< Supporting Information >

Phenotype-based Discovery of a HeLa-Specific Cytotoxic

Molecule that Downregulates HPV-mediated Signaling Pathways

via Oxidative Damage

Sanghee Lee^{1),†}, Wansang Cho^{2),†}, Sungyoul Hong³⁾, Sihyeong Yi²⁾, Heejun Kim²⁾, Soo Yeon

Baek^{1),4)}, Hankum Park²⁾, Jinjoo Jung⁵⁾, Young Kee Shin³⁾, Seung Bum Park^{*,2),5)}

1) Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea

2) CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea

3) Department of Pharmacy, Seoul National University, Seoul 08826, Korea

4) Department of Chemistry, Sogang University, Seoul 04107, Korea

5) Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea

Contents

I.	Supplementary Figures and Table	2
II.	General Information for Biological Experiments	10
III.	Synthetic Procedures and Characterization of New Compounds	12
IV.	¹ H and ¹³ C NMR Spectra	21
V.	HPLC Spectra for Compound Purity	39
VI.	Reference	40

1 (SB2001) 2 13 14 e 293T ● HeLa 293T HeLa 293T HeLa Cell viability (%) (%) viability (%) Cell viability (% ŤΤ) 1-الإس] Log i i [//س] Log Log JuM Mul po 3 15 16 4 ≡ 293T ● HeLa m 293T • HeLa n 293T ● HeLa ≡ 293T • HeLa Cell viability (%) Cell viability ell vi ŝ الابر] Log أ 4. [الاس] Log ألأس Log [الأس 0 [//س[_0 6 17 5 18 293T HeLa e 293⊺ ● HeLa 293T HeLa ≡ 293T • HeLa -Cell viability (%) Cell viability (%) Cell viability (%) iability (%) Ŧ ŤŤ i i [الأسر] Log i i [الإس]Log 0 1-1 [Mيس] Log -i v Log[µM] 7 8 19 20 = 293T • HeLa 293T HeLa e 293⊺ ● HeLa ≡ 293T ● HeLa Cell viability (%) Etv (%) Cell viability (%) 卦 11 Ŧ Ħ **Cell viability** ŤŤ **Sell viabil** -1 [الأسر] Log 0-1 0 [الأسم] Log -1 о́ Log [Ми] i i [الاسر] Log 9 10 21 22 15 ≡ 293T ● HeLa ≡ 293T • HeLa e 293⊺ ● HeLa 293T HeLa viability (%) Cell viability (%) (%) Cell viability (%) Cell vabilit ĺ .1 0 [الأسر] Log -1 0 [الأسر] Log 0۔ [ا¥س[]Log i i [الاس] Log 11 12 23 ≡ 293T • HeLa e 293⊺ e HeLa = 293T ● HeLa Cell viability (%) ability (%) Cell viability (%) ŦŢ 筆 ŦŢŢŢŢ Ē 0+ -1 0 Log[µM] 1 0 [Mu]Log 1 0 [الاس] Log

I. Supplementary Figures and Table

Fig. S1. Investigation of dose-responses for pyrazolopyridine analogs in this focused library. Cell viability was measured after 72-h incubation of indicated compounds in HeLa (black) or 293T cells (gray). IC_{50} values were listed in Figure 2c. Graphs were fitted by the mean and S.D. and data represented at least two independent experiments.

Fig. S2. Mechanistic elucidation of SB2001-induced HeLa cell death. (a) SB2001 showed no effect on apoptosis and p53 in 293T cells. Western blot analysis for caspase-3, caspase-9, and PARP. Cells were treated with SB2001 for 72 h. (b) Cells were incubated with SB2001 for 24 h, then subjected to western blot analysis for p53. Data represented in two independent experiments. (c) SB2001 suppressed E6 downstream signaling in HeLa cells. Cells were treated with SB2001 (10 μ M). Western blot analysis for phospho-paxillin (p-Pax) and paxillin (Pax). Data represented in two independent experiments.

Fig. S3. SB2001-mediated suppression of HPV oncoproteins were independent by gene expression and protein degradation in HeLa cells. (a, b) The fold-changes in gene expression were analyzed by qPCR upon SB2001 treatment for 24 h or with 10 μ M, respectively. qPCR data were normalized to GAPDH expression for each sample. Graphs depicted with RQ (relative quantification) and RQ_{min}/RQ_{max}. (c) Co-treatment test of SB2001 with bortezomib, a proteasome inhibitor, in HeLa cells. Cells were incubated with SB2001 (10 μ M) for 24 h in the presence or absence of bortezomib, then subjected to western blotting for E6 and E7. (d) Co-treatment test of SB2001 with bafilomycin A, a late-stage autophagy inhibitor. Cells were incubated with SB2001 for 24 h in the presence or absence of bafilomycin A (nM), then subjected to western blotting for E7. Data represented in two independent experiments. (e) Western blot analysis for LC3. Cells were incubated with SB2001 for 24 h for analysis. Single- and double-arrow heads indicated LC3 I and LC3 II, respectively.

