Application of Isatin-derived Saturated Esters in the Synthesis of 3,3'-Spirooxindole γ-Butyrolactams

Jindong Zhu, Shuaishuai Fang, Shiyi Jin, Rui Ma, Tao Lu, Ding Du*

State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China. E-mail: ddmn9999@cpu.edu.cn

General Methods and Materials	S2
Attempts on asymmetric synthesis of 3a using chiral organocatalysts	S2
General procedure for the synthesis of 1b and 1d-f	S3
Procedure for the synthesis of 1g and 1h	S6
General procedure for the synthesis of 3 and 4	S8
General procedure for the synthesis of 6 and 7	S18
Procedure for the synthesis of 3a with chiral-phase-transfer catalysis	S23
Procedure for the synthesis of 6a with chiral-phase-transfer catalysis	S23
Procedure for the deprotection of the products 3a and 5a	S24
Copies of NMR spectra for substrates 1	\$26
Copies of NMR spectra for products 3 and 4	S34
Copies of NMR spectra for products 6 and 7	S59
Copies of NMR spectra for products 8 and 9	S68
Copies of HPLC spectra for product 3a	S70
Copies of the x-ray structures of 3a and 6b	S71

General Methods and Materials. All reactions were carried out in dry glassware, and were monitored by analytical thin-layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200-300 mesh). Substrates 2¹ and 5² were prepared according to known procedures. All NMR spectra were recorded on Bruker spectrometers, running at 300 MHz or 400 MHz for ¹H and 75 MHz or 100 MHz for ¹³C respectively. Chemical shifts (δ) and coupling constants (J) are reported in ppm and Hz respectively. The solvent signals were used as references (residual CHCl₃ in CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm c} = 77.0$ ppm). The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet). High resolution mass spectrometery (HRMS) was recorded on TOF perimer for ESI⁺.

Attempts on asymmetric synthesis of 3a using chiral organocatalysts

entry	1	base	catalyst	solvent	temp.(°C)	yield (%)	dr	ee (%)
1	a	none	Q1-4	THF	rt or 60	0	-	-
2	a	none	Α	THF	rt or 60	0	-	-
3	a	DIPEA	B/C	THF	rt or 60	0	-	-
4	a	none	BF-1	THF	rt or 60	0	-	-
5	a	none	BF-2	THF	rt or 60	0	-	-
6	a	K ₂ CO ₃	PTC-A ₁	THF	rt or 60	0	-	-
7	a	K ₂ CO ₃	PTC-A ₁	PhMe	rt or 60	0	-	-
8	a	K ₂ CO ₃	PTC-A ₁	PhMe/H ₂ O (3:1)	rt	Dec.	-	-
9	b	K ₂ CO ₃	PTC-A ₁	$PhMe/H_2O(3:1)$	rt	trace	-	-
10	b	K ₃ PO ₄	PTC-A ₁	PhMe/H ₂ O (3:1)	rt	38	>95:5	33
11	b	K ₃ PO ₄	PTC-A ₂	PhMe/H ₂ O (3:1)	rt	40	>95:5	48
12	b	K ₃ PO ₄	PTC-A ₃	PhMe/H ₂ O (3:1)	rt	33	>95:5	53
13	b	K ₃ PO ₄	PTC-A ₄	PhMe/H ₂ O (3:1)	rt	60	>95:5	68
14	b	K ₃ PO ₄	PTC-A5	PhMe/H ₂ O (3:1)	rt	45	>95:5	23
15	b	K ₃ PO ₄	PTC-A ₆	PhMe/H ₂ O (3:1)	rt	0	-	-
16	b	K ₃ PO ₄	PTC-A ₄	EtOAc/H ₂ O (3:1)	rt	trace	-	-
17	b	K ₃ PO ₄	PTC-A ₄	DCM/H ₂ O (3:1)	rt	trace	-	-
18	b	K ₃ PO ₄	PTC-A ₄	Et ₂ O/H ₂ O (3:1)	rt	84	>95:5	74
19	b	K ₃ PO ₄	PTC-A ₄	Et ₂ O/H ₂ O (3:1)	0	48	>95:5	47
20	b	K ₃ PO ₄	PTC-A ₄	MTBE/H ₂ O (3:1)	rt	47	>95:5	68
21	b	K ₃ PO ₄	PTC-A ₄	<i>i-Pr</i> ₂ O/H ₂ O (3:1)	rt	33	>95:5	51
22	b	K ₃ PO ₄	PTC-A7	Et ₂ O/H ₂ O (3:1)	rt	77	>95:5	13
23	b	K ₃ PO ₄	PTC-A ₈	Et ₂ O/H ₂ O (3:1)	rt	77	>95:5	26
24	b	K ₃ PO ₄	PTC-A9/A10	Et ₂ O/H ₂ O (3:1)	rt	0	-	-
25	b	K ₃ PO ₄	PTC-B ₄	Et ₂ O/H ₂ O (3:1)	rt	83	75:25	69
26	b	LiOH	PTC-A ₄	Et ₂ O/H ₂ O (3:1)	rt	59	>95:5	60
27	b	LiOH	PTC-A4	PhMe/H ₂ O (3:1)	rt	93	>95:5	80
28	b	NaOH	PTC-A ₄	PhMe/H ₂ O (3:1)	rt	68	>95:5	74
29	b	KOH	PTC-A ₄	PhMe/H ₂ O (3:1)	rt	54	>95:5	77

General procedure for the synthesis of 1b and 1d-f.

(*tert*-Butoxycarbonylmethylene)triphenylphosphorane (4.9 g, 13.2 mmol) was added to a stirred suspension of *N*-substituted isatin (13.9 mmol) in toluene (80 mL). The mixture was heated to reflux and stirred for 1.5 h before being allowed to cool to room temperature. The reaction was filtered through a pad of celite and concentrated in vacuo. Then the residue was dissolved in methanol (50 mL) and the resulting solution was cooled to 0 °C, followed by the addition of NaBH₄ (26 mmol) in batches. The mixture was stirred at 0 °C until the completion of the reaction as monitored by TLC. Then, the reaction mixture was quenched with 150 mL of water and was further extracted with CH_2Cl_2 (50 mL×3). The combined organic phase was washed with brine (100 mL) and was dried over anhydrous Na₂SO₄. The mixture was then filtered and the resulting filtrate was concentrated under reduced pressure. Then the residue was dissolved in toluene (50 mL) heat to 50 °C. Trifluoroacetic acid (20 mL) was then added and the reaction was stirred for an additional 2 h. The reaction was basified by the cautious addition of saturated aqueous sodium bicarbonate solution; the organic layer was isolated and discarded. The aqueous layer was acidified with aqueous hydrochloric acid (1 M) and extracted thoroughly with ethyl acetate. Then, the combined organic extracts were concentrated in vacuum, and the residue was purified by flash chromatography (hexane: EtOAc = 4:1, v/v) to give the acid.

R'OH (17.2 mmol), DMAP(1 mmol), DCC (17.2 mmol) were added to a stirred solution of the acid (10.6 mmol) in EtOAc (30 mL). The mixture was stirred at room temperature until the completion of the reaction as monitored by TLC. The mixture was filtered and concentrated under reduced pressure and the residue was purified by flash chromatography (hexane: EtOAc = 15:1, v/v) on silica gel to afford compounds **1a-f**.

4-Nitrophenyl 2-(1-benzyl-2-oxoindolin-3-yl)acetate (1a). Yellowish solid, mp: 140-

142°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 9.1 Hz, 2H), 7.37-7.27 (m, 3H), 7.27-7.19 (m, 4H), 7.13-7.00 (m, 3H), 6.78 (d, *J* = 7.8 Hz, 1H), 4.97 (d, *J* = 15.6 Hz, 1H), 4.91 (d, *J* = 15.6 Hz, 1H), 3.99 (t, *J* =

6.1 Hz, 1H), 3.39-3.25 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.2, 168.6, 154.96, 145.4, 143.5, 135.5, 128.7, 128.6, 127.6, 127.3, 127.1, 125.1, 123.7, 122.7, 122.3, 109.3, 43.96, 41.7, 34.9. HRMS (ESI) calcd for C₂₃H₁₈N₂O₅ (M+Na)⁺: 425.1113, found 425.1112.

1,1,1,3,3,3-Hexafluoropropan-2-yl 2-(1-benzyl-2-oxoindolin-3-yl)acetate (1b).

