Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Transition-metal-free oxidative C-H etherification of acylanilines with

alcohols through a radical pathway

Xiaobo Xu,^{a,b} Zhengzhou Chu,^a and Chengcai Xia^{b*}

^a Shanghai Synmedia Chemical Co., Ltd, Shanghai 201201 (China).

^b Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000 (China).

E-mail: xiachc@163.com

Supporting Information

Table of contents

1.	General Information	2
2.	Characterization of the products	3
3.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	12

General Information

All commercial reagents were used as received. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether ($60-90^{\circ}C$) and ethyl acetate. ¹H and ¹³C NMR spectra were recorded on a Bruker Advance DRX-500 spectrometer at ambient temperature with CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer.

General experimental procedure for synthesis of products 2 or 3

Amide **1** (0.2 mmol), $PhI(OPiv)_2$ (1.5 equiv) and alcohol (8.0 equiv) were combined in a 10 mL tube. The mixture was then stirred at 50 °C for 20 min. After the conversion was completed as indicated by TLC, the mixture was diluted with water and extracted with EA. The collected organic solvent was then evaporated under reduced pressure. The residue was purified directly by flash column chromatography (EA/PE, 1:10) to give the products **2** or **3**.

General experimental procedure for gram-scale synthesis of product 2a

Amide **1a** (5.0 mmol), $PhI(OPiv)_2$ (1.5 equiv) and alcohol (8.0 equiv) were combined in a 25 mL tube. The mixture was then stirred at 50 °C for 20 min. After the conversion was completed as indicated by TLC, the mixture was diluted with water and extracted with EA. The collected organic solvent was then evaporated under reduced pressure. The residue was purified directly by flash column chromatography (EA/PE, 1:10) to give the product **2a**.

General experimental procedure for the reaction of 1a with mono-, di-, and tri-fluoroethanol

Amide **1a** (0.2 mmol), $PhI(OPiv)_2$ (1.5 equiv) and fluoroethanol (8.0 equiv) were combined in a 10 mL tube. The mixture was then stirred at 50 °C for 20 min. After the conversion was completed as indicated by TLC, the mixture was diluted with water and extracted with EA. The collected organic solvent was then evaporated under reduced pressure. The residue was purified directly by flash column chromatography (EA/PE, 1:10) to give the product **4**.

1. Characterization of the products

N-(4-methoxynaphthalen-1-yl)picolinamide (2a)

Products **2a** was obtained as a yellow solid, 69% yield, m.p. 110-111 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.44 (s, 1H), 8.68 (d, *J* = 4.4 Hz, 1H), 8.35 (d, *J* = 7.8 Hz, 1H), 8.32 (d, *J* = 8.3 Hz, 1H), 8.11 (d, *J* = 8.3 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.94 (td, *J* = 7.7, 1.5 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.51 (dd, *J* = 9.5, 5.6 Hz, 2H), 6.86 (d, *J* = 8.3 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 152.2, 149.1, 146.9, 136.9, 127.2, 125.9, 125.4, 124.9, 124.4, 124.3, 121.7, 121.6, 119.8, 119.3, 102.6, 54.7. HRMS (ESI): Calculated for C₁₇H₁₄N₂O₂⁺: 279.1128 [M+H]⁺, Found: 279.1126.

N-(4-methoxynaphthalen-1-yl)-3-methylpicolinamide (2b)

Products **2b** was obtained as a yellow solid, 67% yield, m.p. 120-121 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.59 (s, 1H), 8.51 (d, *J* = 4.0 Hz, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.37 (dd, *J* = 7.6, 4.6 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 4.01 (s, 3H), 2.82 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 153.1, 147.1, 145.4, 141.4, 136.2, 128.5, 126.8, 126.0, 125.6, 125.3, 122.7, 121.0, 120.4, 103.6, 55.7, 20.8. HRMS (ESI): Calculated for C₁₈H₁₆N₂O₂⁺: 293.1285 [M+H]⁺, Found: 293.1289.

