 (dd, $\left.J_{l}=1.2 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.9,143.3,136.3,129.6,129.5,129.1,129.0,127.7,124.2,121.4$, 121.1, $116.5,116.4,55.5,30.0$; HPLC: 99.78% column: X-Bridge C-18 ($150 \times 4.6 \mathrm{~mm} 5 \mu \mathrm{~m}$, mobile phase A: 10 mM Ammonium acetate, mobile phase B: ACN; T/\%B: 0/5, 1.5/5, 3/15, $7 / 55,10 / 95,14 / 95,17 / 5,20 / 5$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, Diluent : ACN : Water (70:30), retention time 20 min ; Mass: m/z (CI) $319\left(\mathrm{M}+1\right.$); HR-MS (ESI +) m / z calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ON}_{4}\right]^{+}=[\mathrm{M}$ $\left.-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right]^{+}$249.0902, found 249.1014.
(Z)-N-(tert-Butyl)-3-(p-tolyl)-4H-benzo[b][1,2,3]triazolo[1,5- $d][1,4]$ oxazin-4-imine (4b).

Following the general procedure, the desired product $\mathbf{4 b}(232 \mathrm{mg}, 70 \%)$ was obtained as brown solid; mp: 168-170 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.6$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3066, 2961, 1689, 1498, $1284,753 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 147.0,143.2,138.9,136.4,129.4,128.9,128.4,126.8,124.2,121.5,120.8,116.5$, 116.4, 55.5, 30.0, 21.4; HR-MS (ESI +) m / z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$ 333.1710, found 333.1712.
(Z)-N-(tert-Butyl)-3-(4-methoxyphenyl)-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazin-4imine (4c).

Following the general procedure, the desired product $\mathbf{4 c}(91 \mathrm{mg}, 71 \%)$ was obtained as orange solid; mp: 170-173 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ (20\% EtOAc/ n-hexane); IR (Neat): 3071, 2959, 1693, 1546, 1302, 1261, $743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.26(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 1.49 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2,146.8,143.2,136.6,130.9,128.9,124.2$, 122.2, 121.5, 120.4, 116.5, 116.4, 113.1, 55.4, 55.3, 30.0; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$349.1664, found 349.1665.
(Z)-N-(tert-Butyl)-3-butyl-4H-benzo[b][1,2,3]triazolo[1,5- $d][1,4]$ oxazin-4-imine (4d).

Following the general procedure, the desired product $\mathbf{4 d}(75 \mathrm{mg}, 68 \%)$ was obtained as white solid; mp: 102-105 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.5$ (10% EtOAc/ n-hexane); IR (Neat): 2959, 2926, 1684, 1507, 1358, 1211, 1050, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19\left(\mathrm{dd}, J_{l}=1.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}$,

9H), 1.42-1.37 (m, 2H), $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.4$, $143.5,136.2,128.7$, 124.1, 121.6, 121.4, 116.7, 116.2, $54.9,30.8,30.1,25.3,22.3,13.8$; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$299.1872, found 299.1874.
(Z)-N-(tert-Butyl)-3-pentyl-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazin-4-imine (4e).

Following the general procedure, the desired product $4 \mathbf{e}(75 \mathrm{mg}, 65 \%)$ was obtained as brown solid; mp: 78-80 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2957, 2927, 1685, 1384, 1259, 1049, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.66$ (m, 2H), 1.38 ($\mathrm{s}, 9 \mathrm{H}), 1.30-$ $1.29(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.4,142.5,135.2$, 127.6, 123.0, 120.5, 120.4, 115.7, 115.1, 53.9, 30.4, 29.1, 27.4, 24.6, 21.3, 13.0; HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 313.2028$, found 313.2028.

(Z)-N,8-Di-tert-butyl-3-phenyl-4H-benzo $[b][1,2,3]$ triazolo $[1,5-d][1,4]$ oxazin-4-imine (4f).