White solid, mp: 120-122 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 7.23 (t, *J* = 8.2 Hz, 2H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 5.79 (hept, *J* = 6.1 Hz, 1H), 5.02 (d, *J* = 15.7 Hz, 1H), 4.90 (d, *J* = 15.7 Hz, 1H), 3.96 (dd,

J = 7.8, 4.5 Hz, 1H), 3.39 (dd, J = 17.4, 4.5 Hz, 1H), 3.12 (dd, J = 17.4, 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 168.3, 143.5, 135.6, 128.8, 128.7, 127.7, 127.3, 126.9, 123.7, 122.8, 120.2 (d, J = 277.4 Hz), 109.4, 66.8 (m), 44.0, 41.4, 34.1. HRMS (ESI) calcd for C₂₀H₁₅F₆NO₃ (M+H)⁺: 432.1034, found 432.1027.

1,3-Dioxoisoindolin-2-yl 2-(1-benzyl-2-oxoindolin-3-yl)acetate (1c). White solid, mp:

160-162°C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.45 (d, *J* = 7.4 Hz, 1H), 7.32-7.29 (m, 4H), 7.24-7.19 (m, 2H), 7.08 (d, *J* = 7.3 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H),

5.04-4.88 (m, 2H), 4.05 (dd, J = 9.7, 3.6 Hz, 1H), 3.58 (dd, J = 16.9, 3.7 Hz, 1H), 3.05 (dd, J = 16.9, 9.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.5, 167.9, 161.6, 143.2, 135.5, 134.8, 128.75, 128.73, 128.65, 127.6, 127.3, 126.9, 124.5, 123.98, 122.98, 109.3, 43.96, 41.5, 32.4. HRMS (ESI) calcd for C₂₅H₁₈N₂O₅ (M+H)⁺: 427.1294, found 427.1292.

1,1,1,3,3,3-Hexafluoropropan-2-yl 2-(1-benzyl-5-chloro-2-oxoindolin-3-yl)acetate

(1d). White solid, mp: 85-87 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.26 (m, 5H), 7.24 (s, 1H), 7.19 (d, *J* = 8.3 Hz, 1H), 6.68 (d, *J* = 8.3 Hz, 1H), 5.87-5.70 (m, 1H), 4.99

(d, J = 15.7 Hz, 1H), 4.90 (d, J = 15.7 Hz, 1H), 3.94 (dd, J = 7.5, 4.4 Hz, 1H), 3.38 (dd, J = 17.6, 4.5 Hz, 1H), 3.14 (dd, J = 17.6, 7.7 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 175.2, 168.0, 142.0, 135.1, 128.9, 128.6, 128.5, 128.3, 127.9, 127.2, 124.2, 120.1 (d, J = 279.3 \text{ Hz}),110.3, 66.8 (m), 44.1, 41.3, 33.8. HRMS (ESI) calcd for C₂₀H₁₄ClF₆NO₃Na (M+Na)⁺: 488.0464, found 488.0465.

1,1,1,3,3,3-Hexafluoropropan-2-yl 2-(1-benzyl-5-methyl-2-oxoindolin-3-yl)acetate

4.4 Hz, 1H), 3.38 (dd, *J* = 17.3, 4.5 Hz, 1H), 3.09 (dd, *J* = 17.3, 8.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 168.3, 141.0, 135.6, 132.5, 128.9, 128.7, 127.6, 127.2, 126.9, 124.5, 120.2 (d, *J* = 283 Hz), 109.1, 66.7 (m), 44.0, 41.4, 34.2, 20.9. HRMS (ESI) calcd for C₂₁H₁₇F₆NO₃ (M+H)⁺: 446.1191, found 446.1186.

1,1,1,3,3,3-Hexafluoropropan-2-yl 2-(1-methyl-2-oxoindolin-3-yl)acetate (1f).

White solid, mp: 79-81 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.31 (t, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 7.4 Hz, 1H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.82-5.66 (m, 1H), 3.82 (dd, *J* = 7.6, 4.6 Hz, 1H), 3.28 (dd, *J* = 17.3, 4.6 Hz, 1H), 3.22 (s, 3H),

3.03 (dd, J = 17.3, 7.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 168.2, 144.3, 128.8, 126.8, 123.5, 122.7, 120.1 (q, J = 281.1 Hz), 108.3, 66.6 (m), 41.3, 34.0, 26.3. HRMS (ESI) calcd for C₁₄H₁₂F₆NO₃ (M+H⁺): 356.0721, found: 356.0715.

Procedure for the synthesis of 1g and 1h.

To an 50 mL two-necked flask was charged with *tert*-butyl 2,3-dioxoindoline-1carboxylate (494 mg, 2 mmol), (benzyloxycarbonylmethylene)triphenylphosphine (874 mg, 2.2 mmol). Then 20 mL CHCl₃ was added and the mixture was stirred at room temperature. Upon completion of the reaction as monitored by TLC, the mixture was concentrated under reduced pressure and the residue was purified by column chromatography to give the witting product. Then, to a 50 mL round bottom flask was added witting product (2 mmol), Pd/C (50% mol) and 20 mL of methanol under H₂. The resulting mixture was stirred at room temperature. Upon completion of the reaction as monitored by TLC, the mixture was filtered to separate Pd/C and the filtrate was concentrated under reduced pressure to get the acid directly used for next step.

The acid intermediate (2 mmol) was dissolved in ethyl acetate, followed by the addition of 1,1,1,3,3,3-hexafluoro-2-propanol (2.4 mmol), DCC (2.4 mmol) and DMAP (0.2 mmol). The mixture was stirred at room temperature until the completion of the reaction as monitored by TLC. The mixture was filtered and the filtrate was concentrated under reduced pressure, the residue was purified by column chromatography (hexane: EtOAc = 15:1, v/v) to afford compound **1g** as white solid.

To a 25ml flask was charged with **1g** (65 mg, 0.15 mmol) and 5 mL CH₂Cl₂, then TFA (1 mL) was added. The mixture was stirred at room temperature. Upon completion of the reaction as monitored by TLC. The reaction was basified by the cautious addition of saturated aqueous sodium bicarbonate solution and the mixture was extracted by EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to afford product **1h** as a yellow oil (Yield = 70%, 36 mg).

tert-Butyl 3-(2-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-2-oxoethyl)-2-oxoindoline -1-carboxylate (1g). White solid, mp: 80-82 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d,

J = 8.2 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.24-7.09 (m, 2H), 5.70 (hept, J = 6.0 Hz, 1H), 3.94 (t, J = 5.7 Hz, 1H), 3.30 (dd, J = 17.4, 4.7 Hz, 1H), 3.17 (dd, J = 17.4, 6.7 Hz, 1H), 1.64 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 167.7, 148.9, 140.2,

129.0, 125.5, 124.6, 123.1, 120.1 (q, *J* = 280.8 Hz), 115.3, 84.6, 66.7 (m), 41.9, 34.3, 28.0. HRMS (ESI) calcd for C₁₈H₁₇F₆NO₅ (M+Na)⁺: 464.0909, found 464.0901.

1,1,1,3,3,3-Hexafluoropropan-2-yl 2-(2-hydroxy-1H-indol-3-yl)acetate (1h). ¹H

NMR (300 MHz, Chloroform-*d*) δ 8.06 (brs, 1H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.25-7.18 (m, 1H), 7.17-7.12 (m, 1H), 7.09 (d, *J* = 2.4 Hz, 1H), 5.85-5.73 (m, 1H), 3.95

(s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.8, 136.0, 126.7, 123.4, 122.5, 120.4 (q, *J* = 279.8 Hz), 119.9, 119.0, 118.4, 106.1, 66.7 (m), 30.1.

General procedure for the synthesis of 3 and 4.

