Diastereoselective Multi-Component tandem condensation: Synthesis of 2amino-4-(2-furanone)-4*H*-chromene-3-carbonitriles

Vijay Gupta,^a Debashish Sahu,^a Shailja Jain,^b Kumar Vanka,^b Ravi P. Singh^{*a}

^aDepartment of Chemistry, Indian Institute of technology, Delhi, Hauz Khas, New Delhi-11016, India ravips@chemistry.iitd.ac .in

Supporting Information

Content

1.	General Information	.S2
2.	Characterizations of Products	.S3
3.	Single Crystal X-ray Structures	S20
4.	References	S 21
5.	Copies of ¹ H and ¹³ C NMR	S22
6.	HPLC Data	
7.	Computational Details	S50

1. General Information: Bruker 300 MHz or 400 MHz have been used to record ¹H NMR and ¹³C NMR in deuterated solvents with residual protonated solvent signal as internal signal. ¹H NMR data are reported as follows: Chemical shifts are reported in parts per million (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, coupling constant (J) in hertz (Hz). ¹³C NMR are recorded in terms of chemical shifts (δ , ppm). Column chromatography were carried out on silica gel (100-200 mesh). Perkin Elmer FT-IR spectrometer used to record infrared spectra on KBr pellets and data are reported in terms of frequency of absorption. All solvents were dried and stored over microwave activated 4A^o molecular sieves. Melting points were obtained with open capillary tubes and are uncorrected. Commercially available compounds were used without further purification.

Materials: Salicyladehydes **1a-n** and **1s** were purchased from commercial source and used without further purification. Malononitrile **2** and α -Angelica **3a** lactone were purchased from Sigma Aldrich and Alfa Aesar respectively and used without purification. γ -crotonolactone **5a** was purchased from TCI company. Salicylaldehydes **1o-r** was prepared according to the Suzuki-Miyuara coupling reaction of **1c** with corresponding aryl boronic acids.¹ Unsaturated β , γ -butenolides **3b-d**,² **3e**³ and α , β -butenolides **5a-b**² and **5c**⁴ were prepared according to the known literature procedure.²

R = H (1a), 5-Cl (1b), 5-Br (1c), 3,5-di Cl (1d) 3,5-di Br (1e), 4-F (1f), 5-NO₂ (1g), 4-OMe (1h), 3-OMe (1i), 4-NEt₂ (1j), 5-CH₃ (1k), 3,5-Di-*tert*-Bu (1l), 5-Br-3-OMe (1m), 5-NO₂-3-OMe (1n)

R₁ = Ph (**1o**), *p*-F-Ph (**1p**), *p*-CF₃-Ph (**1q**), thiophene (**1r**),

Figure S2. Structure of *γ*-butenolides

2. Characterizations of Products

2-amino-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (4a).

Salicylaldehyde **1a** (24.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone **3a** (27 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of

diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.68 ppm, δ minor: 3.84 ppm) and found to be 7.33:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomers as white solid (43 mg, 81% yield, mp 132-134 °C). ¹H-NMR (300 MHz, DMSO-d₆) δ 7.66 (d, *J* = 5.7 Hz, 1H), 7.30 (t, *J* = 8.5 Hz, 2H), 7.18 (s, 2H), 7.14 (d, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.02 (d, *J* = 5.7 Hz, 1H), 3.88 (s, 1H), 1.40 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 171.7, 163.1, 158.7, 150.5, 130.6, 129.4, 125.2, 121.9, 120.4, 118.9, 116.5, 92.2, 54.1, 44.9, 19.5. FTIR (KBr) cm-1: 3392, 3316, 2928, 2188, 1741, 1643, 1608, 1412, 1267, 1224, 1110, 1049, 822, 762. HRMS-ESI [M+Na]+, calcd for C15H12N2NaO3 291.0740, found 291.0740.

2-amino-6-chloro-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4b). Salicylaldehyde 1b (31.3 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was

extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.62 ppm, δ minor: 3.78 ppm) and found to be 6.14:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (38 mg, 63% yield, mp 145-147 °C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ 7.72 (d, *J* = 5.2 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 1H), 7.29-725 (m, 3H), 7.06 (d, J = 8.6 Hz, 1H), 6.08 (d, *J* = 5.3 Hz, 1H), 3.92 (s, 1H), 1.41 (s, 3H). ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 171.3, 163.5, 159.7, 149.4, 129.4, 128.6, 127.4, 122.1, 121.0, 120.7, 117.8, 91.8, 49.3, 42.7, 20.5. FTIR (KBr) cm-1: 3388, 3316, 3190, 2926, 2186, 1750, 1646, 1606, 1420, 1187, 1111, 824. HRMS-ESI [M+Na]+, calcd for C₁₅H₁₁ClN₂NaO₃ 325.0350, found 325.0344.

2-amino-6-bromo-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4c). Salicylaldehyde 1c (40 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product

was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.64 ppm, δ minor: 3.78 ppm) and found to be 5.25:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomers as white solid (45 mg, 65% yield, mp 160-163 °C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ 7.72 (d, *J* = 5.7 Hz, 1H), 7.47 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.42 (d, *J* = 2.2 Hz, 1H), 7.32 (s, 2H), 7.01 (d, *J* = 8.7 Hz, 1H), 6.08 (d, *J* = 5.7 Hz, 1H), 3.92 (s, 1H), 1.41 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.4, 163.5, 159.7, 149.9, 132.3, 131.5, 122.5, 121.0

120.7, 118.2, 115.4, 91.9, 49.3, 42.6, 20.6. FTIR (KBr) cm-1: 3395, 3323, 3099, 2927, 2852, 2187, 1751, 1642, 1605, 1412, 1262, 1188, 1109, 914, 823. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₁BrN₂NaO₃ 368.9845, found 368.9869.

2-amino-6,8-dichloro-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4d). Salicylaldehyde 1d (38 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry DCM. To this, sodium tertbutoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted

with dichloromethane (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.63 ppm, δ minor: 3.81 ppm) and found to be 7.33:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (48 mg, 64% yield, mp 155-157 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 7.74 (d, *J* = 5.8 Hz, 1H), 7.67 (s, 1H), 7.47 (s, 2H), 7.30 (s, 1H), 6.09 (d, *J* = 5.3 Hz, 1H), 4.00 (s, 1H), 1.43 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 171.2, 162.6, 158.1, 145.2, 130.3, 129.9, 128.7, 122.7, 122.4, 122.2, 119.5, 91.6, 54.2, 45.3, 19.4. FTIR (KBr) cm-1: 3402, 3345, 3202, 2925, 2850, 2187, 1745, 1647, 1608, 1418, 1234, 1167, 1112, 962, 828. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₀Cl₂N₂NaO₃ 358.9960, found 358.9964.

