Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Catalyst- and reagent- free 1,6-hydrophosphonylation of *p*-quinone methides: a practical approach for the synthesis of diarylmethyl phosphine oxides

Yogesh N. Aher^{*a*} and Amit B. Pawar^{**a,b*}

^aDepartment of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

Email: amitorgchem@gmail.com, amit@iict.res.in

Table of Content		S-1
2.	Experimental Procedure of the Optimization Study	S-2
3.	Mechanistic Experiments	S-3
8.	Appendix	S-4
	Spectral Copies of ¹ H and ¹³ C NMR of Compounds Obtained in this Study	

2. Experimental Procedure of the Optimization Study

To a screw capped vial with a spinvane triangular-shaped Teflon stirbar were added *p*quinone methide **1a** (29.4 mg, 0.10 mmol), diphenylphosphine oxide **2a** (30.3 mg, 0.15 mmol), and solvent (0.6 mL). The reaction mixture was stirred at 80 °C for indicated time. (in case of H₂O as a solvent, after the heating the reaction mixture for indicated time, it was extracted with ethyl acetate (2×5 mL) and the extracts were dried over NaSO₄). Afterwards, the reaction mixture was concentrated under reduced pressure and crude yield was measured by ¹H NMR using an internal standard (1,1,2,2-tetrachloroethane).

Table S1. Optimization of the Catalyst- and Reagent- free 1,6-Hydrophosphonylation of p-Quinone Methides a

^{*a*}Reaction conditions: **1a** (0.10 mmol), **2a** (0.15 mmol) in solvent (0.6 mL) at indicated temperature for 8 h. ^{*b*}Isolated yields are based on crude ¹H NMR (internal standard: 1,1,2,2 tetrachloroethane). ^{*c*}Under 1 atm of O₂ (ballon). ^{*d*}Reaction run for 12 h. ^{*e*}Yield in the parentheses indicates isolated yield.

3. Mechanistic Experiments

Radical Trap Experiments

To a screw capped vial with a spinvane triangular-shaped Teflon stirbar were added pquinone methide **1a** (29.4 mg, 0.10 mmol), diphenylphosphine oxide **2a** (30.3 mg, 0.15 mmol). Then Radical Scavengers such as BHT (44.0 mg, 0.2 mmol) or and 1,1diphenylethylene (36.1 mg, 0.2 mmol), and H₂O (0.6 mL) were added. The reaction mixture was stirred at 80 °C for 12 h. After indicated time, the reaction mixture was cooled to room temperature & extracted with ethyl acetate (2 × 10 mL) and the extract was dried over NaSO₄. Then the solvent was removed under reduced pressure and crude yield was measured by ¹H NMR using an internal standard (1,1,2,2-tetrachloroethane).

Appendix

Spectral Copies of ¹H and ¹³C NMR of Compounds Obtained in this study