Following the general procedure, the desired product $\mathbf{4 f}(69 \mathrm{mg}, 70 \%)$ was obtained as off white solid; mp: 176-178 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.7$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3054, 2964, 1685, 1508, 1481, 1215, 847, $735 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.29(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.0,147.0,141.1,136.7,129.7,129.6,128.9,127.7,126.2$, 121.2, 120.9, 116.0, 113.2, 55.4, 34.9, 31.3, 29.9; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$375.2185, found 375.2179.
(Z)-N,8-Di-tert-butyl-3-(p-tolyl)-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazin-4-imine (4g).

Following the general procedure, the desired product $\mathbf{4 g}(66 \mathrm{mg}, 65 \%)$ was obtained as yellow solid; mp: $184-186^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.8$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR: $3079,2960,1697,1489,1287,853$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.9,145.9,140.1,137.8,135.8,128.4,127.4,125.8,125.0,119.9,114.9,112.2,54.3,33.8$, 30.3, 28.9, 20.4; HR-MS (ESI +) m/z calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 389.2341$, found 389.2339 .

(Z)-N,8-Di-tert-butyl-3-(4-methoxyphenyl)-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazin- 4imine (4h).

Following the general procedure, the desired product $\mathbf{4 h}(70 \mathrm{mg}, 67 \%)$ was obtained as pink solid; mp: 162-165 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3076, 2957, 1686, 1555, 1486, 1301, 1291, 1034, $855 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41\left(\mathrm{dd}, J_{l}=2.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.2,147.9,146.8,141.1,137.1,131.0,126.1,122.3,120.9,120.5,115.9,113.2,113.1,55.3$, 34.9, 31.3, 30.0; HR-MS (ESI +) m/z calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 405.2290$, found 405.2291.

(Z)-8-(tert-Butyl)-N-cyclohexyl-3-phenyl-4H-benzo[b][1,2,3]triazolo[1,5- $d][1,4]$ oxazin-4-

 imine (4i).

Following the general procedure, the desired product $\mathbf{4 i}(71 \mathrm{mg}, 68 \%)$ was obtained as white solid; $\mathrm{mp}: 150-152{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.6$ ($20 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3071, 2923, 1678, 1507, 1259, 1005, $825 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.81(\mathrm{~m}, 4 \mathrm{H})$, 1.55-1.42 (m, 6H), $1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.9,146.9,141.1,138.2$, $129.6,129.4,128.9,127.8,126.2,120.9,120.7,115.9,113.2,54.3,34.9,33.3,31.3,25.9,24.1$; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 401.2341$, found 401.2341.
(Z)-N-(tert-Butyl)-8-chloro-3-phenyl-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazin-4- imine (4j).

Following the general procedure, the desired product $\mathbf{4 j}(75 \mathrm{mg}, 72 \%)$ was obtained as off white solid; mp: 142-144 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.7(10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3052, 2965, 1693, 1473, 1274, 983, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 146.1,140.7,134.5,128.5,128.3,128.1,128.0$, 126.7, 120.9, 119.9, 116.7, 115.5, 54.6, 28.9; $\mathrm{HR}-\mathrm{MS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{4} \mathrm{O}\right]^{+}$ $=[\mathrm{M}+\mathrm{H}]^{+} 353.1169$, found 353.1169.
(Z)-N-(tert-Butyl)-8-chloro-3-(p-tolyl)-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazin-4- imine (4k).

Following the general procedure, the desired product $\mathbf{4 k}(78 \mathrm{mg}, 72 \%)$ was obtained as violet solid; mp: 178-182 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.8$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3069, 2965, 1683, 1488, 1302, 1053, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34\left(\mathrm{dd}, J_{l}=2.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 147.2, 141.7, $139.2,135.7,129.5,129.4,128.9,128.5,126.5,122.0,120.6,117.7,116.5,55.6,30.0,21.4$; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{NaO}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$389.1145, found 389.1147. (Z)- N -(tert-Butyl)-8-chloro-3-(4-methoxyphenyl)-4H-benzo[b][1,2,3]triazolo[1,5d] [1,4]oxazin-4-imine (41).