2-amino-6,8-dibromo-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4e). Salicylaldehyde 1e (60 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry DCM. To this, sodium tertbutoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with dichloromethane (10 ml x 3). The ratio of diastereomers were

determined by 1H NMR analysis of crude reaction mixture (δ major: 3.66 ppm, δ minor: 3.80 ppm) and found to be 4.88:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomers as white solid (61 mg, 71% yield, mp 109-111 °C). ¹H-NMR (300

MHz, DMSO- d_6) δ 7.83 (d, J = 3 Hz, 1H), 7.72 (d, J = 5.7 Hz, 1H), 7.50-7.39 (m, 3H), 6.08 (d, J = 5.7 Hz, 1H), 3.99 (s, 1H), 1.41 (s, 3H). ¹³C-NMR (75 MHz, DMSO- d_6) δ 171.3, 163.1, 159.5, 147.0, 134.0, 131.8, 123.9, 120.8, 120.5, 115.5, 110.5, 91.7, 49.7, 43.0, 20.6. FTIR (KBr) cm-1: 3455, 3346, 3201, 2926, 2853, 2187, 1742, 1645, 1520, 1415, 1245, 1173, 1078, 912. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₀Br₂N₂NaO₃ 446.8950, found 446.8946.

2-amino-7-fluoro-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4f). Salicylaldehyde 1f (28 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers

were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.67 ppm, δ minor: 3.76 ppm) and found to be 4.55:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (35 mg, 61% yield, mp 154-157 °C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ 7.68 (d, *J* = 5.7 Hz, 1H), 7.26 (s, 2H), 7.23 (dd, *J* = 8.4, 6.7 Hz, 1H), 7.01 (td, *J* = 8.6, 2.4 Hz, 1H), 6.93 (dd, *J* = 9.4, 2.3 Hz, 1H), 6.03 (d, *J* = 5.7 Hz, 1H), 3.90 (s, 1H), 1.41 (s, 3H). ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 171.5, 163.4, 162.7 (*J*_{C-F} = 243 Hz), 159.8, 151.3 (d, *J*_{C-F} = 12.4 Hz), 131.5 (d, *J*_{C-F} = 9.6 Hz), 121.1, 120.7, 116.4 (d, *J*_{C-F} = 3.1 Hz), 111.0 (d, *J*_{C-F} = 21 Hz), 103.6 (d, *J*_{C-F} = 26 Hz), 92.0, 49.9, 42.5, 20.6. FTIR (KBr) cm-1: 3476, 3314, 3191, 2924, 2196, 1745, 1648, 1501, 1409, 1294, 1145, 1112, 960, 839. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₁FN₂NaO₃ 309.0646, found 309.0660.

2-amino-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-6-nitro-4H-chromene-3-carbonitrile

mg, 0.2 mmol) and α -Angelica lactone 3a (27 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl

(4g). Salicylaldehyde 1g (33.4 mg, 0.2 mmol), malononitrile (13.2

acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of

crude reaction mixture (δ major: 3.77 ppm, δ major: 3.90 ppm) and found to be 1.22:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (28 mg, 46% yield, mp 184-186 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 8.20-8.15 (m, 2H), 7.79 (d, *J* = 5.6 Hz, 1H), 7.47 (s, 2H), 7.29 (d, *J* = 8.5 Hz, 1H), 6.04 (d, *J* = 5.6 Hz, 1H), 4.14 (s, 1H), 1.45 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.2, 162.9, 159.5, 155.0, 143.0, 125.8, 124.6, 121.3, 120.9, 120.6, 117.3, 91.8, 49.3, 42.3, 20.4. FTIR (KBr) cm-1: 3419, 3323, 3205, 2926, 2191, 1740, 1649, 1525, 1413, 1344, 1257, 1094, 959, 828. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₁N₃NaO₅ 336.0591, found 336.0591.

2-amino-7-methoxy-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4h). Salicylaldehyde 1h (30.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was

extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.62 ppm, δ minor: 3.75 ppm) and found to be 4.2:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (43 mg, 72% yield, mp 152-154 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 7.63 (d, *J* = 5.7 Hz, 1H), 7.13 (s, 2H), 7.09 (d, *J* = 8.6 Hz, 1H), 6.72 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.53 (d, *J* = 2.5 Hz, 1H), 6.03 (d, *J* = 5.7 Hz, 1H), 3.90 (s, 1H), 3.78 (s, 3H), 1.39 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.5, 163.6, 159.8, 159.4, 151.3, 130.6, 121.3, 120.7, 111.9, 110.2, 101.1, 92.2, 55.4, 50.1, 42.6, 20.6. FTIR (KBr) cm⁻¹: 3446, 3331, 3213, 2924, 2851, 2183, 1744, 1654, 1507, 1409, 1254, 1160, 1112, 961, 815. HRMS-ESI [M+Na]⁺, calcd for C₁₆H₁₄N₂NaO₄ 321.0846, found 321.0852.

2-amino-8-methoxy-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4i). Salicylaldehyde 1i (30.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas

atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.62 ppm, δ minor: 3.78 ppm) and found to be 1.70:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (45 mg, 75% yield, mp 179-181 °C).

¹H-NMR (400 MHz, DMSO- d_6) δ 7.63 (d, J = 4.7 Hz, 1H), 7.18 (s, 2H), 7.12 – 6.95 (m, 2H), 6.76 (d, J = 6.6 Hz, 1H), 6.02 (d, J = 4.6 Hz, 1H), 3.85 (s, 1H), 3.80 (s, 3H), 1.40 (s, 3H). ¹³C-NMR (100 MHz, DMSO- d_6) δ 171.5, 163.7, 159.7, 147.0, 139.9, 123.7, 121.2, 121.0, 120.6, 111.6, 92.0, 55.7, 49.6, 43.3, 20.8. FTIR (KBr) cm⁻¹: 3362, 3333, 3203, 2923, 2854, 2192, 1746, 1652, 1584, 1422, 1279, 1206, 1108, 963, 826. HRMS-ESI [M+Na]⁺, calcd for C₁₆H₁₄N₂NaO₄ 321.0846, found 321.0849.