To an oven-dried 10 mL flask was charged with 1 (0.2 mmol), 2 (0.24 mmol), 163 mg of Cs₂CO₃ (0.5 mmol) and 100 mg of 4 Å molecular sieves. Then, 2 mL of dry EtOAc was added and the resulting mixture was stirred at a certain temperature. Upon completion of the reaction as monitored by TLC, the mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexane/ethyl acetate/triethylamine (v/v/v = 4/1/0.005) as the eluent to afford products **3** and **4**.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2,5'-dioxo-2'-phenylspiro[indoline-3,3'-

pyrrolidine]-1'-carboxylate (3a). 78 mg (83%, >95:5 dr), white solid, mp: 190-192 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, *J* = 7.0 Hz, 1H), 7.37-7.29 (m, 1H), 7.27-6.79 (m, 9H), 6.54 (t, *J* = 7.0 Hz, 3H), 5.29 (s, 1H), 5.00 (d, *J* = 15.8 Hz, 1H), 4.22 (d, *J* = 15.8 Hz, 1H),

1H), 3.13 (d, J = 17.2 Hz, 1H), 2.98 (d, J = 17.3 Hz, 1H), 1.19 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 171.6, 148.8, 142.9, 135.9, 134.9, 129.3, 128.6, 128.26, 128.22, 127.3, 126.8, 126.3, 123.1, 122.5, 109.5, 83.4, 69.7, 51.5, 43.7, 41.2, 27.5. HRMS (ESI) calcd for C₂₉H₂₈N₂NaO₄: 491.1947, found 491.1945. IR (KBr): *v* 3040, 3019, 3009, 2982, 2967, 1801, 1770, 1769, 1710, 1694, 1610, 1520, 1494, 1480, 1425, 1365, 1253, 1000, 750 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2'-(4-methoxyphenyl)-2,5'-dioxospiro-

[indoline-3,3'-pyrrolidine]-1'-carboxylate (3b). 89 mg (89%, 83:17 dr), white solid, mp: 198-200 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.43 (m, 1H), 7.27-6.84 (m, 7H), 6.77 (d, *J* = 8.3 Hz, 2H), 6.60-6.54 (m, 3H), 5.27 (s, 1H), 5.06 (d, J = 15.8 Hz, 1H), 4.23 (d, J = 15.8 Hz, 1H), 3.79 (s, 3H), 3.12 (d, J = 17.2 Hz, 1H), 2.98 (d, J = 17.2 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.4, 171.6, 159.5, 148.9, 143.0, 134.9, 129.3, 129.1, 128.4, 127.8, 127.5, 127.4, 126.7, 123.1, 122.5, 113.5, 109.4, 83.3, 69.4, 55.1, 51.7, 43.6, 41.1, 27.5. HRMS (ESI) calcd for C₃₀H₃₀N₂O₅Na (M+Na)⁺: 521.2052, found 521.2051. IR (KBr): 3063, 3006, 3000, 2989, 2982, 2972, 1807, 1801, 1788, 1769, 1711, 1694, 1614, 1513, 1494, 1488, 1467, 1425, 1365, 1326, 1253, 1003, 762 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2,5'-dioxo-2'-(p-tolyl)spiro[indoline-

3,3'-pyrrolidine]-1'-carboxylate (3c). 90 mg (83%, 83:17 dr), white solid, mp: 196-198 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.45 (dd, *J* = 7.2, 0.9 Hz, 1H), 7.23-7.10 (m, 5H), 7.05-6.75 (m, 4H), 6.61 (d, *J* = 6.8 Hz, 2H), 6.53 (d, *J* = 7.3

Hz, 1H), 5.25 (s, 1H), 5.02 (d, J = 15.8 Hz, 1H), 4.23 (d, J = 15.8 Hz, 1H), 3.12 (d, J = 17.2 Hz, 1H), 2.94 (d, J = 17.2 Hz, 1H), 2.34 (s, 3H), 1.21 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 171.7, 148.9, 142.8, 137.9, 134.9, 132.8, 129.4, 129.2, 128.9, 128.4, 127.3, 126.8, 126.2, 123.1, 122.4, 109.5, 83.3, 69.6, 51.6, 43.6, 41.1, 27.5, 21.3. HRMS (ESI) calcd for C₃₀H₃₀N₂O₄Na (M+Na)⁺: 505.2108, found 505.2098. IR (KBr): 3009, 2975, 1800, 1740, 1622, 1499, 1467, 1429, 1375, 1326, 1253, 1025, 755 cm⁻¹.

(2'S,3R) and (2'R,3S)--tert-Butyl 1-benzyl-2'-(4-fluorophenyl)-2,5'-dioxospiro-

[indoline-3,3'-pyrrolidine]-1'-carboxylate (3d). 86 mg (89%, 82:18 dr), white solid, mp: 186-188 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 7.1 Hz, 1H), 7.25-7.12 (m, 5H), 7.05-6.87 (m, 4H), 6.61-6.56 (m, 3H), 5.27 (s, 1H), 4.98 (d,

J = 15.7 Hz, 1H), 4.23 (d, J = 15.7 Hz, 1H), 3.09 (d, J = 17.2 Hz, 1H), 2.98 (d, J = 17.3 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 171.4, 162.6 (d, J = 245.4 Hz), 148.8, 142.9, 134.8, 131.6 (d, J = 3.2 Hz), 129.5, 128.7, 128.5, 127.9 (d, J = 8.0 Hz), 127.5, 126.7, 123.2, 122.6, 115.2 (d, J = 21.7 Hz), 109.5, 83.6, 69.0, 51.5, 43.6, 41.1, 27.5. HRMS (ESI) calcd for C₂₉H₂₇FN₂O₄Na (M+Na)⁺: 509.1853, found 509.1857. IR (KBr): 3001, 2990, 2822, 1815, 1780, 1624, 1474, 1425, 1326, 1003, 752

cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2'-(4-chlorophenyl)-2,5'-dioxospiro-

[indoline-3,3'-pyrrolidine]-1'-carboxylate (3e). 83 mg (82%, 80:20 dr), white solid, mp: 193-195 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (dd, J = 7.2, 1.0 Hz, 1H), 7.25-6.69 (m, 9H), 6.60-6.55 (m, 3H), 5.26 (s, 1H), 5.02 (d, J = 15.7 Hz,

1H), 4.21 (d, J = 15.7 Hz, 1H), 3.08 (d, J = 17.2 Hz, 1H), 2.99 (d, J = 17.2 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.2, 171.3, 148.8, 143.0, 134.7, 134.4, 134.1, 129.5, 128.6, 128.50, 128.44, 127.6, 127.5, 126.7, 123.3, 122.6, 109.6, 83.7, 68.9, 51.5, 43.7, 41.2, 27.6. HRMS (ESI) calcd for C₂₉H₂₇ClN₂O4Na (M+Na)⁺: 525.1557, found 525.1560. IR (KBr): 3122, 3001, 2990, 1815, 1780, 1615, 1500, 1425, 1326, 1003, 750 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2'-(4-bromophenyl)-2,5'-dioxospiro-

[indoline-3,3'-pyrrolidine]-1'-carboxylate (3f). 99 mg (91%, 84:16 dr), white solid, mp: 194-196 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 7.0 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.26-6.70 (m, 7H), 6.61-6.53 (m, 3H), 5.25 (s, 1H),

5.02 (d, J = 15.7 Hz, 1H), 4.21 (d, J = 15.7 Hz, 1H), 3.16-2.93 (m, 2H), 1.24 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.2, 171.2, 148.7, 143.0, 134.9, 134.7, 131.4, 129.5, 128.7, 128.4, 127.9, 127.5, 126.7, 123.3, 122.6, 122.2, 109.6, 83.7, 68.9, 51.4, 43.7, 41.2, 27.6. HRMS (ESI) calcd for C₂₉H₂₇BrN₂O₄Na (M+Na)⁺: 569.1052, found 569.1048. IR (KBr): 3001, 2990, 1815, 1780, 1624, 1474, 1425, 1326, 1125, 1003, 750 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2,5'-dioxo-2'-(4-(trifluoromethyl)phenyl)

spiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (3g). 87 mg (81%, 80:20 dr, -20 °C), white solid, mp: 197-199 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 7.5 Hz, 3H), 7.26-7.06 (m, 7H), 6.61-6.56 (t, J = 7.0 Hz, 3H), 5.35 (s, 1H), 4.95

(d, J = 15.7 Hz, 1H), 4.24 (d, J = 15.7 Hz, 1H), 3.10 (d, J = 17.2 Hz, 1H), 3.01 (d, J = 17.2 Hz, 100 Hz, 100