No	Kinase	No	Kinase	No	Kinase	No	Kinase	No	Kinase
1	ABL 1	61	Ck1a 3	121	GSK3b	181	MST3/STK24	241	RAF1
2	ABL2/ARG	62	CK1a1	122	Haspin	182	MST4	242	RET
3		63	CK2a	123	НСК	183	MUSK	243	RIPK2
		64	CK2a2	120		184	NEK1	240	RIPK5
5		65	CLK1	125	HIPK2	185	NEK11	245	ROCK1
6		66	CLK3	126	HIPK3	186	NEK2	246	ROCK2
		67	CLK4	127		187	NEK3	247	RON/MST1R
		68	CLK2	120	HIPK1	188	NEK4	247	ROS/ROS1
H a		60	COT1/MAP3K8	120	IGE1R	180	NEK6	240	RSK1
10	ALK4/ACVR1B	70	CSK	130	IKKa/CHLIK	190	NEK7	250	RSK2
11	ALK5/TGEBR1	71		131	IKKb/IKBKB	191	NEK9	251	RSK3
12	ARAF	72		132	IKKe/IKBKE	192	NIK/MAP3K14	252	RSK4
13	ARK5/NUAK1	73	DAPK2	133	IR	193	NIK	253	SGK1
14	ASK1/MAP3K5	74	DCAMKI 2	134	IRAK4	194	OSR1/OXSR1	254	SGK2
15		75	DDR2	135	IRAK1	195	P38a/MAPK14	255	SGK3/SGKI
16	Aurora B	76	DMPK	136	IRR/INSRR	196	P38b/MAPK11	256	SIK2
17	Aurora C	77	DRAK1/STK17A	137	ITK	197	P38d/MAPK13	257	SI K/STK2
18	Allora O	78		138	JAK1	198	P38g	258	SNARK/NUAK2
19	BLK	79	DYRK1B	139		199	p70S6K/RPS6KB1	259	SRMS
20	BMX/FTK	80	DYRK2	140	.IAK3	200	p70S6Kb/RPS6KB2	260	SRPK1
21	BRAF	81	DYRK3	141	JNK1	201	PAK1	261	SRPK2
22	BRK	82	DYRK4	142	JNK2	202	PAK2	262	STK16
23	BRSK1	83	FGER	143	JNK3	203	PAK3	263	STK22D/TSSK1
24	BRSK2	84	FPHA1	144	KDR//EGER2	204	ΡΔΚ4	264	STK25/YSK1
25	BTK	85	EPHA2	145	KHS/MAP4K5	205	PAK5	265	STK33
26	c-Kit	86	FPHA3	146	I CK	206	PAK6	266	STK39/STLK3
27	c-MER	87	EPHA4	147		207	PASK	267	SYK
28	c-MET	88	EPHA5	148		208	PBK/TOPK	268	
29	C-Src	89	FPHA7	149	LOK/STK10	209	PDGERa	269	TAOK1
30	CAMK1a	90	FPHA8	150	I RRK2	210	PDGFRb	270	
31	CAMK1b	91	FPHR1	151	I YN	211	PDK1/PDPK1	271	TAOK3/JIK
32	CAMK1d	92	FPHB2	152	I YN B	212	PHKa1	272	TBK1
33	CAMK1a	93	EPHB3	153	MAPKAPK2	213	PHKa2	273	TEC
34	CAMK2a	94	EPHB4	154	MAPKAPK3	214	PIM1	274	TGFBR2
35	CAMK2b	95	FRBB2 HFR2	155	MAPKAPK5/PRAK	215	PIM2	275	TIE2/TEK
36	CAMK2d	96	ERBB4/HER4	156	MARK1	216	PIM3	276	TRKA
37	CAMK2a	97	ERK1	157	MARK2/PAR-1Ba	217	PKA	277	TRKB
38	CAMK4	98	ERK2/MAPK1	158	MARK3	218	PKCa	278	TRKC
39	CAMKK1	99	FAK/PTK2	159	MARK4	219	PKCb1	279	TSSK2
40	CAMKK2	100	FER	160	MEK1	220	PKCb2	280	TTK
41	CDK1/cyclin A	101	FES/FPS	161	MEK2	221	PKCd	281	TXK
42	CDK1/cyclin B	102	FGFR1	162	MEKK2	222	PKCepsilon	282	TYK/LTK
43	CDK2/cyclin A	103	FGFR2	163	MEKK3	223	PKCeta	283	TYK2
44	CDK2/cyclin E	104	FGFR3	164	MELK	224	PKCg	284	TYRO3/SKY
45	CDK3/cyclin E	105	FGFR4	165	MINK/MINK1	225	PKCiota	285	ULK1
46	CDK4/ cyclin D1	106	FGR	166	MKK6	226	PKCmu/PRKD1	286	ULK2
47	CDK4/cyclin D3	107	FLT1/VEGFR1	167	MLCK/MYLK	227	PKCnu/PRKD3	287	VRK1
48	CDK5/p25	108	FLT3	168	MLCK2/MYLK2	228	PKCtheta	288	WEE1
49	CDK5/p35	109	FLT4/VEGFR3	169	MLK1/MAP3K9	229	PKCzeta	289	WNK2
50	CDK6/cyclin D1	110	FMS	170	MLK2/MAP3K10	230	PKD2/PRKD2	290	WNK3
51	CDK6/cyclin D3	111	FRK/PTK5	171	MLK3/MAP3K11	231	PKG1a	291	YES/YES1
52	CDK7/cyclin H	112	FYN	172	MNK1	232	PKG1b	292	ZAK/MLTK
53	CDK9 cyclin K	113	GCK/MAP4K2	173	MNK2	233	PKG2/PRKG2	293	ZAP70
54	CDK9 cyclin T1	114	GRK2	174	MRCKs/CDC42BPA	234	PKN1/PRK1	294	ZIPK/DAPK3
55	CHK1	115	GRK3	175	MRCKb/CDC42BPB	235	PKN2/PRK2		
56	CHK2	116	GRK4	176	MSK1/RPS6KA5	236	PLK1		
57	CK1a1	117	GRK5	177	MSK2/RPS6KA4	237	PLK2		
58	CK1d	118	GRK6	178	MSSK1/STK23	238	PLK3		
59	CK1epsilon	119	GRK7	179	MST1/STK4	239	PRKX		
60	Ck1a2	120	GSK3a	180	MST2/STK3	240	PYK2		