Following the general procedure, the desired product $\mathbf{4 l}(79 \mathrm{mg}, 70 \%)$ was obtained as pink solid; mp: 164-166 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ (20% EtOAc/ n-hexane); IR (Neat): 3064, 2961, 1692, 1472, $1260,981,865 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34\left(\mathrm{dd}, J_{l}=2.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.3,147.1,141.7,135.9$, 131.0, 129.5, 128.9, 122.1, 121.9, 120.2, 117.7, 116.5, 113.2, 55.6, 55.3, 30.0; HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{4} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 383.1275$, found 383.1275.

(Z)-N-Cyclohexyl-3-phenyl-4H,6H-benzo[e][1,2,3]triazolo[5,1-c][1,4]oxazepin-4-imine (4m).

Following the general procedure, the desired product $\mathbf{4 m}(78 \mathrm{mg}, 65 \%)$ was obtained as off white solid; mp: $178-180{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($30 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3282, 2922, 1647, 1489, 1264, 1089, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-8.04(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.62(\mathrm{~m}$, $4 \mathrm{H}), 1.31-1.13(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.3,145.1,136.8,131.1,129.8$,
129.5, 129.3, 128.9, 128.7, 128.6, 128.0, 127.8, 122.9, 67.2, 55.5, 32.9, 25.7, 24.7; HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 359.1872$, found 359.1873.

(Z)-8-Chloro-N-cyclohexyl-3-phenyl-4H,6H-benzo[e][1,2,3]triazolo[5,1-c][1,4]oxazepin- 4imine (4n).

Following the general procedure, the desired product $\mathbf{4 n}(73 \mathrm{mg}, 68 \%)$ was obtained as orange solid; mp: 219-221 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ ($30 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3083, 2920, 1660, 1488, 1286, 1023, $797 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $8.00(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62\left(\mathrm{dd}, J_{l}=2.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H})$, $4.96(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.14(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 148.5,144.6,135.3,135.0,131.1,130.3,129.6,129.5,128.9,128.6,128.1,127.6$, 124.2, 66.5, 55.6, 32.9, 25.6, 24.7; HR-MS (ESI +) m / z calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}\right]^{+}=[\mathrm{M}+$ $\mathrm{H}]^{+}$393.1482, found 393.1483.
(Z)-N-Cyclohexyl-3-(4-methoxyphenyl)-4H,6H-benzo $[e][1,2,3]$ triazolo[5,1-c][1,4]oxazepin-4-imine (40).

Following the general procedure, the desired product $\mathbf{4 0}$ ($85 \mathrm{mg}, 65 \%$) was obtained as yellow solid; mp: 116-118 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($30 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2926, 2853, 1668, 1504, 1250, 1018, $832 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{t}, J=9.2 \mathrm{~Hz}, 3 \mathrm{H}$), 7.66-7.62 (m, $1 \mathrm{H}), 7.50(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.70-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.14(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,148.1$, $145.3,136.9,131.0,129.9,129.4,129.2,128.9,127.0,122.8,122.5,113.4,67.1,55.5,55.3$, 33.0, 25.7, 24.7; HR-MS (ESI +) m/z calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$389.1977, found 389.1998.
7. General procedure for the synthesis of $\mathbf{1 , 2 , 3 -}$ triazole fused indol-ylidene (5). In an ovendried 25 mL sealed tube containing 1-azido-2-bromobenzene ($\mathbf{1 f}-\mathbf{k}$) (0.25 mmol), acetylene (2) $(0.25 \mathrm{mmol})$, in DMF (2 mL) were added $\mathrm{CuI}(0.03 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.30 \mathrm{mmol})$. The resulting reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 2 h under open air atmosphere. After completion of the reaction was monitored by TLC. Up on cooling to room temperature, to the same pot $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, isocyanide (3) (0.19 mmol) and $\mathrm{PCy}_{3}(0.015 \mathrm{mmol})$ were added. The tube was purged with nitrogen gas and stirred at $120^{\circ} \mathrm{C}$ for 18 h . After completion of the reaction, the reaction mixture was filtered through celite, and the residue was washed with diethyl ether $(2 \times 10 \mathrm{~mL})$. The filtrate was washed with 30 mL of water, and the organic layer was collected. The aqueous phase was extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$). The combined organic phases was washed with brine solution ($2 \times 20 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel with EtOAc / hexane as eluent to give the corresponding pure products 5 .