2-amino-6-methyl-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4k). Salicylaldehyde 1k (27.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of

diastereomers were determined by ¹H NMR analysis of crude reaction mixture (δ major: 3.65 ppm, δ minor: 3.82 ppm) and found to be 9:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomers as white solid (41 mg, 72% yield, mp 161-163 ^oC). ¹H-NMR (400 MHz, DMSO-*d*₆) δ 7.63 (d, *J* = 5.6 Hz, 1H), 7.15 (s, 2H), 7.15–7.07 (m, 1H), 7.00 (s, 1H), 6.91 (d, *J* = 8.3 Hz, 1H), 6.05 (d, *J* = 5.6 Hz, 1H), 3.81 (s, 1H), 2.26 (s, 3H), 1.39 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.5, 163.8, 159.7, 148.6, 132.9, 130.1, 129.2, 121.3, 120.7, 119.8, 115.6, 92.1, 49.6, 43.3, 20.7, 20.4. FTIR (KBr) cm⁻¹: 3418, 3328, 3205, 2927, 2856, 2188, 1749, 1648, 1428, 1255, 1189, 1107, 962, 823. HRMS-ESI [M+Na]⁺, calcd for C₁₆H₁₄N₂NaO₃ 305.0897, found 305.0888.

2-amino-6,8-di-*tert*-butyl-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (4l). Salicylaldehyde 1l (46.8 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α-Angelica lactone **3a** (27 µL, 0.3 mmol) were taken in 1ml of dry THF. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers was determined by 1H NMR analysis of crude reaction mixture (δ major: 3.71 ppm, δ minor: 3.81 ppm) and found to be 11.5:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (48 mg, 64% yield, mp 139-141 °C). ¹H-NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 5.3 Hz, 1H), 7.29 (s, 1H), 7.01 (s, 1H), 5.99 (d, *J* = 5.3 Hz, 1H), 4.80 (s, 2H), 3.68 (s, 1H), 1.56 (s, 3H), 1.40 (s, 9H), 1.30 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃) δ 171.7, 162.9, 158.3, 147.4, 147.1, 136.8, 125.4, 123.7, 121.9, 120.3, 119.0, 92.3, 54.6, 45.6, 35.1, 34.7, 31.5, 30.4, 20.2. FTIR (KBr) cm⁻¹: 3394, 3329, 3207, 2959, 2869, 2188, 1752, 1648, 1590, 1408, 1225, 1168, 1109, 957, 821. HRMS-ESI [M+Na]⁺, calcd for C₂₃H₂₈N₂NaO₃ 403.1992, found 403.1995.

2-amino-6-bromo-8-methoxy-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4m). Salicylaldehyde 1m (46.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers

was determined by ¹H NMR analysis of crude reaction mixture (δ major: 3.61 ppm, δ minor: 3.78 ppm) and found to be 2.1:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomers as white solid (41 mg, 70% yield, mp 138-140 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 7.69 (d, *J* = 5.7 Hz, 1H), 7.29 (s, 2H), 7.20 (d, *J* = 2.0 Hz, 1H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.08(d, *J* = 5.7 Hz, 1H) 3.88 (s, 1H), 3.83 (s, 3H), 1.40 (s, 3H). ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 171.9, 164.0, 160.1, 148.4, 139.8, 123.9, 123.3, 121.4, 121.1, 115.7, 115.2, 92.3, 56.7, 49.8, 43.3, 21.1. FTIR (KBr) cm⁻¹: 3404, 3325, 3203, 2925, 2854, 2187, 1752, 1651, 1575, 1483, 1421, 1263, 2114, 1098, 961, 824. HRMS-ESI [M+Na]⁺, calcd for C₁₆H₁₃BrN₂NaO₄ 398.9951, found 398.9956.

2-amino-8-methoxy-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-6-nitro-4H-chromene-3-

carbonitrile (4n). Salicylaldehyde 1n (39.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3).The ratio of

diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.74 ppm, δ minor: 3.87 ppm) and found to be 1.86:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (31 mg, 45% yield, mp 186-188 ^oC). ¹H-NMR (300 MHz, DMSO-d₆) δ 7.78 (dd, *J* = 7.4, 4.1 Hz, 3H), 7.49 (s, 2H), 6.05 (d, *J* = 5.7 Hz, 1H), 4.11 (s, 1H), 3.94 (s, 3H), 1.44 (s, 3H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 171.3, 162.9, 159.5, 147.5, 144.7, 142.8, 121.5, 120.8, 120.6, 117.1, 106.6, 91.7, 56.5, 49.4, 42.6, 20.5. FTIR (KBr) cm-1: 3381, 3329, 2924, 2854, 2194, 1746, 1655, 1529, 1416, 1344, 1227, 1104, 960, 825. HRMS-ESI [M+Na]⁺, calcd for C₁₆H₁₃N₃NaO₆ 366.0697, found 366.0708.

2-amino-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-6-phenyl-4H-chromene-3-

carbonitrile (40). Salicylaldehyde 10 (30.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 5 h. The reaction was quenched by adding water (5 ml) and the product

was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.68 ppm, δ minor: 3.85 ppm) and found to be 4.6:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (49 mg, 72% yield, mp 152-154 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 7.77 (d, *J* = 5.6 Hz, 1H), 7.59 (t, *J* = 8.9 Hz, 3H), 7.53 – 7.40 (m, 3H), 7.37 (d, *J* = 6.5 Hz, 1H), 7.25 (s, 2H), 7.11 (d, *J* = 8.5 Hz, 1H), 6.05 (d, *J* = 5.6 Hz, 1H), 3.97 (s, 1H), 1.46 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.5, 163.7, 159.9, 150.1, 139.2,

135.8, 129.0, 128.3, 127.4, 127.0, 126.6, 126.5, 121.2, 120.6, 120.4, 116.3, 92.1, 49.6, 43.2, 20.8. FTIR (KBr) cm⁻¹: 3395, 3323, 3198, 2985, 2928, 2189, 1746, 1644, 1577, 1455, 1409, 1345, 1287, 1110, 1049, 961, 822. HRMS-ESI [M+Na]⁺, calcd for C₂₁H₁₆N₂NaO₃ 367.1053, found 367.1064.