17.3 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.1, 171.1, 148.7, 142.9, 140.0, 134.7, 130.4 (d, J = 32.4 Hz), 129.6, 128.6, 128.5, 127.6, 126.70, 126.65, 125.1 (d, J = 3.5 Hz), 123.8 (q, J = 270.5 Hz), 123.4, 122.6, 109.7, 83.9, 68.9, 51.3, 43.8, 41.3, 27.5. HRMS (ESI) calcd for C₃₀H₂₇F₃N₂O₄Na (M+Na)⁺: 559.1821, found 559.1821. IR (KBr): 3001, 2988, 1818, 1730, 1624, 1474, 1425, 1320, 1000, 752 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2'-(3-fluorophenyl)-2,5'dioxospiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (3h). 83 mg (86%, 90:10 dr, -20 °C), white solid, mp: 195-197 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, J = 6.7 Hz, 1H), 7.25-7.10 (m, 6H), 6.98 (td, J = 8.3, 2.2 Hz, 1H), 6.93-6.64 (m, 4H), 6.61 (d, J = 7.6 Hz, 1H), 5.26 (s, 1H), 4.97 (d, J = 15.7 Hz, 1H), 4.27 (d, J = 15.7 Hz, 1H), 3.12 (d, J = 17.3 Hz, 1H), 2.95 (d, J = 17.3 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (75 MHz,

CDCl₃) δ 174.9, 171.3, 162.5 (d, J = 245.5 Hz), 148.7, 142.8, 138.5 (d, J = 7.1 Hz), 134.9, 129.8 (d, J = 8.0 Hz), 129.5, 129.1, 128.6, 127.5, 126.8, 123.3, 122.4, 121.8 (d, J = 2.5 Hz), 115.2 (d, J = 20.9 Hz), 113.4 (d, J = 22.6 Hz), 109.6, 83.7, 69.1, 51.2, 43.7, 41.1, 27.5. HRMS (ESI) calcd for C₂₉H₂₇FN₂O₄Na (M+Na)⁺: 509.1853, found 509.1851. IR (KBr): 3080, 2997, 2980, 1798, 1720, 1645, 1474, 1425, 1326, 750 cm⁻¹.

(m, 1H), 5.23 (s, 1H), 5.00 (d, J = 15.6 Hz, 1H), 4.25 (d, J = 15.6 Hz, 1H), 3.13 (d, J = 17.3 Hz, 1H), 2.95 (d, J = 17.3 Hz, 1H), 1.23 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.9, 171.3, 148.7, 142.8, 138.0, 134.9, 134.2, 129.55, 129.52, 129.1, 128.7, 128.5, 127.5, 126.8, 126.4, 124.3, 123.3, 122.4, 109.6, 83.7, 69.0, 51.2, 43.7, 41.0, 27.5. HRMS (ESI) calcd for C₂₉H₂₇ClN₂O₄Na (M+Na)⁺: 525.1557, found 525.1546. IR (KBr): 3070, 2997, 2970, 1790, 1728, 1645, 1474, 1425, 1326, 1124, 750 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2,5'-dioxo-2'-(m-tolyl)spiro[indoline-

3,3'-pyrrolidine]-1'-carboxylate (3j). 83 mg (86%, >95:5 dr, -20 °C), white solid, mp: 212-214 °C. ¹H NMR (300 MHz, CDCl3) & 7.53-7.42 (m, 1H), 7.25-6.64 (m, 9H), 6.61-6.53 (m, 3H), 5.24 (s, 1H), 5.03 (d, J = 15.7 Hz, 1H), 4.21 (d, J = 15.8 Hz, 1H), 3.13 (d, J = 17.2 Hz, 1H), 2.95 (d, J = 17.2 Hz, 1H),

2.21 (s, 3H), 1.19 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.2, 171.7, 148.9, 142.9, 135.7, 135.0, 129.5, 129.3, 129.0, 128.5, 128.10, 128.05, 127.3, 126.7, 123.1, 122.4, 109.4, 83.3, 69.8, 51.5, 43.7, 41.1, 27.4, 21.3. HRMS (ESI) calcd for C₃₀H₃₀N₂O₄Na (M+Na)⁺: 505.2108, found 505.2100. IR (KBr): 3065, 3006, 2976, 1790, 1735, 1645, 1474, 1425, 1326, 750 cm⁻¹.

(2'S, 3R)(2'*R*,3*S*)-*tert*-Butyl 1-benzyl-2'-(3-methoxyphenyl)-2,5'and

dioxospiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (3k). 87 mg (87%, >95:5 dr, 0 °C), white solid, mp: 204-206 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (dd, J = 7.2, 1.2 Hz, 1H), 7.23-7.07 (m, 6H), 6.84 (dd, J = 8.0, 2.2 Hz, 1H), 6.79-6.22 (m, 5H), 5.25 (s, 1H), 5.01 (d, J = 15.7 Hz, 1H), 4.23 (d, J =

15.8 Hz, 1H), 3.61 (s, 3H), 3.11 (d, J = 17.2 Hz, 1H), 2.97 (d, J = 17.2 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 171.6, 159.5, 148.8, 143.0, 137.2, 134.9, 129.30, 129.23, 129.18, 128.6, 127.3, 126.7, 123.1, 122.5, 118.5, 114.6, 109.5, 83.4, 69.7, 55.2, 51.5, 43.7, 41.1, 27.5. HRMS (ESI) calcd for C₃₀H₃₀N₂O₅Na (M+Na)⁺: 521.2052, found 521.2052. IR (KBr): 3070, 3000, 2890, 1780, 1720, 1645, 1474, 1425, 1320, 750 cm⁻¹.

(2'R, 3R)and

(2'S,3S)-tert-Butyl 1-benzyl-2'-(2-methoxyphenyl)-2,5'dioxospiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (41). 85 mg (85%, <5:95 dr, 0 °C), white solid, mp: 206-208 °C. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.44 (d, J = 7.1 \text{ Hz}, 1\text{H}), 7.32-7.27 (m, 2\text{H}),$ 7.25-7.18 (m, 4H), 7.10 (t, J = 7.2 Hz, 1H), 7.04-6.91 (m, 3H), 6.76 (d, J = 8.3 Hz, 1H), 6.68 (d, J = 7.7 Hz, 1H), 5.78 (s, 1H),

4.93 (d, J = 15.7 Hz, 1H), 4.54 (d, J = 15.7 Hz, 1H), 3.37 (s, 3H), 3.22 (d, J = 17.2 Hz, S12

1H), 2.72 (d, J = 17.2 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.4, 172.3, 156.5, 148.8, 142.0, 135.4, 132.0, 129.1, 128.8, 128.6, 127.4, 127.1, 126.0, 124.5, 122.9, 122.2, 120.6, 110.1, 109.1, 83.2, 62.8, 54.9, 50.2, 43.9, 41.4, 27.5. HRMS (ESI) calcd for C₃₀H₃₀N₂O₅Na (M+Na)⁺: 521.2052, found 521.2043. IR (KBr): 3120, 3020, 2934, 1756, 1726, 1645, 1474, 1425, 1326, 1056, 750 cm⁻¹.

(2'R,3R) and (2'S,3S)-tert-Butyl 1-benzyl-2,5'-dioxo-2'-(o-tolyl)spiro[indoline-3,3'-

pyrrolidine]-1'-carboxylate (4m). 85 mg (88%, <5:95 dr, -20 °C), white solid, mp: 208-210 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.38 (m, 2H), 7.25-7.08 (m, 7H), 7.08-6.97 (m, 1H), 6.80-6.67 (m, 2H), 6.63 (d, *J* = 7.7 Hz, 1H), 5.58 (s, 1H), 4.97 (d, *J* =

15.6 Hz, 1H), 4.33 (d, J = 15.6 Hz, 1H), 3.25 (d, J = 17.4 Hz, 1H), 2.90 (d, J = 17.4 Hz, 1H), 1.15 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.0, 171.9, 148.6, 142.4, 135.2, 135.0, 134.6, 130.8, 130.2, 129.3, 128.6, 128.0, 127.4, 127.1, 126.3, 126.2, 123.2, 122.5, 109.5, 83.3, 65.4, 50.7, 43.9, 41.3, 27.4, 19.1. HRMS (ESI) calcd for C₃₀H₃₀N₂O₄Na (M+Na)⁺: 505.2108, found 505.2095. IR (KBr): 3060, 2990, 2890, 1765, 1734, 1645, 1474, 1425, 1320, 750 cm⁻¹.