(Z)-N-(tert-Buty)-3-phenyl-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5a).

Following the general procedure, the desired product $\mathbf{5 a}(57 \mathrm{mg}, 75 \%)$ was obtained as light yellow solid; mp: $158-161^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2923, 2852, 1622, $1461,1218,773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.91$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49-7.38 (m, 4H), 1.68 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.5,143.5,139.7,134.4,131.9,130.1,130.0,129.1,128.2$, 127.7, 127.1, 124.9, 113.0, 57.0, 29.8; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{4}\right]^{+}=[\mathrm{M}+$ $H]^{+} 303.1610$, found 303.1617 .

(Z)-N-(tert-Butyl)-3-(p-tolyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5b).

Following the general procedure, the desired product 5b (236 mg, 74\%) was obtained as light yellow solid; mp: $183-186^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.6$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2921, 2852, 1623, $1462,733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.5,143.6,139.7,139.1$, $134.0,131.8,130.0,128.9,127.6,127.3,127.0,124.9,112.9,56.9,29.8,21.5$; HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 317.1766$, found 317.1774.

(Z)-N-(tert-Butyl)-3-(4-methoxyphenyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5c).

Following the general procedure, the desired product 5 c ($61 \mathrm{mg}, 72 \%$) was obtained as yellow solid; mp: $166-168{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ (20\% EtOAc/ n-hexane); IR (Neat): 2920, 2851, 1625, 1462, $1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 160.3,146.5,143.4,139.6$, $133.5,131.8,130.0,129.2,127.0,125.0,122.9,113.5,112.9,56.9,55.3,29.8 ;$ HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ON}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 333.1710$, found 333.1703.
(Z)- N-(tert-Butyl)-6-methyl-3-phenyl-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5d).

Following the general procedure, the desired product $\mathbf{5 d}(56 \mathrm{mg}, 75 \%)$ was obtained as yellow solid; mp: 202-205 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2921, 2852, 1623, 1471, 771
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H})$, $2.49(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.7,143.3,137.7,137.1,134.4$, $132.3,130.6,130.2,129.1,128.2,127.6,125.1,112.6,56.9,29.8,21.8 ;$ HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$317.1761, found 317.1756.

(Z)-N-(tert-Butyl)-6-methyl-3-(p-tolyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5e).

Following the general procedure, the desired product $\mathbf{5 e}(57 \mathrm{mg}, 73 \%)$ was obtained as light yellow solid; mp: 220-224 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.6$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2920, 2852, 1623, $1476,1219,816 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.77(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.7,143.5,139.0,137.7$, 137.0, 134.1, 132.2, 130.6, 128.9, 127.6, 127.4, 125.1, 112.5, 56.8, 29.8, 21.8, 21.5; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$331.1917, found 331.1914.
(Z)-N-(tert-Butyl)-3-(4-methoxyphenyl)-6-methyl-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5f).

Following the general procedure, the desired product $\mathbf{5 f}(57 \mathrm{mg}, 70 \%)$ was obtained as yellow solid; mp: 219-222 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2921, 2852, 1621, 1474 , 1252, $770 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.77(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.3,146.7,143.3,137.7,137.0,133.5,132.2,130.6,129.2,125.1$, 123.0, 113.5, 112.5, 56.8, 55.3, 29.9, 21.8; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ON}_{4}\right]^{+}=$ $[\mathrm{M}+\mathrm{H}]^{+}$347.1866, found 347.1863.
(Z)-N-(tert-Butyl)-6,8-dimethyl-3-phenyl-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5g).