Table S1. Kinase activity profiling of SB2001. Inhibitory effect of SB2001 was examined against 294kinases with 10 μ M of SB2001 in duplicate. Kinases were listed in table.

Fig. S4. Invalidation for MNK2 as a direct target for SB2001. (a) Heat map of kinase activity profiling about SB2001. Heat map indicates enzyme activity (%) compared to DMSO control. Rows indicate different kinases aligned in an alphabetic order listed in the Table S1 and columns show in a replicate result. Activity in out of range due to over 100 % was displayed in dark red. (b) Dose-response of SB2001 for MNK2 activity in *in vitro* kinase assay. Staurosporine was used as a positive control. (c) Knockdown of MNK2. Western blotting of cell lysate after vehicle, scramble siRNA (NC), or si-MNK2 transfection for 48 h in HeLa cells. (d) Evaluation of SB2001-induced cytotoxicity against HeLa cells under MNK2 knockdown. Cells were transfected with indicated siRNA for 48 h and incubated with SB2001 in last 24 h, then viability was measured. Bar graph depicts the mean and S.D. Data represented in two independent experiments.

Fig. S5. SB2001-induced cytotoxicity and perturbation of HPV oncoprotein signaling are specific in HeLa cells. (a) Dose-response for SB2001 against various HPV-positive cancer cell lines. Graph depicts the mean and S.D. (b) Western blot analysis for HPV18 E7 in HeLa and SW756 cell line. Cells were incubated with SB2001 for 48 h, then subjected to western blotting. Data represented in two independent experiments.

Fig. S6. Plasma concentration and pharmacokinetic parameters of SB2001 for pharmacokinetic study. Graph depicts the mean and S.D.

Fig. S7. Mechanistic figure of SB2001-induced cytotoxicity in HeLa cell.

II. General Information for Biological Experiments

Mice and cells. Hsd:ICR (CD-1[®]) mice and Koat:Athymic NCr-nu/nu mice were from KOATECH [Pyeongtaek, Korea]. Human HeLa (CCL-2), human CaSki (CRL-1550), human ME-180 (HTB-33), human C-4 II (CRL-1595), human SW756 (CRL-10302), human SiHa (HTB-35), human C-33A (HTB-31), human HCT116 (CCL-247), human SW480 (CCL-228), human MCF7 (HTB-22), human DU145 (HTB-81), human PC3 (CRL-1435), human U266B1 [u266] (TIB-196), human 293T (CRL-3216), rat L6 (CRL-1456), mouse NIH/3T3 (CRL-1658), and mouse Raw264.7 (TIB-71) cell lines were from ATCC [Manassas, VA].