1H), 7.07 (td, J = 7.8, 0.8 Hz, 1H), 6.75-6.56 (m, 2H), 5.90-5.88 (m, 2H), 5.08 (d, J = 15.6 Hz, 1H), 4.82 (d, J = 15.6 Hz, 1H), 2.98 (d, J = 17.7 Hz, 1H), 2.88 (d, J = 17.7 Hz, 1H), 1.27 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 178.1, 171.5, 148.5, 143.3, 135.6, 135.3, 133.9, 129.7, 129.5, 128.9, 128.8, 127.8, 127.3, 127.0, 126.1, 125.7, 124.1, 122.2, 109.1, 83.5, 63.0, 48.9, 43.9, 40.4, 27.5. HRMS (ESI) calcd for C₂₉H₂₇ClN₂O₄Na (M+Na)⁺: 525.1557, found 525.1546. IR (KBr): 3120, 3010, 2975, 1770, 1735, 1640, 1476, 1430, 750 cm⁻¹.

(2'R,3R) and (2'S,3S)-tert-Butyl 1-benzyl-2'-(2-chlorophenyl)-2,5'dioxospiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (4n). 88 mg (combined yield: 87%, 51:49 dr), white solid, mp: 167-169 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.44 (dd, J = 6.9, 4.9 Hz, 2H), 7.37-7.20 (m, 7H), 7.12 (t, J = 7.2 Hz, 1H), 7.05-7.02 (m, 2H), 6.73 (d, J = 7.8 Hz, 1H), 5.81 (s, 1H), 4.85 (d, J = 15.6 Hz, 1H),

4.63 (d, J = 15.6 Hz, 1H), 3.29 (d, J = 17.3 Hz, 1H), 2.75 (d, J = 17.3 Hz, 1H), 1.23 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 171.8, 148.4, 142.0, 135.1, 134.2, 132.9, 131.6, 129.4, 129.3, 129.2, 128.6, 127.6, 127.3, 127.1, 127.0, 123.3, 122.3, 109.5, 83.7, 65.3, 50.0, 44.2, 41.3, 27.5. HRMS (ESI) calcd for C₂₉H₂₇ClN₂O₄Na (M+Na)⁺: 525.1557, found 525.1556. IR (KBr): 30500, 2990, 2943, 1767, 1735, 1647, 1474, 1425, 1300, 754 cm⁻¹.

(2'*R*,3*S*)-*tert*-Butyl 1-benzyl-2'-(2-bromophenyl)-2,5'dioxospiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (30). 95 mg (combined yield: 87%, 54:46 dr), white solid, mp: 195-197 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.27 (m, 8H), 7.22-7.14 (m, 1H), 7.09 (td, *J* = 7.8, 1.0 Hz, 1H), 6.70 (d, *J* = 7.8 Hz, 1H),

6.61 (td, J = 7.6, 0.6 Hz, 1H), 5.85 (s, 1H), 5.83 (d, J = 8.5 Hz, 1H), 5.07 (d, J = 15.5 Hz, 1H), 4.82 (d, J = 15.5 Hz, 1H), 2.98 (d, J = 17.7 Hz, 1H), 2.85 (d, J = 17.7 Hz, 1H), 1.27 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 178.1, 171.5, 148.5, 143.5, 137.0, 135.3, 132.9, 129.8, 128.9, 128.7, 127.8, 127.6, 127.5, 126.0, 125.9, 124.6, 124.1, 122.2, 109.1, 83.5, 65.2, 48.8, 43.9, 40.4, 27.6. HRMS (ESI) calcd for C₂₉H₂₇BrN₂O₄Na (M+Na)⁺: 569.1052, found 569.1047. IR (KBr): 3076, 2993, 2978, 1765, 1736, 1645, 1474, 1425, 1130, 750 cm⁻¹.

```
(2'R, 3R)
```


and

(2'S,3S)-tert-Butyl 1-benzyl-2'-(2-bromophenyl)-2,5'dioxospiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (40). 95 mg (combined yield: 87%, 54:46 dr), white solid, mp: 166-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 7.3 Hz, 1H), 7.42-7.36 (m, 2H), 7.28-7.21 (m, 4H), 7.13 (t, J = 7.5 Hz, 1H), 7.09-7.05 (m, 2H), 6.75 (d, J = 7.8 Hz, 1H), 5.78 (s, 1H), 4.78 (d, J = 15.6 Hz, 1H), 4.71 (d, J = 15.6 Hz, 1H), 3.32 (d, J = 17.4 Hz, 1H), 2.74 (d, J = 17.4 Hz, 1H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 171.9, 148.4, 142.0, 135.9, 135.2, 132.6, 131.9, 129.8, 129.2, 128.7, 127.6, 127.4, 127.3, 123.4, 123.2, 122.3, 109.5, 83.8, 67.7, 49.9, 44.3, 41.3, 27.5. HRMS (ESI) calcd for C₂₉H₂₇BrN₂O₄Na (M+Na)⁺: 569.1052, found 569.1047. IR (KBr): 3070, 2999, 2968, 1760, 1736, 1645, 1474, 1425, 1125, 750 cm⁻¹.

(t, J = 7.3 Hz, 2H), 6.62-6.57 (m, 3H), 6.19 (s, 1H), 4.73 (d, J = 15.7 Hz, 1H), 4.19 (d, J = 15.7 Hz, 1H), 3.40 (d, J = 17.5 Hz, 1H), 2.89 (d, J = 17.5 Hz, 1H), 1.03 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.4, 172.0, 148.7, 142.2, 134.8, 133.4, 132.3, 131.9, 130.7, 129.3, 129.0, 128.8, 128.5, 127.3, 126.9, 126.1, 125.5, 125.2, 123.5, 123.4, 122.2, 121.4, 109.6, 83.5, 65.0, 50.4, 44.0, 41.6, 27.3. HRMS (ESI) calcd for C₃₃H₃₀N₂O₄Na (M+Na)⁺: 541.2103, found 541.2097. IR (KBr): 3032, 2978, 1758, 1738, 1645, 1454, 1325, 1129, 750 cm⁻¹.

1H), 6.65-6.45 (m, 3H), 6.27 (d, J = 7.1 Hz, 2H), 5.48 (s, 1H), 4.98 (d, J = 15.7 Hz, 1H), 4.10 (d, J = 15.8 Hz, 1H), 3.17 (d, J = 17.2 Hz, 1H), 3.05 (d, J = 17.2 Hz, 1H), 1.13 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 171.6, 148.9, 143.0, 134.5, 133.4, 133.2, 132.9, 129.4, 129.0, 128.2, 128.0, 127.7, 127.1, 126.4, 126.3, 126.2, 125.2, 124.1, 123.2, 122.6, 109.5, 83.4, 69.8, 51.6, 43.6, 41.3, 27.4. HRMS (ESI) calcd for

C₃₃H₃₀N₂O₄Na (M+Na)⁺: 541.2103, found 541.2103. IR (KBr): 3092, 3000, 2978, 1760, 1745, 1625, 1454, 1325, 1130, 1000, 750 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-benzyl-2'-(furan-2-yl)-2,5'-dioxospiro[indoline-

3,3'-pyrrolidine]-1'-carboxylate (4r). 46 mg (50%, 18: 82 dr), white solid, mp: 199-201 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, J = 1.0 Hz, 1H), 7.38-7.27 (m, 4H), 7.25-7.16 (m, 3H), 7.08 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.8 Hz, 1H), 6.38 (dd, J = 3.2, 1.8

Hz, 1H), 6.24 (d, J = 3.2 Hz, 1H), 5.22 (s, 1H), 5.03 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 15.6 Hz, 1H), 3.49 (d, J = 17.1 Hz, 1H), 2.67 (d, J = 17.1 Hz, 1H), 1.36 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 171.4, 149.4, 148.7, 142.5, 141.7, 135.3, 131.8, 129.3, 128.8, 127.7, 127.3, 123.4, 121.8, 110.5, 109.5, 108.1, 83.8, 63.4, 50.3, 44.0, 40.4, 27.7. HRMS (ESI) calcd for C₂₇H₂₆N₂O₅Na (M+Na)⁺: 481.1739, found 481.1736. IR (KBr): 3012, 2988, 1788, 1708, 1612, 1494, 1392, 1120, 750 cm⁻¹.

CDCl₃) δ 174.6, 171.1, 148.6, 142.6, 138.7, 135.0, 129.8, 129.4, 128.6, 127.5, 127.0, 126.8, 125.5, 124.7, 123.2, 122.2, 109.5, 83.7, 65.5, 51.5, 43.8, 40.5, 27.6. HRMS (ESI) calcd for C₂₇H₂₆N₂O₄SNa (M+Na)⁺: 497.1511, found 497.1504. IR (KBr): 3325, 3062, 3010, 2966, 2914, 1795, 1701, 1575, 1490, 1367, 1141, 744 cm⁻¹.