Following the general procedure, the desired product $5 \mathrm{~g}(50 \mathrm{mg}, 68 \%)$ was obtained as yellow solid; mp: 208-212 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2921, 2851, 1627, 1463, $1210,762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.9,142.5,136.6,136.5,134.8,134.7,130.3,128.9$, $128.1,127.7,127.6,125.3,125.2,56.8,29.7,21.6,17.9 ; H R-M S(E S I+) \mathrm{m} / \mathrm{z}$ calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$331.1917, found 331.1915.
(Z)-N-(tert-Butyl)-6,8-dimethyl-3-(p-tolyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5h).

Following the general procedure, the desired product $\mathbf{5 h}(53 \mathrm{mg}, 70 \%)$ was obtained as yellow solid; mp: 205-210 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.6$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2921, 2852, 1627, 1463, 1219, $765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{3} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.9,142.6,138.9,136.5,136.4,134.6,134.5,128.8,128.1,127.6$, $127.5,125.3,56.7,29.7,21.6,21.5,17.9 ;$ HR-MS (ESI+ $) \mathrm{m} / \mathrm{z}$ calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4}\right]^{+}=[\mathrm{M}$ $+\mathrm{H}]^{+}$345.2074, found 345.2072
(Z)- N-(tert-Butyl)-3-(4-methoxyphenyl)-6,8-dimethyl-4H-[1,2,3]triazolo[1,5-a]indol-4- imine (5i).

Following the general procedure, the desired product $\mathbf{5 i}(57 \mathrm{mg}, 72 \%)$ was obtained as yellow
solid; mp: 182-185 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.3$ (10% EtOAc/ n-hexane); IR (Neat): 2920, 2852, 1611, 1501, 1247, 1176, $834 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H})$, $7.18(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2,146.9,142.4,136.5,136.3,134.6,133.9,129.2$, 128.1, 125.3, 125.2, 123.1, 113.4, 56.6, 55.3, 29.8, 21.6, 17.9; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ON}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$361.2023, found 361.2020.

(Z)-N-Cyclohexyl-3-(4-methoxyphenyl)-6,8-dimethyl-4H-[1,2,3]triazolo[1,5-a]indol-4- imine (5j).

Following the general procedure, the desired product $\mathbf{5 j}$ ($60 \mathrm{mg}, 70 \%$) was obtained as yellow solid; mp: 178-180 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5$ ($5 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2924, 2854, 1624, 1505 , 1462, 1247, $858 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46(\mathrm{~s}, 1 \mathrm{H})$, 7.16 (s, 1H), 6.99 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.39-4.37 (m, 1H), 3.87 (s, 3H), 2.77 (s, 3H), 2.41 (s, $3 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2,147.7,142.7,137.1,134.6,131.3,129.1,126.5,126.1,125.2,123.0,113.7,60.2,55.3$, 33.7, 25.8, 24.2, 21.6, 17.8; HR-MS (ESI +) m/z calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ON}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$ 387.2179, found 387.2176.
(Z)-N-(tert-Butyl)-6-chloro-3-(p-tolyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5k).

Following the general procedure, the desired product $\mathbf{5 k}$ ($52 \mathrm{mg}, 68 \%$) was obtained as brown solid; mp: 210-213 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.4$ ($5 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2921, 2852, 1622, 1462, $1214,821 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;$
${ }^{13}{ }^{3} \mathrm{CNR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.1,143.9,139.4,137.9,133.9,132.6,131.6,130.1,128.9$, 127.6, 127.0, 126.1, 113.8, 57.2, 29.9, 21.5; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{4}\right]^{+}=$ $[\mathrm{M}+\mathrm{H}]^{+} 351.1371$, found 351.1366 .
(Z)-N-(tert-Butyl)-6-fluoro-3-phenyl-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5I).

