Total Synthesis of Wikstrol A and Wikstrol B

Kui Lu,^{*a} Ming Li,^a Yuna Huang,^a Yuanyuan Sun,^a Zhi Gong,^a Qijun Wei,^a Xia Zhao,^b Yongmin Zhang^{*a,c} and Peng Yu^{*a}

^a China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China, 300457; Email: lukui@tust.edu.cn; yupeng@tust.edu.cn

^b College of Chemistry, Tianjin Normal University, Tianjin 300387, China

^c Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005 Paris, France; E-mail: yongmin.zhang@upmc.fr

Contents	Page
¹ H and ¹³ C NMR Spectra	S2-S18
Crystallography data of compound 26	S19-S20
Determination the optical purity of key intermediate 17	S21-S21
Comparation the NMR data of synthesized sample of Wikstrol A an natural one	d Wikstrol B with S22-S23

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 1-(2-hydroxy-4,6-dimethoxyphenyl)ethan-1-one (11) in CDCl_3

¹H and ¹³C NMR spectra of (E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12) in CDCl₃

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of (E)-3,5-dimethoxy-2-(3-(4-methoxyphenyl)allyl)phenol(13) in CDCl_3

¹H and ¹³C NMR spectra of (E)-tert-butyl(3,5-dimethoxy-2-(3-(4-methoxyphenyl)allyl)phenoxy)dimethylsilane(14) in CDCl₃

¹H and ¹³C NMR spectra of (1S,2S)-3-(2-((tert-butyldimethylsilyl)oxy)-4,6-dimethoxyphenyl)-1-(4-methoxyphenyl)propane-1,2-diol(15) in CDCl₃

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of (1S,2S)-3-(2-hydroxy-4,6-dimethoxyphenyl)-1-(4-methoxyphenyl)propane-1,2-diol (16) in CDCl_3

¹H and ¹³C NMR spectra of (2R,3S)-5,7-dimethoxy-2-(4-methoxyphenyl)chroman-3-ol (17) in CDCl₃

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of (2R,3S)-8-iodo-5,7-dimethoxy-2-(4-methoxyphenyl)chroman-3-ol (18) in CDCl_3

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of (2R,3S)-5,7-dimethoxy-2-(4-methoxyphenyl)-8-((4-methoxyphenyl)ethynyl)chroman-3-ol(19) in CDCl_3

¹H and ¹³C NMR spectra of tert-butyl(((2R,3S)-8-iodo-5,7-dimethoxy-2-(4-methoxyphenyl)chroman-3-yl)oxy)dimethylsilane (24) in CDCl₃

¹H and ¹³C NMR spectra of tert-butyl(((2R,3S)-5,7-dimethoxy-2-(4-methoxyphenyl)-8-((4-methoxyphenyl)ethynyl)chroman-3-yl)oxy)dimethylsilane (25) in CDCl₃

¹H and ¹³C NMR spectra of 3-((2R,3S)-3-hydroxy-5,7-dimethoxy-2-(4-methoxyphenyl)chroman-8-yl)-5,7-diisopropoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (22) in CDCl₃

¹H and ¹³C NMR spectra of 3-((2R,3S)-3-hydroxy-5,7-dimethoxy-2-(4-methoxyphenyl)chroman-8-yl)-5,7-diisopropoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (23) in CDCl₃

¹H and ¹³C NMR spectra of (2R,3S)-8-(5,7-diisopropoxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-3-yl)-5,7-dimethoxy-2-(4-methoxyphenyl)chroman-3-yl 4-nitrobenzoate (26) in CDCl₃

¹H and ¹³C NMR spectra of 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2R,3S)-3,5,7-trihydroxy-2-(4-hydroxyphenyl)chroman-8-yl)-4H-chromen-4-one (1) in DMSO^{d6}

¹H and ¹³C NMR spectra of 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2R,3S)-3,5,7-trihydroxy-2-(4-hydroxyphenyl)chroman-8-yl)-4H-chromen-4-one (2) in DMSO^{d6}

Crystallography data of compound 26

Datablock: shelx sq

Bond precision: C-C = 0.0053 A Wavelength=0.71073 Cell: a=11.2462(14) b=16.3107(19) c = 25.345(3)alpha=90 beta=90 gamma=90 Temperature: 133 K Calculated Reported 4649.1(10) 4649.1(10)Volume P 21 21 21 P 21 21 21 Space group P 2ac 2ab Hall group P 2ac 2ab Moiety formula C47 H45 N O13 [+ solvent] C47 H45 N O13 Sum formula C47 H45 N O13 [+ solvent] C47 H45 N O13 Mr 831.84 831.84 1.189 1.188 Dx,g cm-3 Z 4 4 0.087 Mu (mm-1) 0.087 F000 1752.0 1752.0 F000' 1752.98 h,k,lmax 14,21,33 14,21,32 Nref 10749[5945] 10671 Tmin, Tmax 0.981,0.990 0.845,1.000 Tmin' 0.981 Correction method= # Reported T Limits: Tmin=0.845 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.79/0.99 Theta(max) = 27.573R(reflections) = 0.0560(6995)wR2(reflections) = 0.1194(10671)S = 1.017Npar= 558

The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level.

Click on the hyperlinks for more details of the test.

The optical purity of key intermediate 17 was determined by coupled with (R)-2-(p-tolyl)propanoic acid. From ¹HNMR of the coupling product, the ratio of the two isomers is 5:1. This result means that the ee value of compound 17 is around 83%.