2-amino-6-(4-fluorophenyl)-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4p). Salicylaldehyde 1p (43.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 5 h. The reaction was quenched by adding water (5 ml) and the

product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.71 ppm, δ minor: 3.91 ppm) and found to be 4.9:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (47 mg, 65% yield, mp 167-169 °C). ¹H-NMR (400 MHz, DMSO-d₆) δ 7.76 (d, *J* = 5.5 Hz, 1H), 7.64 (d, *J* = 2.5 Hz, 2H), 7.58 – 7.50 (m, 1H), 7.47 (s, 1H), 7.30 (t, *J* = 8.7 Hz, 2H), 7.24 (s, 2H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.05 (d, *J* = 5.5 Hz, 1H), 3.95 (s, 1H), 1.46 (s, 3H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 171.47, 163.68, 163.41 (d, *J*_{C-F} = 240 Hz), 159.89, 150.09, 135.7 (d, *J*_{C-F} = 3 Hz), 134.8, 128.6, 128.5, 128.2, 127.0, 121.2, 120.6 (d, *J*_{C-F} = 9.8 Hz) , 116.4, 115.9 (d, *J*_{C-F} = 22 Hz), 92.0, 62.0, 49.6, 43.2, 20.8. FTIR (KBr) cm⁻¹: 3476, 3315, 3202, 2923, 2855, 2189, 1746, 1645, 1520, 1408, 1295, 1174, 1108, 962, 822. HRMS-ESI [M+Na]⁺, calcd for C₂₁H₁₅FN₂NaO₃ 385.0959, found 385.0954.

2-amino-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-6-(4-(trifluoromethyl)phenyl)-4H-

chromene-3-carbonitrile (4q). Salicylaldehyde 1q (53.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 5 h. The reaction was quenched by

adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.77

ppm, δ minor: 3.97 ppm) and found to be 7.3:1 (major *syn* adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as white solid (62 mg, 75% yield, mp 165 °C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ 7.91–7.78 (m, 4H), 7.77 (d, *J* = 5.7 Hz, 1H), 7.67 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.58 (d, *J* = 2.0 Hz, 1H), 7.28 (s, 2H), 7.16 (d, *J* = 8.5 Hz, 1H), 6.04 (d, *J* = 5.7 Hz, 1H), 3.99 (s, 1H), 1.47 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.5, 163.6, 159.9, 150.8, 143.1, 134.1, 128.8, 128.0, 127.5, 127.3, 126.1, 125.9 (q, *J*_{C-F} = 3.75 Hz), 122.5, 121.2, 120.7, 120.6, 116.6, 92.0, 62.0, 49.6, 43.1, 20.7. FTIR (KBr) cm⁻¹: 3478, 3314, 3191, 2924, 2855, 2188, 1745, 1644, 1502, 1410, 1298, 1148, 1112, 1040, 961. 841. HRMS-ESI [M+K]⁺, calcd for C₂₂H₁₅F₃N₂KO₃ 451.0666, found 3451.0653.

2-amino-4-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-6-(thiophen-2-yl)-4H-chromene-3-

carbonitrile (4r). Salicylaldehyde **1r** (40.8 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone (27 μ L, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 24 h. The reaction was quenched by adding water (5 ml) and the product

was extracted with ethyl acetate (10 ml x 3).The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: ppm, δ minor: ppm) and found to be 5.66:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (49 mg, 70% yield, mp 148-150 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 7.74 (d, *J* = 5.7 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.48 (s, 1H), 7.42 (d, *J* = 2.8 Hz, 1H), 7.23 (s, 2H), 7.14 – 7.12 (m, 1H), 7.07 (d, *J* = 8.5 Hz, 1H), 6.04 (d, *J* = 5.6 Hz, 1H), 3.95 (s, 1H), 1.45 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.4, 163.6, 159.8, 149.9, 142.3, 129.5, 128.5, 126.9, 125.9, 125.7, 123.7, 121.1, 120.7, 120.6, 116.6, 92.0, 49.5, 43.0, 20.7. FTIR (KBr) cm⁻¹: 3458, 3338, 3198, 2923, 2854, 2183, 1747, 1645, 1504, 1410, 1291, 1142, 961, 840. HRMS-ESI [M+Na]⁺, calcd for C₁₉H₁₄N₂NaO₃S 373.0617, found 373.0628.

3-amino-1-(2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-1H-benzo[f]chromene-2-carbonitrile

(4s). Salicylaldehyde 1s (30.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and α -Angelica lactone 3a (27 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2

mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 24 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers was determined by 1H NMR analysis of crude reaction mixture (δ major: 4.57 ppm, δ minor: 4.47 ppm) and found to be 4:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (34 mg, 54% yield, mp 146-148 °C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ 8.22 (d, *J* = 8.3 Hz, 1H), 7.98–7.80 (m, 2H), 7.60 (d, *J* = 4.7 Hz, 2H), 7.48 (d, *J* = 6.4 Hz, 1H), 7.31 (s, 2H), 7.24 (d, *J* = 8.6 Hz, 1H), 5.61 (d, *J* = 5.0 Hz, 1H), 4.62 (s, 1H), 1.54 (s, 3H). ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 171.4, 164.1, 159.2, 149.0, 130.7, 130.4, 129.4, 128.4, 126.9, 124.9, 123.9, 121.4, 119.3, 116.6, 113.8, 93.0, 50.4, 39.0, 21.0. FTIR (KBr) cm-1: 3446, 3325, 3205, 2925, 2854, 2183, 1744, 1643, 1585, 1415, 1243, 1107, 959, 818. HRMS-ESI [M+Na]⁺, calcd for C₁₉H₁₄N₂NaO₃ 341.0896, found 341.0902.

2-amino-4-(2-ethyl-5-oxo-2,5-dihydrofuran-2-yl)-6-methyl-4H-chromene-3-carbonitrile

(4t). Salicylaldehyde 1k (27.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and 5-ethylfuran-2(3H)-one 3b (33.6 mg, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product

was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.68 ppm, δ minor: 3.85 ppm) and found to be 4:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as sticky solid (35 mg, 60% yield). ¹H-NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 5.3 Hz, 1H), 6.99 (s, 2H), 6.84 (d, J = 8.0 Hz, 1H), 4.81 (s, 2H), 3.61 (s, 1H), 2.27 (s, 3H), 2.08 – 1.82 (m, 2H), 0.63 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 171.1, 163.3, 157.2, 155.7, 148.7, 134.9, 134.7, 130.6, 129.9, 129.7, 124.1, 123.2, 118.8, 116.1, 115.9, 95.1, 54.3, 44.9, 29.8, 21.0, 7.3. FTIR (KBr) cm⁻¹: 3448, 3325, 3199, 2924, 2854, 2188, 1749, 1648, 1428, 1255, 1189, 1107, 962, 823. HRMS-ESI [M+Na]⁺, calcd for C₁₆H₁₄N₂NaO₃ 305.0897, found 305.0896.