Kits, reagents, and antibodies. Dulbecco's modified eagle medium (DMEM), RPMI 1640 medium, heat-inactivated fetal bovine serum (FBS), and antibiotic-antimycotic solution were purchased from Gibco, Invitrogen [Karlsbad, CA]. Phosphate-buffered saline (PBS) was purchased from WELGENE [Gyeongsan, Korea]. 100-mm cell culture dish, T-75 flask, transparent 96-well plate, and transparent 6well plate were purchased from CORNING [Corning, NY]. Confocal dish was purchased from SPL Life Science [Pocheon, Korea]. DMSO was purchased from Acros Organics [Waltham, MA]. Triton-X-100 and staurosporine were purchased from Sigma-Aldrich [St. Louis, MO]. Propidium iodide was purchased from Calbiochem [Burlington, MA]. Ez-Cytox reagent for WST assay was purchased from Daeil Bio Co. Ltd. [Seoul, Korea] SDS-PAGE equipments and polyvinylidene difluoride (PVDF) membrane were purchased from Bio-Rad [Hercules, CA]. Amersham ECL prime western blotting detection system (Amersham ECL prime solution) was purchased from GE Healthcare Life Science [Chicago, IL]. To measure the protein concentration of cell lysate, Micro BCATM protein assay kit was purchased from PIERCE [Waltham, MA]. Hoechst 33342 reagent for nucleus staining was purchased from Life Technologies [Karlsbad, CA]. Kapa SYBR Green 2× ABI Prism reagent was purchased from Kapa Biosystems [Wilmington, MA]. RNase A for cell cycle analysis and RNeasy mini kit for RNA extraction were purchased from QIAGEN [Hilden, Germany]. Accupower cyclescript RT premix (dT20) and all the qPCR primers, scramble siRNA (negative control) and targeted siRNAs were purchased from Bioneer Inc [Daejeon, Korea]. Lipofectamine RNAiMAX was purchased from ThermoFisher Scientific [Waltham, MA]. Anti-GAPDH (#2118), anti-B-Actin (#4970), anti-caspase-9 (human specific) (#9502), anti-caspase-3 (#9662), anti-cleaved caspase-3 (#9664), anti-PARP (#9532), anti-p53 (#2527), anti-paxillin (#2542), and anti-phospho-paxillin (Tyr118) (#2541) antibodies were from Cell Signaling Technology [Danvers, MA]. Anti-p21 (ab18209), anti-HPV16 E6+HPV18 E6 (ab70), anti-HPV18 E7 (ab100953), anti-LC3B (ab51520), anti-MNK2 (ab84345), and TRITC goat anti-rabbit secondary antibody (ab6718) were from Abcam [Cambridge, UK].

siRNA ¹	Sense	Antisense		
HPV18 E7 #1	5'-CAACCGAGCACGACAGGAA-3'	5'-UUCCUGUCGUGCUCGGUUG-3'		
HPV18 E7 #2	5'-CCAACGACGCAGAGAAACA-3'	5'-UGUUUCUCUGCGUCGUUGG-3'		

siRNA and qPCR primer sequences. siRNA and qPCR primers were designed from references;

qPCR primer ²	Forward	Reverse			
HPV18 E6	5'-GCGACCCTACAAGCTACCTG-3'	5'-GTTGGAGTCGTTCCTGTCGT-3'			
HPV18 E7	5'-GCATGGACCTAAGGCAACAT-3'	5'-TGTTGCTTACTGCTGGGATG-3'			

Instruments and programs. Measurement of absorbance in 96-well plates for WST assay was performed with Synergy HT microplate reader from BioTek [Winooski, VT]. Transfer of protein from SDS-PAGE gel to PVDF membrane was performed with Transblot Turbo from Bio-Rad [Hercules, CA]. Chemiluminescence detection for western blot was performed with ChemiDocTM MP from Bio-Rad. Quantification of chemiluminescence was done with ImageLab 4.0 software from Bio-Rad. Flow cytometry for cell cycle analysis was performed with BD FACSAria II from BD Bioscience [San Jose, CA], equipped with 488-nm coherent sapphire laser. Immunofluorescence imaging was carried out with Olympus Inverted Microscope Model IX71, equipped for epi-illumination using a halogen bulb (Philips No. 7724). Emission signal of each experiment was observed at two spectral settings: blue channel, using a 330-385 nm band pass exciter filter, a 400 nm center wavelength chromatic beam splitter, a 420-nm long pass barrier filter (Olympus filter set U-MWU2); and red channel using a 510-550 nm band pass exciter filter, a 570 nm center wavelength chromatic beam splitter, a 590-nm long pass barrier filter (Olympus filter set U-MWG2). Emission signal of each experiment was detected with 12.5M pixel recording digital color camera (DP71) from Olympus [Tokyo, Japan]. Brightfield imaging was performed with ZoeTM Fluorescent Cell Imager from Bio-Rad [Hercules, CA]. RNA quantification before qPCR was conducted with NanoView from GE Healthcare [Chicago, IL]. Quantitative PCR was performed with StepOne Plus Real-Time PCR System from Applied Biosystems [Foster City, CA]. Pharmacokinetic parameters were obtained after the analysis of plasma concentration-time plot with WinNonlin software from Pharsight [St. Louis, MO]. Provided graphs were analyzed and displayed using GraphPad Prism 5 from GraphPad Software [La Jolla, CA].