6.43 (d, J = 8.4 Hz, 1H), 5.26 (s, 1H), 4.98 (d, J = 15.8 Hz, 1H), 4.18 (d, J = 15.8 Hz, 1H), 3.10 (d, J = 17.2 Hz, 1H), 2.97 (d, J = 17.2 Hz, 1H), 1.18 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.8, 171.2, 148.6, 141.4, 135.5, 134.4, 130.7, 129.3, 128.6, 128.5, 128.4, 128.3, 127.5, 126.6, 126.2, 123.1, 110.5, 83.6, 69.5, 51.7, 43.7, 41.0, 27.4. HRMS (ESI) calcd for C₂₉H₂₇ClN₂O₄Na (M+Na)⁺: 525.1557, found 525.1563. IR (KBr): 3018, 2978, 1778, 1728, 1622, 1454, 1372, 1129, 738 cm⁻¹.

5.27 (s, 1H), 4.97 (d, J = 15.7 Hz, 1H), 4.20 (d, J = 15.8 Hz, 1H), 3.13 (d, J = 17.2 Hz, 1H), 2.95 (d, J = 17.2 Hz, 1H), 2.37 (s, 3H), 1.19 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.2, 171.8, 148.8, 140.4, 136.0, 135.0, 132.8, 129.6, 129.4, 128.5, 128.2, 127.3, 126.7, 126.3, 123.2, 109.3, 83.4, 69.8, 51.5, 43.6, 41.2, 27.4, 21.2. HRMS (ESI) calcd for C₃₀H₃₀N₂O₄Na (M+Na)⁺: 505.2108, found 505.2108. IR (KBr): 3002, 2985, 1776, 1738, 1612, 1494, 1382, 1130, 744 cm⁻¹.

(2'S,3R) and (2'R,3S)-tert-Butyl 1-methyl-2,5'-dioxo-2'-phenylspiro[indoline-3,3'-

pyrrolidine]-1'-carboxylate (3v). 71 mg (90%, >95:5 dr), white solid, mp: 197-199 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 7.3 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.22-7.14 (m, 4H), 7.04-6.84 (m, 2H), 6.73 (d, *J* = 7.8 Hz, 1H), 5.16 (s, 1H), 3.13 (d, *J* = 17.3 Hz,

1H), 2.85 (d, J = 17.3 Hz, 1H), 2.85 (s, 3H), 1.19 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.7, 171.8, 148.8, 143.4, 135.8, 130.2, 129.4, 128.2, 127.9, 125.7, 123.1, 122.2, 108.3, 83.3, 70.0, 51.4, 40.2, 27.5, 26.0. HRMS (ESI) calcd for C₂₃H₂₄N₂O₄Na (M+Na)⁺: 415.1634, found 415.1629. IR (KBr): 3032, 2989, 1776, 1728, 1646, 1464, 1378, 1138, 755 cm⁻¹.

General procedure for the synthesis of 6 and 7.

To an oven-dried 10 mL flask was charged with 1,1,1,3,3,3-hexafluoropropan-2-yl 2-(1-benzyl-2-oxoindolin-3-yl)acetate 1 (0.2 mmol), 5 (0.24 mmol), 163 mg of Cs₂CO₃ (0.5 mmol) and 100 mg of 4 Å molecular sieves. Then, 2 mL of dry EtOAc was added and the resulting mixture was stirred at a certain temperature. Upon completion of the reaction as monitored by TLC, the mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexane/ethyl acetate/triethylamine (v/v/v = 4/1/0.005) as the eluent to afford products 6 and 7.

(2'S,3S) and (2'R,3R)-tert-butyl 1,1"-dibenzyl-2,2",5'-trioxodispiro[indoline-3,2'-

pyrrolidine-3',3''-indoline]-1'-carboxylate (6a). 96 mg (80%, 85:15 dr), white solid, mp: 187-190 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 7.4 Hz, 1H), 7.26-7.22 (m, 2H), 7.20-7.05 (m, 7H), 6.97 (t, *J* = 7.4 Hz, 2H), 6.65-6.57 (m, 2H), 6.48 (t, *J* = 7.5 Hz, 3H), 6.40 (d, *J* = 7.5 Hz, 1H), 5.24 (d, *J* = 16.1

Hz, 1H), 5.16 (d, *J* = 15.6 Hz, 1H), 4.54 (d, *J* = 15.6 Hz, 1H), 4.30 (d, *J* = 16.1 Hz, 1H),

3.99 (d, J = 16.3 Hz, 1H), 2.76 (d, J = 16.3 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 172.5, 172.4, 147.7, 143.8, 142.4, 134.8, 134.3, 129.9, 128.55, 128.49, 128.3, 127.6, 127.5, 127.1, 126.0, 124.3, 123.83, 123.80, 122.8, 121.8, 109.70, 109.69, 84.0, 71.3, 54.2, 44.6, 43.6, 38.9, 27.3. HRMS (ESI) calcd for C₃₇H₃₃N₃O₅NH₄ (M+NH₄)⁺: 617.2764, found 617.2754. IR (KBr): 3043, 2998, 2889, 1768, 1738, 1619, 1494, 1392, 1110, 750 cm⁻¹.

(2'R,3R)-tert-butyl 1"-benzyl-1-methyl-2,2",5'trioxodispiro[indoline-3,2'-pyrrolidine-3',3"-indoline]-1'carboxylate (6b). 90 mg (86%, 84:16 dr), white solid, mp: 194-197 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, J = 7.2 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.24-7.03 (m, 5H), 6.73 (d, J =

7.8 Hz, 1H), 6.63 (t, J = 7.6 Hz, 1H), 6.45 (t, J = 7.2 Hz, 3H), 6.31 (d, J = 7.5 Hz, 1H), 5.17 (d, J = 16.1 Hz, 1H), 4.25 (d, J = 16.1 Hz, 1H), 4.02 (d, J = 16.2 Hz, 1H), 3.16 (s, 3H), 2.66 (d, J = 16.2 Hz, 1H), 1.06 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 172.6, 172.0, 147.6, 144.5, 142.0, 134.5, 130.0, 129.8, 128.8, 128.6, 127.2, 126.0, 124.4, 123.7, 123.5, 122.8, 121.7, 109.7, 108.3, 83.9, 71.2, 54.3, 43.5, 38.7, 27.3, 26.4. HRMS (ESI) calcd for C₃₁H₂₉N₃O₅NH₄ (M+NH₄)⁺: 541.2451, found 541,2443. IR (KBr): 3001, 2976, 1765, 1746, 1612, 1500, 1392, 1133, 750 cm⁻¹.

and

(2'*R*,3*R*)-*tert*-butyl 1,1"-dibenzyl-5-methyl-2,2",5'trioxodispiro[indoline-3,2'-pyrrolidine-3',3"-indoline]-1'carboxylate (6c). 91 mg (74%, 87:13 dr), white solid, mp: 178-182 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2 Hz, 1H), 7.24-6.89 (m, 11H), 6.50-6.43 (m, 4H), 6.18 (s, 1H), 5.23 (d, *J*

= 16.2 Hz, 1H), 5.13 (d, J = 15.6 Hz, 1H), 4.52 (d, J = 15.6 Hz, 1H), 4.30 (d, J = 16.1 Hz, 1H), 3.97 (dd, J = 16.3, 3.1 Hz, 1H), 2.78 (dd, J = 16.2, 3.1 Hz, 1H), 1.92 (s, 3H), 1.04 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 172.9, 172.48, 172.47, 147.8, 142.5, 141.3, 135.0, 134.4, 131.4, 130.0, 129.7, 128.5, 128.4, 128.2, 127.6, 127.4, 127.1, 126.1, 125.1, 123.9, 122.6, 109.7, 109.4, 83.9, 71.4, 54.2, 44.6, 43.6, 38.8, 27.3, 20.6. HRMS (ESI) calcd for C₃₈H₃₅N₃O₅NH₄ (M+NH₄)⁺: 631.2920, found 631.2908. IR (KBr): 3022, 2990,

1776, 1740, 1640, 1484, 1376, 1143, 755 cm⁻¹.