2-amino-6-methyl-4-(5-oxo-2-propyl-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4u). Salicylaldehyde 1k (27.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and 5-propylfuran-2(3H)-one 3c (37.8 mg, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 12 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of

diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.65 ppm, δ minor: 3.78 ppm) and found to be 7.33:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as sticky solid (43 mg, 65% yield). ¹H-NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 5.2 Hz, 1H), 7.10 – 7.05 (m, 2H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.11 (d, *J* = 5.5 Hz, 1H), 4.95 (s, 2H), 3.65 (s, 1H), 2.34 (s, 3H), 1.76-1.54 (m, 2H), 1.31 – 1.04 (m, 2H), 0.82 (t, *J* = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 172.1, 163.4, 157.6, 148.7, 134.9, 130.6, 129.9, 122.8, 120.5, 118.8, 116.2, 94.9, 54.3, 45.1, 33.5, 21.0, 16.5, 14.2. FTIR (KBr) cm⁻¹: 3444, 3332, 3216, 2928, 2852, 2184, 1744, 1655, 1616, 1508, 1408, 1256, 1162, 961, 825. HRMS-ESI [M+Na]⁺, calcd for C₁₈H₁₈N₂NaO₃ 333.1210, found 333.1220.

2-amino-6-methyl-4-(4-methyl-5-oxo-2-propyl-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (4v). Salicylaldehyde 1k (27.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and 3-methyl-5-propylfuran-2(3H)-one 3d (42 mg, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the

product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.79 ppm, δ minor: 3.59 ppm) and found to be 2.33:1 (major syn adduct). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as sticky solid (42 mg, 65% yield). ¹H-NMR (300 MHz, CDCl₃) δ 7.06 – 6.97 (m, 2H), 6.85-6.77 (m, 2H), 4.90 (s, 2H), 3.78 (s, 1H), 2.39-2.30 (m, 6H), 1.89 (t, *J* = 14.0 Hz, 4H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 173.2, 163.1, 149.9, 148.5, 148.4, 134.5, 132.3, 130.5, 129.5, 118.9, 115.7, 91.8, 54.4, 45.1, 36.2, 21.0, 20.9, 17.0,

14.2. FTIR (KBr) cm⁻¹: 3456, 3401, 3314, 3195, 2975, 2927, 2186, 1742, 1748, 1658, 1418, 1265, 1190, 1112, 1047, 963, 822. HRMS-ESI $[M+K]^+$, calcd for $C_{19}H_{20}N_2KO_3$ 363.1106, found 363.1111.

2-amino-4-(5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (6a).

Salicylaldehyde **1a** (24.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and γ -crotonolactone **5a** (21.3 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers

were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.82 (d, J = 5.1 Hz) ppm, δ minor: 4.05 (d, J = 3.0 Hz) and found to be 3.8:1 (major:minor). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (30.5 mg, 60% yield, mp 124-126 °C). 1H-NMR (300 MHz, CDCl3) δ 7.46 (d, J = 5.8 Hz, 1H), 7.33-7.27 (m, 1H), 7.19-7.12 (m, 2H), 7.03 (d, J = 8.2 Hz, 1H), 6.18 (dd, J = 6.0 Hz, 2.0 Hz, 1H), 5.08 (d, J = 5.4 Hz, 1H), 3.89 (d, J = 5.5 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 172.2, 162.4, 153.1, 152.7, 150.0, 129.6, 128.7, 125.1, 124.0, 118.1, 116.8, 86.6, 53.5, 39.7. FTIR (KBr) cm⁻¹: 3434, 3335, 3199, 2924, 2855, 2185, 1746, 1641, 1582, 1416, 1227, 1175, 1097, 916, 762. HRMS-ESI [M+Na]⁺, calcd for C14H10N2NaO3 277.0584, found 277.0583.

2-amino-6-bromo-4-(5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (6b).

Salicylaldehyde **1c** (40 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and γ -crotonolactone **5a** (21.3 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3). The

ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 4.07 (d, J = 3.0 Hz) ppm, δ minor: 3.88 (d, J = 5.2 Hz) ppm) and found to be 1.77:1 (major:minor). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (40 mg, 61% yield, mp 145-147 oC). ¹H-NMR (400 MHz, DMSO-d₆) δ 7.63 (d, *J* = 4.0

Hz, 1H), 7.49 (s, 2H), 7.19 (s, 2H), 7.00 (d, J = 8.0 Hz, 1H), 6.24 (d, J = 3.8 Hz, 1H), 5.27 (s, 1H), 4.10 (s, 1H). ¹³C-NMR (100 MHz, DMSO-d₆) δ 172.2, 162.6, 155.1, 149.5, 131.8, 131.8, 122.4, 120.8, 120.0, 118.3, 115.5, 86.2, 49.3, 38.0. FTIR (KBr) cm⁻¹: 3434, 3335, 3199, 2924, 2855, 2185, 1746, 1641, 1582, 1416, 1227, 1175, 1097, 916, 762. HRMS-ESI [M+Na]⁺, calcd for C₁₄H₉BrN₂NaO₃ 354.9688, found 354.9694.

2-amino-6-methyl-4-(5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (6c).

 NH_2

O

6d

Salicylaldehyde **1k** (27.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and γ -crotonolactone **5a** (21.3 µL, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (9.6 mg, 0.1 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10

ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 3.78 (d, J = 5.4 Hz) ppm, δ minor: 4.05 (d, J = 3.0 Hz) ppm) and found to be 1.8:1 (major:minor). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (30 mg, 56% yield, mp 124-126 °C). ¹H-NMR (500 MHz, CDCl₃) δ 7.47 – 7.35 (m, 1H), 7.10 – 7.06 (m, 1H), 6.98 (d, J = 14.6 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.18 (dd, J = 5.7, 1.7 Hz, 1H), 5.07 (d, J = 5.5 Hz, 1H), 4.97 (d, J = 4.9 Hz, 2H), 3.86 (d, J = 5.5 Hz, 1H), 2.30 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 172.3, 162.6, 153.1, 147.9, 134.9, 130.1, 129.6, 128.8, 123.9, 117.8, 116.5, 86.7, 53.2, 39.7, 20.9. FTIR (KBr) cm⁻¹: 3445, 3325, 3198, 2923, 2853, 2178, 1741, 1642, 1412, 1252, 1165, 1107, 965, 821. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₂N₂NaO₃ 291.0740, found 291.0740.

2-amino-4-(3-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (6d).

Salicylaldehyde **1a** (24.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and 4-methylfuran-2(5H)-one 5b (29.4 mg, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium tert-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x

3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 5.69 ppm, δ minor: 5.87 ppm) and found to be 2.3:1 (major *syn* adduct).