III. Synthetic Procedures and Characterization of New Compounds

Compound 1 (SB2001), 5-chloro-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 6-chloroindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product was precipitated out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was further purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. NMR spectra of this compound was previously reported.¹⁰ R_f=0.3 (EA:Hexane:MeOH=20:20:1), HRMS (ESI+) *m/z* cald for C₁₃H₁₂ClN₄⁺ [M+H]⁺: 259.0745; Found: 259.0744.

Compound 6, 2-(1-butyl-3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of N-Boc-indole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction, the solution was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtered solid was dissolved into DMF (100 mM), and to the solution was added NaH (1.2 equiv.). After 10 min of stirring, the reaction mixture was treated with n-BuBr (1.2 equiv.) and stirred at the ambient temperature for 2 h. After the reaction completion monitored by TLC the reaction mixture was quenched with ddH₂O and the organic phase was extracted with EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄ (s) and the filtrate was concentrated under reduced pressure. Without purification, the crude mixture was dissolved into 20 % trifluoroacetic acid (TFA) in acetone (100 mM), and stirred at the ambient temperature until the full conversion of the starting material. The remaining TFA was removed by azeotropic evaporation with toluene, and the crude mixture was purified by silica-gel flash column chromatography using **EtOAc** in hexane as eluent system. $R_{f}=0.2$ (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO- d_6) δ 8.52 (d, J = 1.2 Hz, 1H), 8.13 (d, J = 1.2Hz, 1H), 7.12 (m, 2H), 6.86 (d, J = 4.8 Hz, 1H), 6.74 (s, 1H), 4.46 (br s, 1H),

4.43 (d, J = 4.2 Hz, 2H), 2.05 (s, 3H), 1.91 (t, 2H), 1.35 (dd, 2H), 0.95 (t, 3H); ¹³C NMR (75 MHz, DMSO- d_6) δ 149.5, 149.4, 140.1, 131.0, 129.6, 129.3, 128.8, 128.2, 124.1, 117.7, 115.7, 114.9, 46.1, 31.9, 22.3, 13.4, 11.7; LRMS (ESI+) m/z cald for C₁₇H₂₁N₄⁺ [M+H]⁺: 281.18; Found: 281.10.

Compound 7, 3-bromo-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 4-bromoindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product was precipitated out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.28 (s, 1H), 8.21 (d, *J* = 1.2 Hz, 1H), 8.04 (d, *J* = 1.2 Hz, 1H), 7.01 (t, 1H), 6.88 (dd, 1H), 6.77 (t, 1H), 4.96 (br s, 2H), 2.51 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 152.4, 150.8, 149.4, 141.8, 131.5, 130.7, 126.7, 125.6, 123.8, 120.0, 114.9, 114.4, 12.9; LRMS (ESI+) *m/z* cald for C₁₃H₁₂BrN₄⁺ [M+H]⁺: 303.02; Found: 302.95.

Compound 8, methyl 3-amino-2-(3-methyl-1*H*-pyrazolo[3,4-b]pyridin-5-yl)benzoate

To a solution of 3-formylindole-4-carboxylic acid methyl ester and 3-amino-5methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f=0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.20 (br s, 1H), 8.17 (d, *J* = 0.6 Hz, 1H), 7.96 (s, 1H), 7.20 (t, 1H), 7.04 (d, *J* = 4.8 Hz, 1H), 6.97 (d, *J* = 4.8 Hz, 1H), 4.88 (br s, 2H), 3.39 (s, 3H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.4, 152.1, 150.0, 147.9, 141.4, 132.5, 130.0, 128.8, 125.8, 122.8, 118.3, 117.5, 114.4, 52.0, 12.7; LRMS (ESI+) *m/z* cald for C₁₅H₁₅N4O₂⁺ [M+H]⁺: 283.12; Found: 283.05.

Compound 9, 2-(3-methyl-1*H*-pyrazolo[3,4-b]pyridin-5-yl)-3-nitroaniline

To a solution of 4-nitroindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a yellow solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using MeOH in dichloromethane (DCM) with 1 % triethylamine (TEA) as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.33 (br s, 1H), 8.25 (d, *J* = 3.3 Hz, 1H), 8.08 (d, *J* = 3.3 Hz, 1H), 7.31 (t, 1H), 7.11 (dd, 1H), 7.05 (s, 1H), 5.34 (br s, 2H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 152.4, 151.7, 149.7, 130.6, 129.6, 122.1, 118.8, 115.7, 114.7, 110.9, 12.7; LRMS (ESI+) *m/z* cald for C₁₃H₁₂N₅O₂⁺ [M+H]⁺: 270.10; Found: 270.05.