(2'*R*,3*R*)-*tert*-butyl 1,1''-dibenzyl-5-methoxy-2,2'',5'trioxodispiro[indoline-3,2'-pyrrolidine-3',3''-indoline]-1'carboxylate (6d). 59 mg (47%, 80:20 dr), white solid, mp: 204-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.3 Hz, 1H), 7.40-7.29 (m, 2H), 7.24 (t, *J* = 7.7 Hz, 1H), 7.20-

7.07 (m, 5H), 7.02 (t, J = 7.5 Hz, 2H), 6.72 (dd, J = 8.6, 2.5 Hz, 1H), 6.50 (d, J = 7.3 Hz, 4H), 5.98 (d, J = 2.4 Hz, 1H), 5.29 (d, J = 16.2 Hz, 1H), 5.17 (d, J = 15.6 Hz, 1H), 4.55 (d, J = 15.6 Hz, 1H), 4.32 (d, J = 16.2 Hz, 1H), 4.08 (d, J = 16.3 Hz, 1H), 3.30 (s, 3H), 2.78 (d, J = 16.3 Hz, 1H), 1.09 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 172.5, 172.2, 155.1, 147.8, 142.5, 137.2, 135.0, 134.3, 129.9, 128.6, 128.5, 127.7, 127.5, 127.2, 126.0, 124.6, 123.8, 122.7, 116.0, 110.6, 110.3, 109.9, 84.1, 71.4, 55.8, 54.2, 44.8, 43.6, 38.7, 27.4. HRMS (ESI) calcd for C₃₈H₃₅N₃O₆Na (M+Na)⁺: 652.2424, found 652.2421. IR (KBr): 3065, 3000, 1776, 1743, 1642, 1484, 1395, 1123, 747 cm⁻¹.

(2'*R*,3*R*)-*tert*-butyl 1,1''-dibenzyl-5-fluoro-2,2'',5'trioxodispiro[indoline-3,2'-pyrrolidine-3',3''-indoline]-1'carboxylate (6e). 70 mg (57%, 42:58 dr), white solid, mp: 176-180 °C. Minor product: ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.1 Hz, 1H), 7.34-7.24 (m, 3H), 7.18-7.10 (m, 5H), 7.03 (t,

J = 7.4 Hz, 2H), 6.88-6.82 (m, 1H), 6.65-6.43 (m, 4H), 6.13 (dd, J = 8.1, 2.2 Hz, 1H), 5.23 (d, J = 16.0 Hz, 1H), 5.16 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 15.6 Hz, 1H), 4.35 (d, J = 16.0 Hz, 1H), 4.04 (d, J = 16.3 Hz, 1H), 2.78 (d, J = 16.3 Hz, 1H), 1.14 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 172.1, 158.1 (d, J = 240.6 Hz), 147.8, 142.3, 139.85, 139.84, 134.6, 134.4, 130.2, 128.63, 128.60, 128.0, 127.72, 127.67, 127.4, 126.2, 125.4 (d, J = 8.3 Hz), 123.7, 123.0, 116.0 (d, J = 23.2 Hz), 112.5 (d, J = 26.2 Hz), 110.1 (d, J = 7.7 Hz), 109.9, 84.4, 71.2, 54.0, 44.9, 43.7, 38.8, 27.5. HRMS (ESI) calcd for C₃₇H₃₂FN₃NaO₅ (M+Na)⁺: 640.2224, found 640.2210. IR (KBr): 3042, 2998, 2897, 1767, 1736, 1615, 1494, 1392, 1120, 746 cm⁻¹.

and

(2'S,3R)-tert-butyl 1,1"-dibenzyl-5-fluoro-2,2",5'trioxodispiro[indoline-3,2'-pyrrolidine-3',3"-indoline]-1'carboxylate (7e). 70 mg (57%, 42:58 dr), red oil. Major product: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.3 Hz, 1H), 7.31-7.10 (m, 8H), 6.90-8.83 (m, 6H), 6.55 (d, J = 7.7 Hz, 1H), 6.39 (dd, J = 8.4, 3.9 Hz, 1H), 5.03 (d, J = 15.9 Hz, 1H), 4.96

(d, J = 16.0 Hz, 1H), 4.58 (d, J = 15.9 Hz, 1H), 4.56 (d, J = 15.8 Hz, 1H), 3.64 (d, J = 16.7 Hz, 1H), 2.85 (d, J = 16.7 Hz, 1H), 1.17 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 174.3, 171.2, 159.2 (d, J = 241.3 Hz), 147.8, 143.7, 139.38, 139.37, 134.6, 134.2, 129.9, 128.7, 127.64, 127.61, 127.1, 126.7, 126.5 (d, J = 8.3 Hz), 125.4, 123.4, 123.1, 116.2 (d, J = 23.2 Hz), 113.5 (d, J = 25.9 Hz), 110.3 (d, J = 7.7 Hz), 109.7. 84.0, 70.7, 52.4, 44.3, 43.7, 38.9, 27.5. HRMS (ESI) calcd for C₃₇H₃₂FN₃NaO₅ (M+Na)⁺: 640.2224, found 640.2210. IR (KBr): 3038, 2997, 2890, 1760, 1740, 1625, 1490, 1389, 1116, 750 cm⁻¹.

(2'S,3R)-tert-butyl 1,1"-dibenzyl-4-chloro-2,2",5'trioxodispiro[indoline-3,2'-pyrrolidine-3',3"-indoline]-1'carboxylate (7f). 88 mg (69%, <5:95 dr), white solid, mp: 182-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.5 Hz, 1H), 7.21-7.09 (m, 8H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.2 Hz,

1H), 6.86 (d, J = 7.0 Hz, 4H), 6.60 (d, J = 7.8 Hz, 1H), 6.49 (d, J = 7.8 Hz, 1H), 4.73 (d, J = 15.6 Hz, 1H), 4.66 (d, J = 15.5 Hz, 1H), 4.40 (d, J = 15.6 Hz, 1H), 4.31 (d, J = 15.5 Hz, 1H), 3.49 (d, J = 17.1 Hz, 1H), 3.12 (d, J = 17.2 Hz, 1H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 172.9, 171.4, 147.8, 143.8, 142.4, 135.0, 134.7, 132.4, 130.4, 129.7, 128.64, 128.60, 127.7, 127.5, 127.4, 127.1, 126.7, 126.2, 124.3, 123.6, 122.6, 109.0, 107.5, 84.0, 73.2, 52.4, 44.4, 44.1, 41.4, 27.4. HRMS (ESI) calcd for C₃₇H₃₂ClN₃O₅Na (M+Na)⁺: 656.1928, found 656.1922. IR (KBr): 3033, 2996, 2890, 1777, 1730, 1615, 1494, 1390, 1115, 748 cm⁻¹.

6g. 119 mg (94%, 87:13). White solid, mp: 181-182 °C. ¹H NMR (400 MHz,

(d, J = 16.1 Hz, 1H), 3.94 (d, J = 16.4 Hz, 1H), 2.76 (d, J = 16.4 Hz, 1H), 1.05 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.7, 171.99, 171.87, 147.5, 143.7, 140.9, 134.7, 133.8, 130.1, 129.8, 129.7, 128.6, 128.5, 128.3, 127.6, 127.5, 127.3, 125.98, 124.11, 124.10, 123.6, 122.0, 110.7, 109.9, 84.3, 71.1, 54.2, 44.7, 43.7, 38.7, 27.3. HRMS (ESI) calcd for C₃₇H₃₂ClN₃O₅NH₄ (M+NH₄)⁺: 651.2374, found 651.2373. IR (KBr): 3048, 2998, 2890, 1798, 1748, 1610, 1499, 1392, 1130, 751 cm⁻¹.

6h. 112 mg (94%, 79:21). White solid, mp: 185-187°C. ¹H NMR (400 MHz, **6b.** 112 mg (94%, 79:21). White solid, mp: 185-187°C. ¹H NMR (400 MHz, **7.00** Chloroform-*d*) δ 7.28-7.24 (m, 3H), 7.17-7.05 (m, 5H), **7.00**-6.94 (m, 3H), 6.64 (t, *J* = 7.6 Hz, 1H), 6.58 (d, *J* = 7.8 Hz, 1H), 6.47 (d, *J* = 7.5 Hz, 2H), 6.40 (d, *J* = 7.5 Hz, 2H), **8** Hz, 1H), 6.34 (d, *J* = 8.0 Hz, 1H), 5.19 (t, *J* = 16.6 Hz, 2H),

4.52 (d, J = 15.6 Hz, 1H), 4.27 (d, J = 16.1 Hz, 1H), 3.98 (d, J = 16.3 Hz, 1H), 2.74 (d, J = 16.3 Hz, 1H), 2.33 (s, 3H), 1.03 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.1, 172.7, 172.3, 147.7, 143.9, 139.9, 134.9, 134.4, 132.5, 130.2, 129.8, 128.50, 128.46, 128.3, 127.7, 127.5, 127.1, 125.98, 124.4, 124.3, 123.9, 121.8, 109.7, 109.5, 84.0, 71.3, 54.2, 44.7, 43.6, 38.9, 27.3, 21.1. HRMS (ESI) calcd for C₃₈H₃₅N₃O₅NH₄ (M+NH₄)⁺: 631.2920, found 631.2920. IR (KBr): 3022, 2990, 2892, 1770, 1741, 1619, 1489, 1392, 1120, 746 cm⁻¹.