The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (24 mg, 51% yield, mp 124-126 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 7.49 (d, *J* = 7.6 Hz, 0.5H), 7.39 – 7.16 (m, 2H), 7.18 – 6.94 (m, 4.5H), 5.83 (d, *J* = 1.4 Hz, 1H), 5.09 (d, *J* = 5.8 Hz, 1H), 4.18 (d, *J* = 2.1 Hz, 1H), 2.09 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.9, 167.2, 162.7, 150.4, 129.0, 128.7, 123.8, 120.3, 118.0, 117.1, 115.9, 87.6, 50.5, 37.2, 14.0. FTIR (KBr) cm-1: 3448, 3328, 3198, 2928, 2851, 2172, 1748, 1648, 1412, 1265, 1147, 1105, 961, 828. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₂N₂NaO₃ 291.0746, found 291.0740.

2-amino-6-bromo-4-(3-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (6e). Salicylaldehyde 1c (40 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and 4-methylfuran-2(5H)-one 5b (29.4 mg, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product

was extracted with ethyl acetate (10 ml x 3). The ratio of diastereomers were determined by 1H NMR analysis of crude reaction mixture (δ major: 5.83 ppm, δ minor: 6.00 ppm) and found to be 2.3:1 (*major:minor*). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomers as yellow solid (37 mg, 53% yield, mp 124-126 °C). ¹H-NMR (300 MHz, DMSO-*d*₆) δ 7.80 (d, *J* = 2.0 Hz, 0.5H), 7.51 – 7.45 (m, 1H), 7.24 – 7.22 (m, 2H), 7.18 (s, 0.5H), 6.99 (t, *J* = 8.1 Hz, 1H), 5.90 (s, 1H), 5.13 (s, 1H), 4.20 (s, 1H), 2.09 (s, 3H). ¹³C-NMR (75 MHz, DMSO-*d*₆) δ 171.8, 167.1, 162.5, 149.7, 131.8, 131.0, 120.0, 119.8, 118.1, 115.3, 87.5, 50.2, 37.0, 14.0. FTIR (KBr) cm⁻¹: 3398, 3328, 3095, 2922, 2851, 2182, 1756, 1648, 1604, 1408, 1265, 1189, 1107, 923, 824. HRMS-ESI [M+Na]⁺, calcd for C₁₅H₁₁BrN₂NaO₃ 368.9845, found 368.9851.

2-amino-6-methyl-4-(3-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-chromene-3-

carbonitrile (6f). Salicylaldehyde 1k (27.2 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and 4-methylfuran-2(5*H*)-one
5b (29.4 mg, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (9.6 mg, 0.1 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The ratio

of diastereomers was determined by 1H NMR analysis of crude reaction mixture (δ major: 5.78 ppm, δ minor: 5.98 ppm) and found to be 3.3:1 (major:minor). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as yellow solid (31 mg, 55% yield, mp 124-126 °C). ¹H-NMR (300 MHz, CDCl₃) δ 7.07 – 7.03 (m, 1H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.67 (s, 1H), 5.78 – 5.77 (m, 1H), 5.03 (s, 1H), 4.89 (s, 2H), 4.01 (d, *J* = 3.0 Hz, 1H), 2.27 (s, 3H), 2.08 (d, J = 0.7 Hz, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 172.3, 165.2, 162.4, 148.5, 134.2, 130.2, 128.3, 119.6, 116.6, 116.0, 87.8, 54.1, 38.1, 20.9, 14.6. FTIR (KBr) cm-1: 3444, 3326, 3202, 2922, 2858, 2182, 1744, 1641, 1423, 1251, 1182, 1102, 965, 828. HRMS-ESI [M+Na]⁺, calcd for C₁₆H₁₄N₂NaO₃ 305.0896, found 305.0901.

2-amino-4-(5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (6g).

Salicylaldehyde **1a** (24.4 mg, 0.2 mmol), malononitrile (13.2 mg, 0.2 mmol) and 4-phenylfuran-2(5H)-one **5c** (29.4 mg, 0.3 mmol) were taken in 1ml of dry 1,4-dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 16 h. The reaction was quenched by adding water (5 ml) and the product was extracted with ethyl acetate (10 ml x 3).

The ratio of diastereomers was determined by 1H NMR analysis of crude reaction mixture (δ major: 4.07 ppm, δ minor: 4.12 ppm) and found to be 1.5:1. The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomer as solid (35 mg, 54% yield). ¹H-NMR (300 MHz, CDCl₃) δ 7.53 (s, 5H), 7.34-7.18 (m, 2H), 6.98-6.92 (m, 1.5H), 6.49 (d, *J* = 9 Hz, 0.5H), 6.16 (s, 1H), 5.71 (s, 1H), 4.87 (s, 2H), 4.07 (s, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 171.8, 164.3, 162.4, 150.8, 150.1, 131.9, 129.9, 129.5, 129.3, 128.5, 128.0, 127.7, 127.3, 125.5, 124.2, 117.6, 116.8, 116.4, 115.9, 84.9, 77.6, 77.4, 77.2, 76.7, 55.2, 39.4. FTIR (KBr) cm⁻¹: 3454, 3315, 3198, 2928, 2856, 2187, 1744, 1647, 1608, 1417, 1268, 1148, 1054, 963, 841. HRMS-ESI [M+K]⁺, calcd for C₂₀H₁₄KN₂O₃ 369.0636, found 369.0640.

3-(2-oxopropyl)-2H-chromen-2-one (7a). Salicylaldehyde 1a (24.4 mg, 0.2 mmol), α -

Angelica lactone **3a** (27 μ L, 0.3 mmol) were taken in 1 ml of dry 1,4dioxane. To this, sodium *tert*-butoxide (19.2 mg, 0.2 mmol) was added under nitrogen gas atmosphere. The reaction was run for 2 h. The

reaction was quenched by adding water (5 ml) and the product was extracted with ethyl

acetate (10 ml x 3). The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/hexane = 3/7, v/v) afforded solid product **7a** (32 mg, 80% yield). ¹H-NMR (300 MHz, CDCl₃) δ 7.55 (s, 1H), 7.46-7.34 (m, 2H), 7.29-7.18 (m, 2H), 3.62 (s, 2H), 2.25 (s, 3H).

Scale up MCR for the synthesis of compound 4a: Salicylaldehyde 1a (5.0 mmol) and malononitrile 2 (5.0 mmol) were taken in 25 ml of dry 1,4-Dioxane, to this γ -butenolide 3a (7.5 mmol) and then sodium *tert*-butoxide (5.0 mmol) were added under nitrogen gas atmosphere. The resulting reaction mixture was stirred at room temperature and the progress of reaction was monitored by TLC. The reaction was quenched by adding water (25 ml) and the product was extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtered and concentrated under reduce pressure to give sticky solid which was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v). The ratio of diastereomers was determined by ¹H NMR of crude reaction mixture and found to be 7.3:1. The crude mixture was purified by column chromatography on silica gel (eluent: ethylacetate/DCM = 1/3, v/v) afforded inseparable mixture of diastereomers as solid (0.8 g, 60% yield).