Compound 10, 4-chloro-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 5-chloroindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.24 (br s, 1H), 8.45 (s, 1H), 8.18 (s, 1H), 7.09 (d, *J* = 4.8 Hz, 1H), 7.06 (s, 1H), 6.77 (d, *J* = 4.8 Hz, 1H), 5.08 (br s, 2H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 151.7, 149.1, 145.1, 141.3, 129.9, 129.4, 128.0, 126.3, 124.7, 119.7, 116.6, 114.0, 12.2; LRMS (ESI+) *m/z* cald for C₁₃H₁₂ClN₄⁺ [M+H]⁺: 259.07; Found: 259.05.

Compound 11, 4-bromo-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 5-bromoindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction

monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.24 (br s, 1H, 8.45 (s, 1H), 8.18 (s, 1H), 7.21 (d, *J* = 1.2 Hz, 1H), 7.20 (s, 1H), 6.73 (d, *J* = 5.1 Hz, 1H), 5.12 (br s, 2H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 159.5, 145.9, 133.1, 131.3, 129.8, 126.7, 125.7, 117.5, 107.5, 12.7; LRMS (ESI+) *m/z* cald for C₁₃H₁₂BrN₄⁺ [M+H]⁺:303.02 Found: 303.00.

Compound 12, 5-fluoro-2-(3-methyl-1*H*-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 6-fluoroindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO- d_6) δ 13.21 (br s, 1H), 8.41 (d, *J* = 0.9 Hz, 1H), 8.12 (d, *J* = 1.2 Hz, 1H), 7.03 (t, 1H), 6.54 (d, *J* = 6.9 Hz, 1H), 6.42 (t, 1H), 5.22 (br s, 2H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO- d_6) δ 164.8, 161.6, 152.1, 149.8, 148.5, 148.4, 141.5, 132.8, 132.6, 129.7, 127.1, 120.1, 120.0, 114.4, 103.4, 103.1, 101.5, 101.2, 12.7; LRMS (ESI+) *m/z* cald for C₁₃H₁₂FN₄⁺ [M+H]⁺: 243.10; Found: 243.00.

Compound 13, 5-bromo-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 6-bromoindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.25 (br s, 1H), 8.43 (d, *J* = 1.2 Hz, 1H), 8.16 (d, *J* = 0.9 Hz, 1H), 6.97 (d, *J* = 1.5 Hz, 1H), 6.96 (s, 1H), 6.78 (dd, 1H), 5.25 (br s, 1H), 2.51 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ

152.3, 149.8, 148.6, 141.8, 133.3, 129.9, 127.1, 123.0, 122.1, 119.42, 117.6, 114.7, 12.9; LRMS (ESI+) *m/z* cald for C₁₃H₁₂BrN₄⁺ [M+H]⁺: 303.02; Found: 302.95.

Compound 14, 5-methyl-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 6-methylindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.19 (br s, 1H), 8.43 (d, *J* = 1.2 Hz, 1H), 8.12 (d, *J* = 0.9 Hz, 1H), 6.92 (d, *J* = 4.5 Hz), 6.60 (s, 1H), 6.48 (d, *J* = 4.8 Hz, 1H), 4.82 (br s, 2H), 2.51 (s, 3H), 2.22 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 152.2, 150.1, 146.3, 141.7, 138.2, 131.4, 129.6, 128.3, 121.2, 118.4, 116.42, 116.39, 114.6, 21.7, 12.9; LRMS (ESI+) *m/z* cald for C₁₄H₁₅N₄⁺ [M+H]⁺: 239.13; Found: 239.15.

Compound 15, 5-azido-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 6-azidoindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using MeOH in DCM with 1 % TEA as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.21 (br s, 1H) 8.43 (s, 1H), 8.14 (s, 1H), 7.07 (d, *J* = 5.1 Hz, 1H), 6.54 (s, 1H), 6.38 (d, *J* = 1.2 Hz, 1H), 5.21 (br s, 2H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 151.6, 149.3, 147.4, 141.1, 139.3, 132.3, 129.1, 126.7, 120.6, 113.9, 107.2, 104.7, 12.2. LRMS (ESI+) *m/z* cald for C₁₃H₁₂N⁺ [M+H]⁺: 266.11; Found: 266.00.