N-(4-methoxynaphthalen-1-yl)pyrazine-2-carboxamide (2c)

Products **2c** was obtained as a yellow solid, 62% yield, m.p. 124-125 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.02 (s, 1H), 9.53 (s, 1H), 8.81 (s, 1H), 8.62 (s, 1H), 8.31 (d, *J* = 8.3 Hz, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.91 (d, *J* = 8.3 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.52 – 7.48 (m, 1H), 6.84 (d, *J* = 8.3 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.2, 153.6, 147.5, 144.8, 144.7, 142.6, 128.1, 127.1, 125.9, 125.5, 124.6, 122.9, 120.7, 120.5, 103.5, 55.7. HRMS (ESI): Calculated for C₁₆H₁₃N₃O₂⁺: 280.1081 [M+H]⁺, Found: 280.1072.

N-(4-methoxynaphthalen-1-yl)pyrimidine-2-carboxamide (2d)

Products **2d** was obtained as a yellow solid, 34% yield, m.p. 132-133 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.63 (s, 1H), 8.98 (d, *J* = 4.8 Hz, 2H), 8.47 (d, *J* = 7.5 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.55 (ddd, *J* = 26.3, 12.9, 5.9 Hz, 4H), 4.09 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 159.8, 157.7, 145.6, 134.0, 131.9, 128.9, 126.3, 126.0, 126.0, 125.4, 122.7, 120.1, 118.9, 102.7, 53.9. HRMS (ESI): Calculated for C₁₆H₁₃N₃O₂⁺: 280.1081 [M+H]⁺, Found: 280.1087.

N-(4-methoxynaphthalen-1-yl)quinoline-2-carboxamide (2e)

Products **2e** was obtained as a yellow solid, 70% yield, m.p. 179-180 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.64 (s, 1H), 8.46 (d, *J* = 8.4 Hz, 1H), 8.40 (d, *J* = 8.5 Hz, 1H), 8.36 (d, *J* = 8.3 Hz, 1H), 8.26 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 8.3 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.84 (dd, *J* = 11.2, 4.1 Hz, 1H), 7.69 – 7.66 (m, 1H), 7.65 – 7.61 (m, 1H), 7.55 (t, *J* = 7.2 Hz, 1H), 6.91 (d, *J* = 8.3 Hz, 1H), 4.05 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 161.7, 152.3, 149.0, 145.4, 136.8, 129.3, 128.8, 128.5, 127.3, 127.1, 126.8, 125.9, 125.1, 124.4, 124.3, 121.8, 119.8, 119.4, 117.9, 102.6, 54.7. HRMS (ESI): Calculated for C₂₁H₁₆N₂O₂⁺: 329.1285 [M+H]⁺, Found: 329.1280.

N-(4-methoxy-2-methylnaphthalen-1-yl)picolinamide (2f)

Products **2f** was obtained as a yellow solid, 70% yield, m.p. 159-160 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.93 (s, 1H), 8.57 (ddd, *J* = 4.8, 1.5, 0.8 Hz, 1H), 8.10 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.93 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.75 (td, *J* = 7.7, 1.7 Hz, 1H), 7.64 (dd, *J* = 7.8, 0.7 Hz, 1H), 7.53 (ddd, *J* = 8.8, 7.6, 1.4 Hz, 1H), 7.45 – 7.40 (m, 2H), 6.57 (s, 1H), 2.89 (s, 3H), 2.00 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 183.6, 161.9, 153.8, 149.1, 148.3, 141.0, 137.5, 133.3, 132.6, 131.6, 129.1, 126.7, 126.0, 125.9, 122.1, 83.4, 50.1, 17.3. HRMS (ESI): Calculated for C₁₈H₁₆N₂O₂⁺: 293.1285 [M+H]⁺, Found: 293.1284.

N-(5-chloro-4-methoxynaphthalen-1-yl)picolinamide (2g)

Products **2g** was obtained as a yellow solid, 57% yield, m.p. 162-163 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.76 (s, 1H), 8.42 (d, *J* = 7.5 Hz, 1H), 8.37 (d, *J* = 7.8 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.94 (t, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.55 – 7.50 (m, 2H), 3.95 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 153.1, 147.1, 145.4, 141.4, 136.2, 128.5, 126.8, 126.0, 125.6, 125.3, 125.0, 122.7, 121.0, 120.4, 103.6, 55.7. HRMS (ESI): Calculated for C₁₇H₁₃ClN₂O₂⁺: 313.0739 [M+H]⁺, Found: 313.0736.