3. Single Crystal X-ray Structures

Thermal ellipsoids are drawn at the 50% probability level. Molecular structure of compound **4a** crystallized out with solvent (chloroform).

4. References

1. (a) B. C. Raju, A. K. Tiwari, J. A. Kumar, A. Z. Ali, S. B. Agawane, G. Saidachary and K. Madhusudana, Bioorg. *Med. Chem.* 2010, 18, 358.

2 R. P. Singh, B. M. Foxman and L. Deng, J. Am. Chem. Soc., 2010, 132, 9558.

- 3. Z.-H. Wang, Z.-J. Wu, X.-Q. Huang, D.-F. Yue, Y. You, X.-Y. Xu, X.-M. Zhanga and W.-C. Yuan, *Chem. Commun.*, 2015, 51, 15835.
- 4. J. Wu, Q. Zhu, L. Wang, R. Fathi and Z. Yang, J. Org. Chem., 2003, 68, 670.

5. Copies of ¹H and ¹³C NMR Spectra

. 170

. 160

. 150

. 130

. 60

S38

S41

6. HPLC data for compound 4c and 8a

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
				11		
1	15.102	MF	0.5151	4999.61182	161.76991	43.1423
2	16.050	MF	0.5238	777.98352	24.75528	6.7133
З	16.820	FM	0.6539	5273.63672	134.42325	45.5068
4	21.668	MM	0.7582	537.43457	11.81440	4.6376

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.687	MM	0.3811	3614.57959	158.08736	17.2484
2	15.426	MM	0.3662	2907.09790	132.30377	13.8724
3	16.192	MM	0.5222	9965.52051	318.09244	47.5544
4	20.675	MM	0.7615	4468.82422	97.80679	21.3248
Total	ls :			2.09560e4	706.29035	

7. Computational Details

All the calculations in this study have been performed with density functional theory (DFT), with the aid of the Turbomole 7.2 suite of programs,¹ using the PBE functional.² The TZVP³ basis set has been employed. The resolution of identity (RI),⁴ along with the multipole accelerated resolution of identity (marij)⁵ approximations have been employed for an accurate and efficient treatment of the electronic Coulomb term in the DFT calculations. Solvent correction were incorporated with optimization calculations using the COSMO model,⁶ with 1,4-dioxane ($\varepsilon = 2.25$) as the solvent. The values reported are ΔG values, with zero point energy corrections, internal energy and entropic contributions included through frequency calculations on the optimized minima, with the temperature taken to be 298.15 K. Harmonic frequency calculations were performed for all stationary points to confirm them as a local minima or transition state structures.

Toconfirm the negative charge on oxygen, we have performed NBO charge analysis.

Figure S3. Chrage values obtained by NBO analysis. Which shows that anion on the oxygen (-0.68) atom is more stable than a carbon atom (0.15).

References:

- (1) Ahlrichs, R.; Bar, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165–169.
- (2) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- (3) Ansgar, S.; Christian, H.; Reinhart, A. J. Chem. Phys. 1994, 100, 5829-5835.
- (4) Eichkorn, K.; Treutler, O.; Öhm, H.; Haser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240,283–289.
- (5) Sierka, M.; Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 118, 9136-9148.

(6) Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 21993, 799-805.

PBE/TZVP optimized geometries for all the compounds and transition states

Absolute Energy Value: -343.7817258257 hartree

Number of Imaginary Frequency: 0

- H 3.158875 2.915487 2.549474
- $C \quad 2.860049 \quad 3.938536 \quad 2.847982$
- H 1.982215 4.204281 2.227622
- H 2.528976 3.898122 3.896918
- $C \quad 3.969769 \quad 4.917753 \quad 2.714131$
- O 4.516711 5.080277 1.450360
- C 5.577504 6.090164 1.540506
- O 6.199658 6.377328 0.494779
- C 5.603541 6.485324 2.888930
- H 6.294140 7.223015 3.289203
- C 4.599814 5.747754 3.602523
- H 4.361804 5.821130 4.664002

Number of Imaginary Frequency: 0

- C 2.911472 3.180980 2.092306
- C 3.132274 4.290216 2.925204

- C 2.441915 5.485991 2.726086
- C 1.522379 5.566983 1.680704
- C 1.278463 4.465902 0.830514
- C 1.990804 3.268958 1.054876
- O 0.863049 6.759920 1.511057
- C -0.084828 6.960370 0.499447
- C -0.348657 5.812073 -0.378559
- C 0.310560 4.625724 -0.213959
- C -1.316908 5.974881 -1.408825
- N -2.106238 6.066800 -2.263426
- N -0.671062 8.082880 0.369100
- H -0.351198 8.756001 1.076598
- Н 0.099659 3.787264 -0.880427
- H 3.852857 4.221324 3.741889
- H 2.603453 6.354129 3.365929
- H 1.804093 2.415438 0.399444
- Н 3.459904 2.253629 2.261447

^H Absolute Energy Value: -912.7137927917 hartree

Number of Imaginary Frequency: 0

- O -1.394493 -1.105136 -1.151823
- C -2.077002 -0.201206 -0.374780

- C -2.534206 -0.817746 0.779556
- C -2.100908 -2.158812 0.759207
- C -1.389994 -2.385119 -0.451698
- C 0.079211 0.962164 1.255291
- C 0.808081 -0.216353 0.938235
- C 1.680069 -0.180162 -0.177487
- O 1.859273 0.982756 -0.903348
- C 1.234673 2.190805 -0.563860
- C 0.315879 2.151301 0.563090
- C 2.397793 -1.297727 -0.582446
- C 2.251884 -2.496610 0.129643
- C 1.419640 -2.560045 1.250538
- C 0.686032 -1.440668 1.639962
- N 1.498153 3.243217 -1.251971
- C -0.351574 3.341490 0.931222
- N -0.930086 4.301340 1.275282
- C -2.351073 1.127179 -0.963178
- O -0.828154 -3.349422 -0.976944
- Н 0.028283 -1.480618 2.507948
- Н -0.591498 0.961163 2.113758
- Н 1.302578 -3.500764 1.790318
- Н -2.873108 1.038574 -1.930756
- Н -3.122172 -0.322151 1.549884