Compound 16, methyl 3-amino-4-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)benzoate

To a solution of 3-formylindole-6-carboxylic acid methyl ester and 3-amino-5methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f=0.2 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.27 (br s, 1H), 8.50 (d, J=1.9Hz, 1H), 8.23 (s, 1H), 7.45 (d, J=1.5Hz, 1H), 7.24 (dd, 1H), 7.18 (d, J=7.9Hz, 1H), 5.26 (br s, 2H), 3.85 (s, 3H), 2.53 (s, 3H); ¹³C NMR (75MHz, DMSO-*d*₆) δ 166.2, 151.7, 148.9, 141.4, 131.5, 130.5, 129.72, 129.65, 125.8, 120.3, 118.2, 114.0, 52.2, 12.2; LRMS (ESI+) *m/z* cald for C₁₅H₁₅N₄O₂⁺ [M+H]⁺: 283.12; Found: 283.00.

Compound 17, 2-bromo-6-(3-methyl-1*H*-pyrazolo[3,4-b]pyridin-5-yl)aniline]

To a solution of 7-bromoindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.29 (br s, 1H), 8.44 (dd, 1H), 8.20 (d, *J* = 0.6 Hz, 1H), 7.44 (m, 1H), 7.07 (m, 1H), 6.64 (m, 1H), 4.93 (br s, 2H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 152.4, 149.8, 143.7, 141.9, 132.6, 131.2, 130.2, 127.6, 126.0, 114.6, 109.5, 12.9; LRMS (ESI+) *m/z* cald for $C_{13}H_{12}BrN_4^+$ [M+H]⁺: 303.02; Found: 302.95.

Compound 18, 2-fluoro-6-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of 7-fluoroindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a white solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. $R_f=0.5$ (EA:DCM:MeOH=60:30:1), ¹H NMR (300 MHz, acetone- d_6) δ 12.39

(br s, 1H), 8.52 (d, J = 0.9 Hz, 1H), 8.19 (d, J = 1.2 Hz, 1H), 7.05 (t, 1H), 6.97 (d, J = 4.5 Hz, 1H), 6.74 (m, 1H), 4.58 (br s 2H), 2.56 (s, 3H); ¹³C NMR (75 MHz, acetone- d_6) δ 152.7, 150.9, 149.6, 134.3, 134.2, 129.2, 127.1, 127.0, 126.71, 126.68, 126.59, 126.57, 117.07, 117.05, 117.01, 116.98, 114.5, 114.4, 114.2, 11.8; LRMS (ESI+) m/z cald for C₁₃H₁₂FN₄⁺ [M+H]⁺: 243.10; Found: 243.05.

Compound 19, 2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)-6-nitroaniline

To a solution of 7-nitroindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. As a reaction proceeded, a desired product came out as a yellow solid. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature, and the resulting solid was slowly filtered and washed with cold MeOH and diethyl ether. The filtrate was purified by silica-gel flash column chromatography using DCM with 1 % TEA as eluent system. R_f =0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.34 (br s, 1H), 8.43 (d, *J* = 1.2 Hz, 1H), 8.24 (d, *J* = 0.9 Hz, 1H), 8.09 (d, *J* = 6.3 Hz, 1H), 7.41 (d, *J* = 5.4 Hz, 1H), 6.97 (br s 2H), 6.78 (t, 1H), 2.51 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 152.0, 149.2, 144.1, 141.3, 137.7, 131.5, 130.2, 128.5, 125.5, 125.0, 115.6, 114.1, 12.2; LRMS (ESI+) *m/z* cald for C₁₃H₁₂N₅O₂⁺ [M+H]⁺: 270.10; Found: 270.00.

Compound 20, N-methyl-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of *N*-methylindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for $3\sim5$ h. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature. The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO₃ solution. The combined organic layer was dried over anhydrous Na₂SO₄(s) and filtered. The filtrate was concentrated under reduced pressure, and then purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. The desired product was obtained as a white solid. R_f=0.2 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.22 (br s, 1H), 8.39 (s, 1H), 8.12 (s, 1H), 7.22 (m, 1H), 7.01 (d, *J* = 4.2 Hz, 1H), 6.65 (m, 1H), 6.61 (m, 1H), 4.95 (br s, 1H), 2.64 (d, *J* = 1.8 Hz, 3H), 2.50 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 152.1, 150.0, 147.6, 131.1, 130.0, 129.4, 127.7, 124.49, 116.3, 114.5, 110.0, 30.7, 12.7; LRMS (ESI+) *m/z* cald for C₁₄H₁₅N₄⁺ [M+H]⁺: 239.13; Found: 239.10.

Compound 21, *N*-butyl-2-(3-methyl-1*H*-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of *N*-butylindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature. The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO₃ solution. The combined organic layer was dried over anhydrous Na₂SO₄(s) and filtered. The filtrate was concentrated under reduced pressure, and then purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. The desired product was obtained as a white solid. R_f=0.3 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, acetone-*d*₆) δ 12.47 (br s, 1H), 8.46 (s, 1H), 8.10 (s, 1H), 7.23 (t, 1H), 7.06 (d, *J* = 4.2 Hz, 1H), 6.76 (m, 1H), 6.71 (m, 1H), 4.45 (br s, 1H), 3.13 (m, 2H), 2.54 (s, 3H), 1.55 (m, 2H), 1.36 (m, 2H), 0.89 (m, 3H); ¹³C NMR (75 MHz, acetone-*d*₆) δ 150.7, 147.2, 131.7, 130.2, 129.8, 128.8, 125.4, 117.2, 115.3, 111.2, 44.1, 31.9, 21.0, 14.2, 12.4; LRMS (ESI+) *m/z* cald for C₁₇H₂₁N₄⁺ [M+H]⁺: 281.18; Found: 281.10.