N-(5-bromo-4-methoxynaphthalen-1-yl)picolinamid (2h)

Products **2h** was obtained as a yellow solid, 60% yield, m.p. 171-172 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.69 (s, 1H), 8.35 (d, *J* = 7.5 Hz, 1H), 8.30 (d, *J* = 7.8 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.87 (t, *J* = 7.7 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.53 (dd, *J* = 10.5, 4.7 Hz, 1H), 7.46 (td, *J* = 7.0, 4.7 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 153.5, 147.5, 145.8, 141.8, 136.6, 128.9, 127.2, 126.4, 126.0, 125.7, 125.4, 123.1, 121.4, 120.8, 104.0, 56.1. HRMS (ESI):

N-(4-methoxy-8-(phenylthio)naphthalen-1-yl)picolinamide (2i)

Calculated for C₁₇H₁₃BrN₂O₂⁺: 357.0233 [M+H]⁺, Found: 357.0237.

Products **2i** was obtained as a yellow solid, 72% yield, m.p. 178-179 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.20 (s, 1H), 8.32 (dd, *J* = 8.4, 1.0 Hz, 1H), 8.11 (d, *J* = 4.1 Hz, 1H), 7.98 (d, *J* = 7.7 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.41 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.25 (dd, *J* = 17.5, 9.2 Hz, 4H), 7.04 (t, *J* = 7.7 Hz, 2H), 6.84 (dd, *J* = 16.3, 8.0 Hz, 2H), 3.98 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 152.8, 148.9, 146.3, 142.1, 136.5, 135.9, 130.0, 127.9, 126.9, 126.0, 125.7, 125.4, 124.6, 124.3, 123.3, 123.0, 121.2, 120.8, 102.9, 54.8. HRMS (ESI): Calculated for C₂₃H₁₈N₂O₂S⁺: 387.1162 [M+H]⁺, Found: 387.1167.

N-(4-methoxyphenyl)picolinamide (2j)

Products **2j** was obtained as a yellow solid, 50% yield, m.p. 105-106 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.98 (s, 1H), 8.60 (d, *J* = 4.1 Hz, 1H), 8.30 (d, *J* = 7.5 Hz, 1H), 7.92 (t, *J* = 7.3 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 2H), 7.48 (dd, *J* = 6.9, 4.8 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.4, 155.4, 148.7, 146.6, 137.1, 129.9, 125.4, 121.6, 120.3, 113.2, 54.5. HRMS (ESI): Calculated for C₁₃H₁₂N₂O₂⁺: 229.0972 [M+H]⁺, Found: 229.0969.

N-(3,5-dichloro-4-methoxyphenyl)picolinamide (2k)

Products **2k** was obtained as a yellow solid, 43% yield, m.p. 137-138 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.34 (s, 1H), 8.62 (d, *J* = 4.4 Hz, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.89 (td, *J* = 7.7, 1.6 Hz, 1H), 7.50 – 7.47 (m, 1H), 6.67 (s, 2H), 3.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 153.6, 148.8, 148.3, 138.8, 138.6, 137.6, 126.8, 122.1, 112.9, 49.9. HRMS (ESI): Calculated for C₁₃H₁₀Cl₂N₂O₂⁺: 297.0192 [M+H]⁺, Found: 297.0198.

N-(2-ethyl-4-methoxyphenyl)picolinamide (2I)

Products **2I** was obtained as a yellow solid, 51% yield, m.p. 128-129 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 8.55 (d, *J* = 4.5 Hz, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.98 – 7.94 (m, 1H), 7.83 (td, *J* = 7.7, 1.6 Hz, 1H), 7.40 (ddd, *J* = 7.5, 4.8, 1.0 Hz, 1H), 6.74 (dd, *J* = 4.6, 2.0 Hz, 2H), 3.75 (s, 3H), 2.66 (q, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.0, 156.0, 149.2, 147.1, 136.6, 135.8, 127.3, 125.3, 122.9, 121.3, 113.6, 110.2, 54.4, 23.7, 12.9. HRMS (ESI): Calculated for C₁₅H₁₆N₂O₂⁺: 257.1285 [M+H]⁺, Found: 257.1289.