Following the general procedure, the desired product $5 \mathbf{5 l}$ ($52 \mathrm{mg}, 70 \%$) was obtained as light yellow solid; mp: 198-200 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3059, 3005, 1625, 1472, 1209, $830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.87(\mathrm{~m}$, $1 \mathrm{H}), 7.71\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.2(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 145.3,143.8,136.0,134.6$, 129.9, 129.3, 128.2, 127.6, 126.2 (d, $J=7.2 \mathrm{~Hz}$), 118.6 (d, $J=24.3 \mathrm{~Hz}$), 117.8 (d, $J=26.7 \mathrm{~Hz}$), $114.0(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 57.2,29.9$; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FN}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$ 321.1510, found 321.1506.
(Z)-N-(tert-Butyl)-6-fluoro-3-(p-tolyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5m).

Following the general procedure, the desired product $\mathbf{5 m}(56 \mathrm{mg}, 72 \%)$ was obtained as light yellow solid; mp: 298-302 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.3$ ($10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 3036, 2967, 1627, 1504, 1473, 1262, $817 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-$ $7.86(\mathrm{~m}, 1 \mathrm{H}), 7.70\left(\mathrm{dd}, J_{I}=2.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.1(\mathrm{~d}, J=245.2 \mathrm{~Hz}$), 145.3, 144.0, 139.4, 135.9, $134.3,128.9,127.6,127.1,126.3(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 118.5(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=26.6 \mathrm{~Hz})$, $113.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 57.1,29.9,21.5$; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FN}_{4}\right]^{+}=[\mathrm{M}+$ $\mathrm{H}]^{+}$335.1672, found 335.1673.
(Z)-N-(tert-Butyl)-3-(p-tolyl)-7-(trifluoromethyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (5n).

Following the general procedure, the desired product $5 \mathrm{n}(50 \mathrm{mg}, 70 \%)$ was obtained as yellow solid; mp: 201-204 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.6(10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2968, 1638, 1505, 1458, $1315,1143 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 145.1,143.9,139.6(2 \mathrm{C}), 134.1,133.9(\mathrm{~d}, J=33.5 \mathrm{~Hz})$, $130.3,128.9,127.6,126.9,124.3(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.9,121.6,110.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 57.4$, 29.9, 21.5; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 385.1640$, found 385.1640.
(Z)- N-(tert-Butyl)-3-(4-chlorophenyl)-4H-[1,2,3]triazolo[1,5-a]indol-4-imine (50).

Following the general procedure, the desired product $50(35 \mathrm{mg}, 70 \%)$ was obtained as white solid; mp: 185-190 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5(10 \% \mathrm{EtOAc} / n$-hexane); IR (Neat): 2962, 1624, 1460, 1211, 1089, 840,$732 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 146.5,142.4,139.7,134.8,134.4,132.0,130.1,128.9,128.6$, $128.4,127.3,124.8,113.1,57.1,29.8 ; H R-M S(E S I+) \mathrm{m} / \mathrm{z}$ calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{4}\right]^{+}=[\mathrm{M}$ $+\mathrm{H}]^{+} 337.1220$, found 337.1228 .
8. Procedure for the synthesis of 2-(4-Phenyl-1H-1,2,3-triazol-1-yl)phenol (Ia). To a round bottom flask containing 2-azidophenol (1a) ($100 \mathrm{mg}, 0.74 \mathrm{mmol}$), phenyl acetylene (2a) (76 mg , $0.74 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ were added $\mathrm{CuI}(14 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(123 \mathrm{mg}, 0.88 \mathrm{mmol})$. The resulting mixture and stirred at $120^{\circ} \mathrm{C}$ for 2 h under open air. After completion of the
reaction was monitored by TLC. The reaction mixture was cooled to room temperature and diluted with water and extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined EtOAc layer was collected, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified using column chromatography over silica gel with EtOAc / hexane to give desired product of $\mathbf{I a}$.