Compound 22, N-benzyl-2-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)aniline

To a solution of *N*-benzylindole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature. The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO₃ solution. The combined organic layer was dried over anhydrous Na₂SO₄(s) and filtered. The filtrate was concentrated under reduced pressure, and then purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. The desired product was gained as a white solid. R_f=0.6 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.24 (br s, 1H), 8.47 (s, 1H), 8.17 (s, 1H), 7.31 (m, 2H), 7.28 (m, 2H), 7.18 (s, 1H), 7.06 (t, 1H), 7.01 (d, *J* = 4.2 Hz, 1H), 6.63 (t, 1H), 6.48 (d, *J* = 4.8 Hz, 1H), 5.58 (br s, 1H), 4.26 (d, *J* = 2.1 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 152.4, 150.2, 146.3, 141.0, 131.5, 130.3, 129.3, 129.0, 128.0, 127.5, 127.2, 125.0, 116.9, 114.8, 111.4, 47.1, 12.9; LRMS (ESI+) *m/z* cald for C₂₀H₁₉N₄⁺ [M+H]⁺: 315.16; Found: 315.05.

Compound 23, benzyl-(2-(3-methyl-1*H*-pyrazolo[3,4-b]pyridin-5-yl)phenyl)carbamate

To a solution of *N*-Cbz-indole-3-carboxaldehyde and 3-amino-5-methylpyrazole (1.0 equiv.) in MeOH (50 mM) was added aluminum trichloride (10 mol%), and the reaction mixture was stirred under reflux condition of 70 °C in 20 mL-vial for 3~5 h. After the completion of the reaction monitored by TLC, the reaction mixture was cooled to the ambient temperature. The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO₃ solution. The combined organic layer was dried over anhydrous Na₂SO₄(s) and filtered. The filtrate was concentrated under reduced pressure, and then purified by silica-gel flash column chromatography using EtOAc in hexane as eluent system. The desired product was obtained as a white solid. R_f=0.5 (EA:Hexane:MeOH=20:20:1), ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.30 (br s, 1H), 8.41 (s, 1H), 8.16 (s, 1H), 7.98 (d, *J* = 4.8 Hz, 1H), 7.57 (br s, 1H), 7.34–7.18 (m, 6H), 7.11 (t,1H), 6.89 (br s, 1H), 4.22 (d, *J* = 3.3 Hz, 2H), 2.52 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 156.1, 152.4, 150.1, 149.9, 141.9, 140.8, 138.1, 130.4, 129.1, 128.9, 128.8, 127.9, 127.6, 127.4, 127.2, 122.6, 114.7, 43.4, 12.9; LRMS (ESI+) *m/z* cald for C₂₁H₁₉N₄O₂⁺ [M+H]⁺: 358.17; Found: 358.05.

IV. ¹H and ¹³C NMR Spectra

V. HPLC Spectra for Compound Purity

Reverse phase HPLC analysis was performed on a YMC Pack ODS-A C-18 column (250×4.6 mm) at a flow rate of 1.0 mL/min, using Shimadzu LC-6 AD pump and SPD-10A detector (Japan). HPLC solvents consist of water containing 0.1% TFA (solvent A) and acetonitrile containing 0.1% TFA (solvent B). Absorbance was detected by 254 nm. Samples were analyzed starting from 5% B in A to 100% B for 30 min.

VI. References

- Jung, H. S.; Rajasekaran, N.; Song, S. Y.; Kim, Y. D. S.; Hong, S.; Choi, H. J.; Kim, Y. D. S.; Choi, J. S.; Choi, Y. La; Shin, Y. K. Human Papillomavirus E6/E7-Specific SiRNA Potentiates the Effect of Radiotherapy for Cervical Cancer in Vitro and in Vivo. *Int. J. Mol. Sci.* 2015, *16* (6), 1–12.
- (2) Chang, J. T. C.; Kuo, T. F.; Chen, Y. J.; Chiu, C. C.; Lu, Y. C.; Li, H. F.; Shen, C. R.; Cheng, A. J. Highly Potent and Specific SiRNAs against E6 or E7 Genes of HPV16-or HPV18-Infected Cervical Cancers. *Cancer Gene Ther.* 2010, *17* (12), 827–836.