Procedure for the synthesis of 3a with chiral-phase-transfer catalysis.

To a 25mL flask was charged with an 1,1,1,3,3,3-hexafluoropropan-2-yl 2-(1-benzyl-2-oxoindolin-3-yl)acetate **1a** (43 mg, 0.1 mmol), *tert*-butyl-benzylidenecarbamate **2a**' (25 mg, 0.12 mmol), LiOH (6 mg, 0.5 mmol) and PTC-A₄ (9 mg, 15 mol%). Then, 6 mL toluene and 2 ml H₂O was added and the resulting mixture was stirred at room temperature. Upon completion of the reaction as monitored by TLC, the mixture was poured to 10 mL water and extracted by EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexane/ethyl acetate/triethylamine (v/v/v = 4/1/0.005) as the eluent to afford product **3a** (54 mg, 93% yield, 90.5:9.5 er). HPLC DAICEL CHIRALCEL IF, *n*-hexane/2-propanol = 70/30, flow rate = 1.2 mL/min, λ = 254 nm, retention time: 17.53 min (minor), 20.96 min (major).

Procedure for the synthesis of 6a with chiral-phase-transfer catalysis.

To a 25 mL flask was charged with 1,1,1,3,3,3-hexafluoropropan-2-yl 2-(1-benzyl-2-oxoindolin-3-yl)acetate **3a** (43 mg, 0.1 mmol), *tert*-butyl-(1-benzyl-2-oxoindolin-3-ylidene)carbamate **5a** (40 mg, 0.12 mmol), LiOH (6 mg, 0.5 mmol) and PTC-A4 (9 mg, 15 mol%). Then, 6 mL toluene and 2 ml H₂O was added and the resulting mixture was stirred at room temperature. Upon completion of the reaction as monitored by TLC, the mixture was poured to 10 mL water and extracted by EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexane/ethyl acetate/triethylamine (v/v/v = 4/1/0.005) as the eluent to afford product **6a** (44 mg, 74% yield, 50:50 er).

Procedure for the deprotection of the products 3a and 6a.

To a 25ml flask was charged with 3a (93.6 mg, 0.2 mmol) and 10 mL CH₂Cl₂, then TFA (1 mL) was added. The mixture was stirred at room temperature. Upon completion of the reaction as monitored by TLC. The reaction was basified by the cautious addition of saturated aqueous sodium bicarbonate solution and the mixture was extracted by EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to afford NMR pure product **8**.

This procedure is also applicable to the synthesis of 9.

(2'S,3R) and (2'R,3S)-1-benzyl-2'-phenylspiro[indoline-3,3'-pyrrolidine]-2,5'-

Hz, 1H), 7.24-7.11 (m, 5H), 7.10-6.86 (m, 4H), 6.51-6.44 (m, 3H), 5.19 (s, 1H), 4.98 (d, J = 15.8 Hz, 1H), 4.16 (d, J = 15.8 Hz, 1H), 2.98 (d, J = 16.8 Hz, 1H), 2.90 (d, J = 16.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 175.9, 175.2, 143.1, 135.0, 134.9, 129.1, 128.8, 128.6, 128.5, 127.2, 126.6, 126.5, 122.9, 122.8, 109.3, 66.5, 55.5, 43.5, 40.6. HRMS (ESI) calcd for C₂₄H₂₁N₂O₂(M+H)⁺: 369.1603, found 369.1595. IR (KBr): 3112, 3001, 2920, 1760, 1743, 1601, 1500, 1312, 1119, 750 cm⁻¹.

(2'S,3S) and (2'R,3R)-1,1"-dibenzyldispiro[indoline-3,2'-pyrrolidine-3',3"-

indoline]-2,2'',5'-trione (9). 99 mg (99% yield), white solid, mp: 212-215 °C. ¹H NMR (300 MHz, DMSO) δ 8.77 (brs, 1H), 7.52 (d, *J* = 7.3 Hz, 1H), 7.33-7.04 (m, 9H), 7.00 (t, *J* = 7.3 Hz, 2H), 6.72 (d, *J* = 7.8 Hz, 1H), 6.62 (t, *J* = 7.1 Hz, 2H), 6.53 (d,

dione (8). 74 mg (99% yield), white solid, mp: 220-223 °C. ¹H

NMR (300 MHz, CDCl₃) δ 7.57-7.44 (m, 1H), 7.32 (t, J = 7.3

J = 7.4 Hz, 2H), 6.41 (d, *J* = 7.4 Hz, 1H), 5.06 (d, *J* = 16.4 Hz, 1H), 4.94 (d, *J* = 16.0 Hz, 1H), 4.73 (d, *J* = 16.0 Hz, 1H), 4.49 (d, *J* = 16.4 Hz, 1H), 3.55 (d, *J* = 15.8 Hz, 1H),

2.51 (d, J = 15.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 175.1, 172.7, 143.6, 142.1, 135.6, 135.2, 130.4, 129.6, 129.5, 128.5, 128.4, 127.33, 127.26, 126.9, 126.0, 125.3, 123.8, 123.0, 122.6, 121.7, 109.7, 109.6, 68.6, 57.3, 43.3, 42.6, 38.4. HRMS (ESI) calcd for C₃₂H₂₆N₃O₃(M+H)⁺: 500.1974, found 500.1969. IR (KBr): 3030, 2999, 2898, 1769, 1740, 1615, 1494, 1401, 1129, 752 cm⁻¹.

References:

- Seayad, A. M.; Ramalingam, B.; Yoshinaga, K.; Nagata, T.; Chai, C. L. L., Org. Lett. 2010, 12, 264-267.
- 2. Yan, W.; Wang, D.; Feng, J.; Li, P.; Zhao, D.; Wang, R., Org. Lett. 2012, 14, 2512-2515.

8.2088 8.1860 8.1860 7.7.31321 7.7.2977 7.7.2556 7.7.2556 7.7.2557 7.7.2557 7.7.2557 7.7.2557 7.7.2557 7.7.2557 7.7.2557 7.7.0543 7

1a

90

80

120

160

-175.7740 -168.2594 -168.2594 -168.2594 -133.5697 -127.38866 -127.38866 -127.3339 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -122.69333 -127.7456 -109.4485 -67.1488 -67.1488 -67.1488 -67.1488 -67.1488 -67.14831 -67.1483 -67.14535 -67.14535 -67.14535 -67.14535 -67.14535 -67.14535-67.145

1c

$\begin{array}{c} 7.3756\\ 7.3355\\ 7.33556\\ 7.33556\\ 7.23199\\ 7.22199\\ 7.22199\\ 7.22199\\ 7.2212079\\ 7.2212079\\ 7.28152\\ 5.8152\\ 5.8152\\ 5.7552\\ 5.7553\\ 5.7552\\ 5.7553\\ 5.7552\\ 5.7552\\ 5.7552\\ 5.7552\\ 5.7552\\ 5.7552\\ 5.$

1h

акалын чүлүүлүүн кол түүлүүлүүн кол түүлүүлүүн күнүн күүлэктүүн күнүктүүн күнүн күнүн күнүн күнүнүүн күнүүлүүн 150 140 130 120 110 100 90 80 70 60

200 190 180 170 160

0

10

40

50

20

110 100

3w

6b

-1.0240

6d

172.8447 172.2471 172.2681 172.2681 172.2681 137.2435 137.2435 137.2435 137.2435 137.2435 137.2435 137.2435 137.2435 137.2435 128.6081 123.607 123.655 110.5555 110.5655 110.5555 110.5555 110.5555 110.5555 110.5555 110.5555 110.5555 110.5555 110.5555 110.5555 110.5555

6g

X-ray structure of **6b**

