Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

NIS-mediated oxidative arene C(sp²)-H amidation toward 3,4-

dihydro-2(¹H)-quinolinone and phenanthridone derivatives

Lingang Wu, [†] Yanan Hao, [†] Yuxiu Liu, [†] and Qingmin Wang *,[†],[‡]

[†]State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071,

People's Republic of China

Table of Contents

- 1. Unsuccessful substrates (S2)
- 2. NMR spectra (S3-S64)
- 3. The X-ray crystallographic analysis data (S65-S69)
- 4. Analytical data of HRMS (S69)

Unsuccessful substrates

NMR Spectra

¹H NMR spectrum of compound **1b**

¹H NMR spectrum of compound **1c**

¹H NMR spectrum of compound **1h**

S16

$^1\mathrm{H}$ NMR spectrum of compound 1p

¹³C NMR spectrum of compound 1v

¹H NMR spectrum of compound **1ad**

¹H NMR spectrum of compound **2a**

¹H NMR spectrum of compound **2c**

¹H NMR spectrum of compound **2d**

¹H NMR spectrum of compound **2e**

 $^1\mathrm{H}$ NMR spectrum of compound 2j

$^1\mathrm{H}$ NMR spectrum of compound $\mathbf{2p}$

¹H NMR spectrum of compound $\mathbf{2q}$

¹H NMR spectrum of compound **2q**'

¹H NMR spectrum of compound **2r**

 13 C NMR spectrum of compound **2r**

¹H NMR spectrum of compound 2s

¹H NMR spectrum of compound **3**

4. X-ray single crystal data for product

Table 1 Crystal data and structure refinement for 2q.

Identification code	2w
Empirical formula	$C_{16}H_{15}NO$
Formula weight	237.29
Temperature/K	294.15
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	11.7435(14)
b/Å	7.1127(9)
c/Å	15.6205(15)
α/°	90
β/°	95.141(9)

γ/°	90
Volume/ų	1299.5(3)
Z	4
$\rho_{calc}g/cm^3$	1.213
µ/mm⁻¹	0.076
F(000)	504.0
Crystal size/mm ³	0.24 × 0.22 × 0.12
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	6.704 to 56.558
Index ranges	$-14 \le h \le 15, -8 \le k \le 9, -20 \le l \le 20$
Reflections collected	19218
Independent reflections	3232 [R _{int} = 0.0669, R _{sigma} = 0.0513]
Data/restraints/parameters	3232/0/164
Goodness-of-fit on F ²	1.016
Final R indexes [I>=2σ (I)]	R ₁ = 0.0514, wR ₂ = 0.1214
Final R indexes [all data]	$R_1 = 0.1112$, $wR_2 = 0.1472$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.15

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for m20190311c. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U₁₁ tensor.

Atom	x	У	Z	U(eq)
01	5735.0(12)	7814(2)	4644.9(8)	75.2(5)
N1	5401.7(11)	6503(2)	3334.8(8)	45.9(4)
C1	5146.0(15)	7736(3)	3963.2(11)	51.6(4)
C2	4096.5(16)	8901(3)	3764.4(11)	57.9(5)
C3	3938.3(17)	9489(3)	2831.6(11)	58.1(5)
C4	4022.8(13)	7826(2)	2246.2(10)	44.3(4)
C5	4749.0(13)	6362(2)	2523.8(10)	42.4(4)
C6	4864.2(16)	4792(3)	2004.5(11)	53.5(5)
C7	4262.0(17)	4718(3)	1202.6(12)	60.4(5)
C8	3560.9(16)	6178(3)	918.4(11)	59.6(5)
С9	3427.4(15)	7739(3)	1429.0(11)	52.6(5)
C10	2652.9(19)	9318(4)	1099.6(14)	79.5(7)
C11	6364.3(15)	5266(3)	3538.3(10)	49.3(4)
C12	6205.3(19)	3555(3)	3920.0(12)	64.4(5)
C13	7141(3)	2404(4)	4118.2(13)	85.7(8)
C14	8208(3)	2968(5)	3948.5(16)	99.1(10)