N-(2,4-dimethoxyphenyl)picolinamide (2m)

Products **2m** was obtained as a yellow solid, 57% yield, m.p. 125-126 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.58 (s, 1H), 8.64 (d, *J* = 4.3 Hz, 1H), 8.34 (d, *J* = 3.0 Hz, 1H), 8.26 (d, *J* = 7.8 Hz, 1H), 7.88 (td, *J* = 7.7, 1.6 Hz, 1H), 7.45 (ddd, *J* = 7.5, 4.8, 1.0 Hz, 1H), 6.83 (d, *J* = 8.9 Hz, 1H), 6.61 (dd, *J* = 8.9, 3.0 Hz, 1H), 3.91 (s, 3H), 3.81 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 153.9, 150.3, 148.2, 143.1, 137.6, 128.2, 126.3, 122.3, 111.0, 109.1, 105.8, 56.4, 55.8. HRMS (ESI): Calculated for C₁₄H₁₄N₂O₃⁺: 259.1077 [M+H]⁺, Found: 259.1079.

N-(5-methoxy-[1,1'-biphenyl]-2-yl)picolinamide (2n)

Products **2n** was obtained as a yellow solid, m.p. 131-132 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.63 (s, 1H), 8.39 (d, *J* = 3.8 Hz, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.72 (t, *J* = 6.5 Hz, 3H), 7.33 (s, 4H), 6.96 (d, *J* = 10.0 Hz, 1H), 6.68 (s, 1H), 6.51 (d, *J* = 10.1 Hz, 1H), 3.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 185.7, 162.4, 152.8, 148.9, 148.1, 145.1, 137.4, 135.3, 130.4, 129.9, 129.8, 128.6, 128.0, 126.5, 122.0, 82.6, 50.8. HRMS (ESI): Calculated for C₁₉H₁₆N₂O₂⁺: 305.1285 [M+H]⁺, Found: 305.1289.

N-(4-(methoxy-d3)naphthalen-1-yl)picolinamide (20)

NHPA

Products **20** was obtained as a yellow solid, 70% yield, m.p. 112-113 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.41 (s, 1H), 8.66 (d, *J* = 4.5 Hz, 1H), 8.32 (dd, *J* = 7.3, 6.1 Hz, 2H), 8.12 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.90 (td, *J* = 7.7, 1.6 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.52 – 7.46 (m, 2H), 6.85 (d, *J* = 8.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 152.2, 149.2, 147.1, 136.7, 127.2, 125.8, 125.4, 124.9, 124.3, 124.3, 121.7, 121.4, 119.7, 119.2, 102.5. HRMS (ESI): Calculated for C₁₇H₁₁D₃N₂O₂+: 282.1317 [M+H]⁺, Found: 282.1315.

N-(4-(methoxy-d3)-2-methylnaphthalen-1-yl)picolinamide (2p)

Products **2p** was obtained as a yellow solid, 68% yield, m.p. 152-153 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H), 8.53 (d, *J* = 4.6 Hz, 1H), 8.06 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.72 (td, *J* = 7.7, 1.6 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.50 (td, *J* = 7.7, 1.3 Hz, 1H), 7.41 – 7.36 (m, 2H), 6.53 (d, *J* = 1.3 Hz, 1H), 1.96 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 183.6, 161.8, 153.8, 149.0, 148.2, 141.0, 137.4, 133.2, 132.6, 131.5, 129.0, 126.6, 126.0, 125.9, 122.0, 83.2, 17.2. HRMS (ESI): Calculated for C₁₈H₁₃D₃N₂O₂⁺: 296.1473 [M+H]⁺, Found: 296.1477.

N-(5-(methoxy-d3)-[1,1'-biphenyl]-2-yl)picolinamide (2q)

OCD₃ Ph NHPA

Products **2q** was obtained as a yellow solid, 48% yield, m.p. 127-128 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (s, 1H), 8.42 (d, *J* = 4.2 Hz, 1H), 8.01 (s, 1H), 7.78 – 7.72 (m, 3H), 7.36 (d, *J* = 2.1 Hz, 4H), 6.98 (d, *J* = 10.1 Hz, 1H), 6.70 (s, 1H), 6.53 (d, *J* = 10.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 185.7, 162.4, 152.8, 149.0, 148.1, 145.1, 137.4, 135.3, 130.4, 129.9, 129.8, 128.6, 128.0, 126.5, 122.0, 82.5. HRMS (ESI): Calculated for C₁₉H₁₃D₃N₂O₂⁺: 308.1473 [M+H]⁺, Found: 308.1478.