- Н 2.800055 -3.382265 -0.195870
- Н -2.973127 1.721251 -0.279782
- Н -1.422250 1.699880 -1.143227
- Н 3.045747 -1.228035 -1.457163
- Н 2.173575 3.014301 -1.991545
- Н -2.275380 -2.931479 1.502236

Absolute Energy Value: -912.7092639232 hartree

Number of Imaginary Frequency: 1 (-185.00 cm⁻¹)

- O 5.090353 8.219743 1.006431
- C 3.831034 8.417135 1.592574
- C 3.385919 7.156860 2.076092
- C 4.395273 6.232456 1.916075
- C 5.496461 6.879123 1.239171
- C 4.264238 9.485315 3.476331
- C 5.547669 8.884681 3.788354
- C 6.712739 9.573105 3.392985
- O 6.647928 10.796444 2.764431
- C 5.452645 11.550541 2.726643
- C 4.262402 10.885781 3.196038
- C 7.983067 9.043949 3.621245

- C 8.107289 7.804353 4.254198
- C 6.968470 7.109102 4.674634
- C 5.701752 7.644279 4.433770
- N 5.516481 12.758416 2.283340
- C 3.072412 11.626024 3.318344
- N 2.053963 12.197279 3.453236
- C 2.986821 9.429400 0.895944
- O 6.601685 6.490782 0.872963
- H 4.806288 7.106496 4.749180
- H 3.394924 9.089669 4.000763
- Н 7.066608 6.142304 5.171588
- H 2.804476 9.134561 -0.151155
- H 2.410785 6.999806 2.536710
- H 9.101242 7.385696 4.425752
- H 2.018442 9.531591 1.406334
- H 3.475756 10.416142 0.898861
- H 8.858048 9.607143 3.293219
- H 6.492131 12.991609 2.061699
- H 4.423574 5.195753 2.237694

Absolute Energy Value: -912.7201081669 hartree

Number of Imaginary Frequency: 0

0	-1.280017	-0.407932	-1.278738
С	-1.684408	0.172135	-0.003258
С	-2.337641	-0.966141	0.707874
С	-2.273465	-2.081268	-0.040311
С	-1.595550	-1.751354	-1.305563
С	-0.369371	0.690730	0.769592
С	0.668970	-0.395050	0.831081
С	1.662239	-0.415965	-0.162935
0	1.741914	0.547743	-1.131188
С	1.160145	1.841609	-0.907442
С	0.238083	1.929244	0.172160
С	2.616901	-1.441059	-0.201576
С	2.599720	-2.441023	0.770940
С	1.642613	-2.414709	1.792351
С	0.686719	-1.395290	1.810202
N	1.546366	2.790414	-1.697596
С	-0.177241	3.175650	0.642379
N	-0.560294	4.194377	1.099503
С	-2.638951	1.326932	-0.278307
0	-1.327960	-2.459825	-2.261919
Н	-0.075260	-1.376548	2.594416
Н	-0.729099	0.913504	1.787375

- Н 1.636227 -3.187457 2.563614
- Н -3.525996 0.967259 -0.817984
- Н -2.772560 -0.854749 1.701280
- Н 3.346221 -3.237830 0.737263
- Н -2.954802 1.791799 0.666534
- Н -2.122438 2.087510 -0.878376
- Н 3.365935 -1.430031 -0.995360
- Н 2.306443 2.445192 -2.295686
- H -2.626813 -3.083201 0.190381

Absolute Energy Value: -912.7063453775 hartree

Number of Imaginary Frequency: 0 (-71.92 cm⁻¹)

- C 5.222751 5.351532 -1.657819
- C 4.453721 4.405349 -0.962984
- O 3.618007 5.079468 -0.077485
- C 3.790736 6.488283 -0.280423
- C 4.803704 6.625660 -1.287781
- C 4.793331 3.007365 -0.601497
- O 3.110947 7.287838 0.364430
- C 2.841891 3.908419 -2.679146
- C 3.632967 3.776029 -3.884681

- C 3.940913 2.480577 -4.346501
- O 3.481198 1.356082 -3.693476
- C 2.483923 1.440120 -2.698393
- C 2.148315 2.769598 -2.227584
- C 4.106476 4.868480 -4.639144
- C 4.886609 4.674777 -5.776898
- C 5.210550 3.374096 -6.192490
- C 4.731650 2.273116 -5.479200
- N 1.963732 0.347284 -2.266229
- C 1.126628 2.878737 -1.257036
- N 0.260083 2.993033 -0.476411
- Н 2.365695 -0.451765 -2.771454
- H 2.478652 4.898377 -2.401532
- Н 5.983839 5.095170 -2.392185
- Н 5.826177 3.215772 -7.080136
- Н 4.950199 1.250255 -5.790541
- Н 3.864533 5.876541 -4.296625
- Н 5.143913 7.585315 -1.666197
- H 5.353754 2.961248 0.347852
- Н 5.411859 2.558351 -1.392101
- Н 3.883610 2.395519 -0.483086
- Н 5.245258 5.535964 -6.343972

Absolute energy value: -912.7194367511 hartree

Number of Imaginary Frequency: 0

- C 0.732958 1.777922 1.439184
- C 0.704616 0.309584 1.165838
- O 0.372527 -0.274401 2.463101
- C 0.152021 0.727080 3.386133
- C 0.381928 2.018282 2.715700
- C 2.050707 -0.240435 0.716607
- O -0.162808 0.487894 4.540508
- C -0.486397 -0.100008 0.160523
- C -0.439560 0.726687 -1.098832
- C 0.203157 0.194874 -2.229110
- O 0.745385 -1.062008 -2.224228
- C 0.234380 -2.056840 -1.307162
- C -0.504798 -1.557859 -0.200493
- C -1.010541 2.002779 -1.200017
- C -0.910940 2.754714 -2.374465
- C -0.227857 2.224051 -3.476211
- C 0.322194 0.943096 -3.409384
- N 0.512429 -3.286622 -1.597153

- C -1.203630 -2.453299 0.614909
- N -1.830766 -3.171115 1.307565
- Н 0.964637 -3.324571 -2.517831
- Н -1.397018 0.158049 0.723834
- Н 0.993388 2.504444 0.671496
- Н -0.138088 2.802161 -4.398584
- Н 0.833147 0.496353 -4.264226
- Н -1.536088 2.410725 -0.332415
- Н 0.282403 2.971217 3.230084
- Н 2.827241 -0.001541 1.456429
- Н 2.332702 0.198275 -0.250910
- Н 1.976033 -1.329981 0.601034
- Н -1.363522 3.746592 -2.429904