C15	8359(2)	4682(5)	3577.7(17)	98.5(9)
C16	7432.3(17)	5831(4)	3361.0(13)	71.5(6)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for m20190311c. The Anisotropic displacement factorexponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	81.4(10)	87.3(11)	52.9(8)	-24.8(7)	-16.6(7)	21.7(8)
N1	48.2(8)	48.6(9)	40.0(7)	-6.0(6)	-1.3(6)	6.4(6)
C1	55.4(10)	52.5(11)	45.7(9)	-10.7(8)	-1.5(8)	3.7(9)
C2	58.3(11)	59.9(12)	54.9(10)	-16.7(9)	1.9(8)	7.8(9)
C3	61.1(11)	54.1(12)	57.9(11)	-7.5(9)	-2.1(8)	11.3(9)
C4	41.7(9)	45.4(10)	45.7(9)	-2.1(7)	2.7(7)	-3.9(7)
C5	42.8(9)	44.6(10)	39.6(8)	-3.1(7)	2.7(6)	-5.7(7)
C6	63.1(11)	45.8(11)	51.3(10)	-6.7(8)	3.7(8)	-1.3(9)
C7	74.6(13)	56.0(12)	49.9(10)	-15.5(9)	2.0(9)	-14.6(11)
C8	61.7(12)	69.5(14)	45.7(10)	-6.4(9)	-5.9(8)	-16.4(10)
C9	47.2(10)	58.4(12)	51(1)	1.0(9)	-3.4(7)	-8.6(9)
C10	77.5(15)	88.0(18)	68.4(13)	3.3(12)	-19.3(11)	11.9(13)
C11	54.7(11)	55.2(11)	37.4(8)	-3.1(8)	1.1(7)	11.6(9)
C12	81.2(14)	58.8(13)	52.1(10)	2.8(9)	0.2(9)	9.2(11)
C13	132(2)	69.1(16)	54.0(12)	7.1(11)	-4.0(13)	36.2(16)
C14	101(2)	132(3)	63.0(14)	-4.6(15)	0.7(13)	70(2)
C15	66.6(15)	144(3)	86.8(17)	15.3(18)	18.9(12)	39.6(17)
C16	59.4(13)	87.5(16)	68.9(13)	10.4(12)	13.4(10)	15.3(12)

Table 4 Bond Lengths for m20190311c.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.218(2)	C6	C7	1.383(3)
N1	C1	1.369(2)	C7	C8	1.374(3)
N1	C5	1.424(2)	C8	C9	1.384(3)
N1	C11	1.445(2)	C9	C10	1.506(3)
C1	C2	1.494(3)	C11	C12	1.375(3)
C2	C3	1.511(3)	C11	C16	1.369(3)
C3	C4	1.504(2)	C12	C13	1.383(3)
C4	C5	1.390(2)	C13	C14	1.364(4)
C4	C9	1.401(2)	C14	C15	1.368(4)
C5	C6	1.394(2)	C15	C16	1.378(3)

Table 5	Bond	Angles	for	m20	1903	311c.
---------	------	--------	-----	-----	------	-------

Atom Atom Atom Angle/°		Atom	Atom	Atom	Angle/°		
C1	N1	C5	123.19(14)	C7	C6	C5	119.30(18)
C1	N1	C11	116.72(13)	C8	C7	C6	120.42(18)
C5	N1	C11	120.06(13)	C7	C8	C9	121.05(16)
01	C1	N1	120.80(16)	C4	C9	C10	121.01(17)
01	C1	C2	123.33(16)	C8	C9	C4	119.16(18)
N1	C1	C2	115.84(14)	C8	C9	C10	119.83(17)
C1	C2	C3	112.43(14)	C12	C11	N1	120.00(17)
C4	C3	C2	111.07(16)	C16	C11	N1	119.33(17)
C5	C4	C3	118.12(14)	C16	C11	C12	120.66(19)
C5	C4	C9	119.57(16)	C11	C12	C13	119.0(2)
C9	C4	C3	122.27(16)	C14	C13	C12	120.5(2)
C4	C5	N1	119.42(14)	C13	C14	C15	120.0(2)
C4	C5	C6	120.47(15)	C14	C15	C16	120.2(3)
C6	C5	N1	120.09(15)	C11	C16	C15	119.6(2)

Table 6 Torsion Angles for m20190311c.