N-(3,4-dichloro-4-(methoxy-d3)phenyl)picolinamide (2r)

Products **2r** was obtained as a yellow solid, 41% yield, m.p. 130-131 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.38 (s, 1H), 8.63 (d, *J* = 4.0 Hz, 1H), 8.30 (d, *J* = 7.7 Hz, 1H), 7.92 (t, *J* = 7.6 Hz, 1H), 7.52 – 7.48 (m, 1H), 6.67 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 157.3, 148.7, 146.9, 136.7, 136.7, 135.8, 125.4, 121.7, 112.4. HRMS (ESI): Calculated for C₁₃H₇D₃Cl₂N₂O₂⁺: 300.0381 [M+H]⁺, Found: 300.0387.

N-(4-ethoxynaphthalen-1-yl)picolinamide (3a)

Products **3a** was obtained as a yellow solid, 66% yield, m.p. 123-124 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.43 (s, 1H), 8.69 (d, *J* = 4.2 Hz, 1H), 8.36 (dd, *J* = 12.1, 8.1 Hz, 2H), 8.11 (d, *J* = 8.3 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.93 (td, *J* = 7.7, 1.6 Hz, 1H), 7.59 (ddd, *J* = 8.3, 6.9, 1.2 Hz, 1H), 7.54 – 7.49 (m, 2H), 6.87 (d, *J* = 8.3 Hz, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 1.56 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 162.5, 152.6, 150.3, 148.1, 137.7, 128.2, 126.8, 126.4, 126.1, 125.3, 125.1, 122.9, 122.5, 120.7, 120.3, 104.5, 64.0, 14.9. HRMS (ESI): Calculated for C₁₈H₁₆N₂O₂⁺: 293.1285 [M+H]⁺, Found: 293.1283.

N-(4-ethoxynaphthalen-1-yl)-3-methylpicolinamide (3b)

Products **3b** was obtained as a yellow solid, 64% yield, m.p. 128-129 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.59 (s, 1H), 8.50 (d, *J* = 3.9 Hz, 1H), 8.35 (d, *J* = 8.2 Hz, 1H), 8.03 (d, *J* = 8.3 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.51 – 7.47 (m, 1H), 7.37 (dd, *J* = 7.7, 4.6 Hz, 1H), 6.84 (d, *J* = 8.3 Hz, 1H), 4.22 (q, *J* = 6.9 Hz, 2H), 2.82 (s, 3H), 1.54 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 152.5, 147.2, 145.3, 141.4, 136.2, 128.5, 126.7, 126.1, 126.0, 125.5, 125.2, 122.8, 121.0, 120.4, 104.5, 64.0, 20.8, 14.9. HRMS (ESI): Calculated for C₁₉H₁₈N₂O₂⁺: 307.1441 [M+H]⁺, Found: 307.1449.

N-(4-ethoxynaphthalen-1-yl)pyrazine-2-carboxamide (3c)

Products **3c** was obtained as a yellow solid, 60% yield, m.p. 138-139 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.04 (s, 1H), 9.56 (s, 1H), 8.84 (s, 1H), 8.66 (s, 1H), 8.38 (d, *J* = 8.6 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.58 (dd, *J* = 11.3, 4.1 Hz, 1H), 7.53 (d, *J* = 7.3 Hz, 1H), 6.86 (d, *J* = 8.3 Hz, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 1.56 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 161.2, 153.0, 147.5, 144.8, 144.7, 142.5, 128.1, 127.0, 126.1, 125.4, 124.4, 123.1, 120.8, 120.4, 104.3, 64.0, 14.8. HRMS (ESI): Calculated for C₁₇H₁₅N₃O₂⁺: 294.1237 [M+H]⁺, Found: 294.1237.