Beige solid, $140 \mathrm{mg}(80 \%)$; mp: 193-195 ${ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{3} 193.3-193.7^{\circ} \mathrm{C}\right) ; \mathrm{R}_{f}=0.4(20 \% \mathrm{EtOAc} / n-$ hexane); IR (Neat): 2965, 2717, 1415, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.91$ ($\mathrm{s}, 1 \mathrm{H}$), $8.31(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta 149.0,146.9,130.4,129.6,128.7,128.0,125.6,124.4,123.7,121.2,119.8$, 117.5.
9. Procedure for the synthesis of 1-(2-Bromophenyl)-4-phenyl-1H-1,2,3-triazole (IIa). To a round bottom flask containing 1-azido-2-bromobenzene ($\mathbf{1 f}$) ($100 \mathrm{mg}, 0.50 \mathrm{mmol}$), phenyl acetylene (2a) ($52 \mathrm{mg}, 0.50 \mathrm{mmol}$) in DMF (2 mL). then after $\mathrm{CuI}(10 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($84 \mathrm{mg}, 0.60 \mathrm{mmol}$) were added to reaction mixture and stirred at $120^{\circ} \mathrm{C}$ for 2 h under open air. After completion of the reaction was monitored by TLC. The reaction mixture was cooled to room temperature and diluted with water and extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined EtOAc layer was collected, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified using column chromatography over silica gel with EtOAc / hexane to give desired product of IIa.

Yellow solid, $114 \mathrm{mg}, 75 \%$; mp: $102-104{ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{2} 104-105{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{f}=0.4(10 \% \mathrm{EtOAc} / \mathrm{n}-$ hexane); IR (Neat): $3130,1496,1093,808,761 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16$ (s, $1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.77\left(\mathrm{dd}, J_{l}=1.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60\left(\mathrm{dd}, J_{l}=1.6 \mathrm{~Hz}, J_{2}=1.6\right.$
$\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.6, 136.6, 134.0, 131.2, 130.2, 128.9, 128.6, 128.4, 128.2, 125.9, 121.7, 118.6.

10. Crystal Structure Determination:

X-ray intensity data measurements were carried out on a Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer equipped with Incoatech multilayer mirrors optics. The intensity measurements were carried out with Mo micro-focus sealed tube diffraction source $(\mathrm{Cu}-\mathrm{K} \alpha=0.72 \AA)$ at $100(2) \mathrm{K}$ temperature. The X -ray generator was operated at 50 kV and 1.4 mA . A preliminary set of cell constants and an orientation matrix were calculated from two sets of 20 frames. Data were collected with ω scan width of 0.5° at different settings of φ and 2Θ with a frame time of 40 seconds keeping the sample-to-detector distance fixed at 4.00 cm . The X-ray data collection was monitored by APEX3 program (Bruker, 2016).All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2016). SHELX-97 was used for structure solution and full matrix leastsquares refinement on F^{2}. Molecular diagrams were generated using ORTEP-33 and Mercury programs. Geometrical calculations were performed using SHELXTLand PLATON. All the hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms. An ORTEP III view of both compounds were drawn with 50% probability displacement ellipsoids and H -atoms are shown as small spheres of arbitrary radii.

Crystallographic data for 4b:

Crystallographic data for $4 \mathrm{~b}\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}\right)$: $\mathrm{M}=332.40$, Crystal dimensions $0.410 \times 0.300 \mathrm{x}$ $0.180 \mathrm{~mm}^{3}$, Triclinic, space group $\mathrm{P}-1, \mathrm{a}=9.1911(11) \AA, \mathrm{b}=10.2029(14) \AA, \mathrm{c}=10.5844(14) \AA$, $\alpha=105.786(4)^{\circ} \beta=112.987(4)^{\circ} \gamma=97.227(4)^{\circ}, \mathrm{V}=848.58(19) \AA^{3}, \mathrm{Z}=2, \rho c a l c d=1.301$ $\mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.083 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=352,2 \Theta_{\max }=28.8^{\circ}, \mathrm{T}=100(2) \mathrm{K}, 28075$ reflections collected, 4402 unique reflections $(\mathrm{R}(\mathrm{int})=0.0768)$, 4402 observed $(\mathrm{I}>2 \sigma(\mathrm{I})$) reflections, multi-scan absorption correction, $T \min =0.967, T \max =0.985,230$ refined parameters, No. of restraints $0, S=1.148, R 1=0.0670$, $\mathrm{wR} 2=0.1294$ (all data $\mathrm{R} 1=0.0942$, $\omega R 2=0.1388$), maximum and minimum residual electron densities; $\Delta \rho \max =0.355, \Delta \rho \min =-$ $0.290\left(\mathrm{e}^{-3}\right)$. Crystallographic data for compound intermediate deposited with the Cambridge Crystallographic Data Centre as supplementary publication no CCDC 1587528.