A B	С	D	Angle/°	Α	В	С	D	Angle/°
01 C1	C2	C3	144.9(2)	C 5	N1	C11	C16	91.9(2)
N1 C1	C2	C3	-37.0(2)	C 5	C4	C9	C8	1.0(2)
N1 C5	C6	C7	-177.14(16)	C5	C4	C9	C10	-178.67(17)
N1 C11	. C12	2 C13	-179.25(16)	C5	C6	C7	C8	0.3(3)
N1 C11	C16	6 C15	178.02(19)	C 6	C7	C8	C9	-0.9(3)
C1 N1	C5	C4	18.2(2)	C7	C8	C9	C4	0.3(3)
C1 N1	C5	C 6	-163.59(16)	C7	C8	C9	C10	179.99(19)
C1 N1	C11	C12	88.8(2)	C9	C4	C5	N1	176.50(15)
C1 N1	C11	C16	-90.0(2)	C9	C4	C5	C 6	-1.7(2)
C1 C2	C3	C4	50.8(2)	C11	N1	C1	01	2.5(3)
C2 C3	C4	C5	-32.2(2)	C11	N1	C1	C2	-175.60(16)
C2 C3	C4	C9	149.91(16)	C11	N1	C5	C4	-163.89(15)
C3 C4	C5	N1	-1.4(2)	C11	N1	C5	C6	14.3(2)
C3 C4	C5	C6	-179.64(16)	C11	C12	C13	C14	0.9(3)
C3 C4	C9	C8	178.89(17)	C12	C11	C16	C15	-0.8(3)
C3 C4	C9	C10	-0.8(3)	C12	C13	C14	C15	-0.1(4)
C4 C5	C 6	C7	1.1(3)	C13	C14	C15	C16	-1.1(4)
C5 N1	C1	01	-179.47(18)	C14	C15	C16	C11	1.6(4)

C5 N1 C	C1 C2	2.4(2) C16 C11 C12 C13	-0.4(3)
C5 N1 C	C11 C12	-89.23(19)	

Table / Hydrogel	Table 7 Hydrogen Atom Coordinates (A×10 ⁻) and isotropic Displacement Parameters (A×10 ⁻) for m20190311C.						
Atom	x	у	Z	U(eq)			
H2A	4145.89	10015.38	4123.64	69			
H2B	3433.18	8187.35	3902.48	69			
H3A	3196.06	10078.76	2714.3	70			
H3B	4518.71	10404.48	2719.31	70			
H6	5340.89	3805.64	2195.14	64			
H7	4332.04	3672.52	853.49	72			
H8	3169.97	6116.57	374.42	72			
H10A	2044.48	9459.39	1466.11	119			
H10B	2337.56	9035.33	525.77	119			
H10C	3083.02	10465.41	1097.16	119			
H12	5479.38	3177.98	4042.98	77			
H13	7041.42	1236.55	4369.09	103			
H14	8832.63	2186.5	4084.9	119			
H15	9088.36	5073.3	3471.62	118			
H16	7532.39	6982.96	3096.09	86			

5. Analytical data of HRMS

When 2.0 eq TEMPO or BHT was added to the above reaction mixture, the reaction was inhibited. When 2.0 eq BHT was added to the reaction of **1a**, the reaction was monitored by mass spectrometry experiment. The HRMS showed a peak at 444.2898, which corresponds to the product of the radical captured by BHT. So we think this is a radical mechanism.

The mass spectra of the reaction of 1a with NIS.