N-(4-ethoxy-2-methylnaphthalen-1-yl)picolinamide (3d)

Products **3d** was obtained as a yellow solid, 67% yield, m.p. 147-148 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.75 (s, 1H), 8.69 (d, *J* = 4.3 Hz, 1H), 8.34 (d, *J* = 7.7 Hz, 1H), 8.29 (d, *J* = 8.2 Hz, 1H), 7.94 (t, *J* = 7.1 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 1H), 7.53 (dd, *J* = 7.0, 5.0 Hz, 1H), 7.48 (t, *J* = 7.1 Hz, 1H), 7.42 (t, *J* = 7.3 Hz, 1H), 6.74 (s, 1H), 4.23 (q, *J* = 6.9 Hz, 2H), 2.45 (s, 3H), 1.56 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 154.0, 149.9, 148.1, 137.7, 133.5, 131.5, 127.0, 126.5, 125.0, 124.5, 122.8, 122.4, 122.2, 122.1, 107.4, 63.9, 19.2, 14.8. HRMS (ESI): Calculated for C₁₉H₁₈N₂O₂⁺: 307.1441 [M+H]⁺, Found: 307.1444.

N-(5-chloro-4-ethoxynaphthalen-1-yl)picolinamide (3e)

Products **3e** was obtained as a yellow solid, 52% yield, m.p. 167-168 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.74 (s, 1H), 8.40 (d, *J* = 7.5 Hz, 1H), 8.35 (d, *J* = 7.8 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.94 – 7.89 (m, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.51 (td, *J* = 7.0, 4.7 Hz, 2H); 4.20 (q, *J* = 6.9 Hz, 2H), 1.55 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 152.1, 146.1, 144.4, 140.4, 135.2, 127.5, 125.8, 125.0, 124.6, 124.3, 124.0, 121.7, 120.0, 119.4, 102.6, 63.8, 14.8. HRMS (ESI): Calculated for C₁₈H₁₅ClN₂O₂⁺: 327.0895 [M+H]⁺, Found: 327.0898.

N-(5-bromo-4-ethoxynaphthalen-1-yl)picolinamide (3f)

Products **3f** was obtained as a yellow solid, 59% yield, m.p. 175-176 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.70 (s, 1H), 8.36 (d, *J* = 7.5 Hz, 1H), 8.30 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.87 (t, *J* = 7.7 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.48 – 7.43 (m, 2H), 4.16 (q, *J* = 7.0 Hz, 2H), 1.55 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 152.3, 146.3, 144.5, 140.5, 135.3, 127.6, 125.9, 125.1, 124.8, 124.5, 124.1, 121.8, 120.2, 119.5, 102.7, 64.3, 15.1. HRMS (ESI): Calculated for C₁₈H₁₅BrN₂O₂⁺: 371.0390 [M+H]⁺, Found: 371.0394.

N-(4-ethoxy-8-(phenylthio)naphthalen-1-yl)picolinamide (3g)

Products **3g** was obtained as a yellow solid, 70% yield, m.p. 181-182 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.29 (s, 1H), 8.38 (dd, *J* = 8.5, 1.1 Hz, 1H), 8.18 (d, *J* = 4.4 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.92 (d, *J* = 8.3 Hz, 1H), 7.74 (td, *J* = 7.7, 1.6 Hz, 1H), 7.47 (dd, *J* = 8.3, 7.1 Hz, 1H), 7.35 – 7.30 (m, 4H), 7.09 (t, *J* = 7.7 Hz, 2H), 6.91 (t, *J* = 8.4 Hz, 2H), 4.18 (q, *J* = 7.0 Hz, 2H), 1.51 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.9, 152.8, 148.8, 146.1, 142.1, 136.5, 136.0, 130.0, 128.0, 126.9, 126.0, 125.7, 125.3, 124.6, 124.3, 123.3, 123.1, 121.3, 120.9, 102.9, 61.7, 14.7. HRMS (ESI): Calculated for C₂₄H₂₀N₂O₂S⁺: 401.1318 [M+H]⁺, Found: 401.1322.