Crystallographic data for 5b:

Crystallographic data for $\mathbf{5 b}\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4}\right)$: $\mathrm{M}=316.40$, Crystal dimensions $0.420 \times 0.340 \times$ 0.190 mm 3 , monoclinic, space group $P 2_{1} / \mathrm{n}, \mathrm{a}=9.0962(5) \AA, \mathrm{b}=10.1454(6) \AA, \mathrm{c}=18.0969$ (10) $\AA, \alpha=90^{\circ} \beta=102.269(2)^{\circ} \gamma=90^{\circ}, V=1668.64(16) \AA 3, Z=4, \rho c a l c d=1.259 \mathrm{Mg} / \mathrm{m} 3, \mu(\mathrm{Cu}-$ $\mathrm{K} \alpha)=0.077 \mathrm{~mm}-1, \mathrm{~F}(000)=672,2 \Theta_{\max }=30.58^{\circ}, \mathrm{T}=100(2) \mathrm{K}, 62594$ reflections collected, 5099 unique reflections $(\mathrm{R}(\mathrm{int})=0.0607)$, 5099 observed ($\mathrm{I}>2 \sigma(\mathrm{I})$) reflections, multi-scan absorption correction, $T \min =0.968, T \max =0.986$, refined parameters, No. of restraints $0, \mathrm{~S}=1.110, \mathrm{R} 1=0.0460, \mathrm{wR} 2=0.1212$ (all data $\mathrm{R} 1=0.0575, \mathrm{wR} 2=0.1325$), maximum and minimum residual electron densities; $\Delta \rho \max =0.474, \quad \Delta \rho \min =-0.515\left(e \AA^{-3}\right)$. Crystallographic data for compound intermediate deposited with the Cambridge Crystallographic Data Centre as supplementary publication no CCDC 1864070.

11. References:

1. a) Y. N. Kotovshchikov, G. V. Latyshev, M. A. Navasardyan, D. A. Erzunov, I. P. Beletskaya, N. V. Lukashev, Org. Lett. 2018, 20, 4467; b) M. Novak, A. M. Brinster, J. M. Dickhoff, J. M. Erb, M. P. Jones, S. H. Leopold, A. T. Vollman, S. A. Glover, J. Org. Chem. 2007, 72, 9954; c) G. J. Smolinsky, J. Org. Chem. 1961, 26, 4106; d) M. Alajarín, A. López-Lázaro, A. Vidal, J. Berná, Chem. - Eur. J. 1998, 4, 2558; e) H. Jin, Z. D. Huang, C. X. Kuang, X. K. Wang, Chin. Chem. Lett. 2011, 22, 310.
2. C. Veryser, G. Steurs, L. Van Meervelt, W. M. De Borggraeve, Adv. Synth. Catal. 2017, 359, 1271.
3. D. Ghosh, S. Rhodes, K. Hawkins, D. Winder, A. Atkinson, W. Ming, C. Padgett, J. Orvis, K. Aiken, S. A. Landge, New J. Chem. 2015, 39, 295.

12. Copies of ${ }^{\mathbf{1}} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products Compound-4a

Compound-4b

Compound-4c

Compound-4d

Compound-4e

Compound-4f

Compound-4g

Compound-4h

Compound-4i

Compound-4j

Compound-4k

Compound-4l

Compound-4m

Compound-4n

Compound-4o

Compound-5a

Compound-5b

Compound-5c

Compound-5d

Compound-5e

Compound-5f

Compound-5g

Compound-5h

Compound-5i

Compound-5j

Compound-5k

Compound-51

Compound-5m

Compound-5n

Compound-5o

Compound-Ia

Compound-IIa

Compound-1k