NMR spectrum	m comparation	of	natural	wikstrol	А	and	wikstrol	В	with	the	synthetic
samples											

wikstrol A

¹ H NMR		¹³ C NMR	
Natural sample in DMSO ^{d6}	Synthetic sample in CDCl ₃	Natural sample in DMSO ^{d6}	Synthetic sample in CDCl ₃
2.37 (dd, $J = 16.2$, 7.4 Hz, 1H)	2.38 (dd, $J = 16.0$, 8.8 Hz, 1H)	27.2	27.25
2.57 (dd, $J = 16.2$, 5.8 Hz, 1H)	2.56 (dd, $J = 16.0$, 5.2 Hz, 1H)	66.4	66.24
3.80 (m, 1H)	3.82-3.81 (m, 1H)	80.8	80.64
4.38 (d, $J = 6.7$ Hz, 1H)	4.37 (d, <i>J</i> = 7.6 Hz, 1H)	93.5	93.24
4.88 (d, $J = 4.8$ Hz, 1H)	4.90 (d, <i>J</i> = 5.2 Hz, 1H)	95.3	95.17
5.94 (s, 1H)	5.98 (s, 1H)	98.7	98.43
6.17 (d, $J = 2.1$ Hz, 1H)	6.20 (d, <i>J</i> = 1.6 Hz, 1H)	99.2	98.98
6.34 (d, $J = 2.1$ Hz, 1H)	6.37 (d, $J = 1.6$ Hz, 1H)	103.5	103.22
6.63 (d, $J = 8.6$ Hz, 2H)	6.64 (d, <i>J</i> = 6.8 Hz, 2H)	113.4	113.13
6.68 (d, $J = 8.8$ Hz, 2H)	6.70 (d, <i>J</i> = 7.2 Hz, 2H)	114.8	114.52
7.04 (d, $J = 8.6$ Hz, 2H)	7.04 (d, $J = 7.6$ Hz, 2H)	115.1	114.74
7.32 (d, $J = 8.8$ Hz, 2H)	7.32 (d, <i>J</i> = 6.8 Hz, 2H)	124.0	123.68
8.68 (s, 1H)	8.71 (s, 1H)	128.3	127.85
9.24 (s, 1H)	9.29 (s, 1H)	130.4	129.91
9.27 (s, 1H)	9.32 (s, 1H)	130.4	130.04
9.96 (s, 1H)	10.06 (s, 1H)	153.8	153.36
10.73 (s, 1H)	10.30 (s, 1H)	154.4	154.04
13.31 (s, 1H)	10.83 (s, 1H)	156.2	155.79
		157.0	156.59
		157.6	157.15
		159.7	159.25
		162.1	161,60
		162.5	162.02
		164.3	163.93
		182.0	181.46

wikstrol B

WINDHOLD			
¹ H NMR	1	¹³ C NMR	
Natural sample in DMSO ^{d6}	Synthetic sample in CDCl ₃	Natural sample in DMSO ^{d6}	Synthetic sample in CDCl ₃
2.34 (dd, $J = 15.1$, 8.4 Hz, 1H)	2.36 (dd, $J = 16.0$, 8.8 Hz, 1H)	27.7	28.13
2.65 (dd, $J = 15.1$, 5.2 Hz, 1H)	2.63 (dd, $J = 16.0$, 5.2 Hz, 1H)	66.6	66.92
3.46 (m, 1H)	3.44-3.50 (m, 1H)	80.8	81.10
4.43 (d, $J = 6.8$ Hz, 1H)	4.44 (d, <i>J</i> = 7.6 Hz, 1H)	93.4	93.45
4.80 (d, $J = 5.1$ Hz, 1H)	4.83 (d, $J = 5.2$ Hz, 1H)	95.0	95.27
6.04 (s, 1H)	6.07 (s, 1H)	98.3	98.50
6.13 (d, $J = 2.1$ Hz, 1H)	6.16 (d, $J = 1.6$ Hz, 1H)	98.7	98.65
6.34 (d, $J = 2.1$ Hz, 1H)	6.37 (d, <i>J</i> = 1.6 Hz, 1H)	99.0	99.30
6.51 (d, $J = 8.6$ Hz, 2H)	6.53 (d, <i>J</i> = 8.4 Hz, 2H)	103.0	103.43
6.64 (d, J = 8.6 Hz, 2H)	6.65 (d, <i>J</i> = 8.4 Hz, 2H)	112.8	113.13
6.76 (d, $J = 8.8$ Hz, 2H)	6.78 (d, <i>J</i> = 8.4 Hz, 2H)	114.5	114.73
7.40 (d, $J = 8.8$ Hz, 2H)	7.41 (d, $J = 8.4$ Hz, 2H)	114.9	115.06
8.87 (s, 1H)	8.89 (s, 1H)	123.7	123.93
9.26 (s, 1H)	9.28 (s, 1H)	127.9	128.09
9.30 (s, 1H)	9.32 (s, 1H)	129.9	130.12
10.07 (s, 1H)	10.12 (s, 1H)	152.6	152.84
10.72 (s, 1H)	10.22 (s, 1H)	154.9	155.11
13.22 (s, 1H)	10.80 (s, 1H)	155.6	155.97
		156.5	156.82
		157.2	157.32
		159.5	159.76
		161.5	161,80
		161.6	161.93
		164.6	164.15
		181.2	181.53