N-(4-ethoxyphenyl)picolinamide (3h)

Products **3h** was obtained as a yellow solid, 45% yield, m.p. 112-113 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.92 (s, 1H), 8.54 (d, *J* = 4.1 Hz, 1H), 8.24 (d, *J* = 7.5 Hz, 1H), 7.86 (t, *J* = 7.3 Hz, 1H), 7.64 (d, *J* = 8.9 Hz, 2H), 7.43 (dd, *J* = 6.9, 4.8 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.24 (q, *J* = 6.9 Hz, 2H), 1.57 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.4, 155.4, 148.7, 146.6, 137.1, 130.0, 125.4, 121.6, 120.3, 113.2, 63.4, 15.1. HRMS (ESI): Calculated for C₁₄H₁₄N₂O₂⁺: 243.1128 [M+H]⁺, Found: 243.1133.

N-(5-ethoxy-[1,1'-biphenyl]-2-yl)picolinamide (3i)

Products **3i** was obtained as a yellow solid, 48% yield, m.p. 135-136 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (s, 1H), 8.34 (d, *J* = 4.2 Hz, 1H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.67 (dd, *J* = 9.1, 6.1 Hz, 3H), 7.28 (d, *J* = 2.1 Hz, 4H), 6.90 (d, *J* = 10.1 Hz, 1H), 6.62 (s, 1H), 6.45 (d, *J* = 10.1 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 1.53 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 185.6, 162.4, 152.7, 148.9, 148.0, 145.1, 137.3, 135.2, 130.4, 129.9, 129.8, 128.6, 127.9, 126.5, 121.9, 82.4, 62.5, 14.3. HRMS (ESI): Calculated for C₂₀H₁₈N₂O₂+: 319.1441 [M+H]⁺, Found: 319.1445.

N-(4-(2-fluoroethoxy)naphthalen-1-yl)picolinamide (4a)

NHPA

Products **4a** was obtained as a yellow solid, 25% yield, m.p. 119-120 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.48 (s, 1H), 8.70 (d, *J* = 4.1 Hz, 1H), 8.40 (d, *J* = 7.8 Hz, 1H), 8.35 (d, *J* = 7.8 Hz, 1H), 8.16 (d, *J* = 8.3 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.94 (td, *J* = 7.7, 1.7 Hz, 1H), 7.61 (t, *J* = 8.3 Hz, 1H), 7.57 – 7.51 (m, 2H), 6.88 (d, *J* = 8.3 Hz, 1H), 4.98 – 4.85 (m, 2H), 4.47 – 4.39 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.46, 151.90, 150.16, 148.16, 137.72, 128.13, 127.04, 126.46, 126.06, 125.99, 125.60, 122.88, 122.49, 120.67, 119.75, 104.91, 80.00 (d, *J* = 171.4 HZ), 67.74 (d, *J* = 21.4 HZ); ¹⁹F NMR (471 MHz, CDCl₃) δ -224.16. HRMS (ESI): Calculated for $C_{18}H_{15}FN_2O_2^+$: 311.1191 [M+H]⁺, Found: 311.1196.

2. Copies of ¹H and ¹³C NMR Spectra

2a ¹H NMR

2a ¹³C NMR

2c ¹H NMR

 <sup>10.02

 9.53

 8.81

 8.81

 8.82

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.83

 8.93

 8.93

 8.93

 8.93

 8.93

 8.93

 8.93

 8.93

 8.94

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95

 8.95</sup>

2e ¹³C NMR

2f ¹H NMR

2f ¹³C NMR

2i ¹H NMR

21 ¹³C NMR

16 15 14

13

12 11

10

9

7 6 fl (ppm)

5

3.06-

3

2

1

0

-1

-2 -3

4

1.00 1.05 3.02 -1.05 -1.05

8

2n ¹³C NMR

20 13C NMR

2p ¹H NMR

2p ¹³C NMR

2q ¹H NMR

8.64 8.42 8.41 8.41 8.41 7.75 7.75 7.74 7.73 6.09 6.09 6.54 6.54 6.52

14 13

12

11 10

5

2

1

0

-1

3

4

-2

-3

3a ¹³C NMR

7 6 fl (ppm) 15 14 -1 -2 -3

3c ¹³C NMR

3d ¹³C NMR

3e ¹³C NMR

3f ¹³C NMR

3g ¹H NMR

3g ¹³C NMR

3i ¹H NMR

3i ¹³C NMR

1a/1a-d ¹H NMR

