Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting information for

Gold(I)-catalyzed Nicholas Reaction with Aromatic Molecules Utilizing a Bifunctional Propargyl Dicobalt Hexacarbonyl Complex

Toshitaka Okamura,[†] Shogo Fujiki,[†] Yoshiharu Iwabuchi,[†] and Naoki Kanoh^{*,†,‡}

† Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Table of Contents

1. General procedure	1
2. Synthesis of Nicholas complex precursors	2
3. Reagent screening	13
4. Synthesis of gold catalyst 18g	16
5. Synthesis of substrates	17
6. Functionalization	
7. Decomplexation of dicobalt hexacarbonyl complexes	46
8. 1-Pot propargylation	47
9. References	
10. NMR spectra	51

1. General procedure

All reactions were carried out under an argon atmosphere with dehydrated solvents under anhydrous conditions, unless otherwise noted. Dehydrated THF and CH₂Cl₂ were purchased from Kanto Chemical Co., Inc. Other solvents were dehydrated and distilled according to standard protocols. Reagents were obtained from commercial suppliers, unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) carried out on Silica gel plates (Merck Kieselgel 60 F254) or Silica gel plates (Fuji Silysia Chemical Co., Ltd.). Column chromatography was performed on Silica gel 60N (Kanto Chemical Co., Inc., spherical, neutral, 63-210 µm). Flash column chromatography was performed on Silica gel 60N (Kanto Chemical Co., Inc., spherical, neutral, 40-50 µm). Fluorous column chromatography was performed on FluoroFlash® Silica Gel 40 µm (SIGMA-ALDRICH, Co.). All melting points were determined with Yazawa Micro Melting Point BY-2 and are uncorrected. IR spectra were recorded on a JASCO FT/IR-410 Fourier Transform Infrared Spectrophotometer. ¹H-NMR (400 and 600 MHz) and ¹³C-NMR spectra (100 and 150 MHz) were recorded on JEOL JNM-AL-400, JEOL JNM-ECA-600 spectrometers, respectively. ¹⁹F-NMR spectra (560 MHz) are recorded on JEOL JNM-ECA-600 spectrometers. For ¹H-NMR spectra, chemical shifts (δ) are given from TMS (0.00 ppm) or CHCl₃ (7.26 ppm) in CDCl₃ as an internal standard. For ¹³C-NMR spectra, chemical shifts (δ) are given from CDCl₃ (77.0 ppm) as an internal standard. For ¹⁹F-NMR spectra, chemical shifts (δ) are given from C₆F₆ (164.9 ppm) as an internal standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd, = double doublet, dt = double triplet, m = multiplet, br = broad. EI mass spectra were recorded on JEOL JMS-DX303, JEOL JMS-700 and JEOL JMS-T 100 GC. FAB mass spectra were recorded on JEOL JMS-700. ESI mass spectra were recorded on Thermo Scientific Exactive Mass Spectrometer.

2. Synthesis of Nicholas complex precursors

2-1. Synthesis of reagent 5

Methyl 2-(hex-1-yn-1-yl)benzoate (S1)

To a solution of methyl 2-iodobenzoate (524 mg, 2.00 mmol) and 1-hexyne (0.28 mL, 2.44 mmol) in Et₃N (6.0 mL) was added Pd(PPh₃)₂Cl₂ (28.0 mg, 39.9 µmol) and CuI (8.97 mg, 47.0 µmol) at room temperature. The reaction mixture was stirred at the same temperature for 24 h, then concentrated under vacuo. CH₂Cl₂ (30 mL) was added to the residue, and the organic layer was washed with water and brine, dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 20) to give alkyne **S1** (385 mg, 1.78 mmol, 89%). Characterization data were in agreement with previously reported values.¹

2-(Hex-1-yn-1-yl)benzoic acid (S2)

To a solution of benzoate **S1** (1.27 g, 5.89 mmol) in MeOH (25 mL) was added 1 M NaOH (25 mL) at room temperature. The reaction mixture was stirred at the same temperature for 5.5 h. The mixture was poured into 1 M HCl (30 mL), and extracted with Et₂O (40 mL \times 2). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 1) to give benzoic acid **S2** (1.18 g,

mmol, 99%). Characterization data were in agreement with previously reported values.¹

Reagent 5

To a solution of benzoic acid **S2** (296 mg, 1.46 mmol) in CH₂Cl₂ (4.8 mL) was added (COCl)₂ (150 μ L, 1.75 mmol) and DMF (10 μ L, 0.13 μ mol) at room temperature. The reaction mixture was stirred at the same temperature for 1 h. The reaction mixture was concentrated under vacuo. To the residue was added CH₂Cl₂ (7.3 mL), pyridine (1.2 mL), and alkyne cobalt complex **S3**² (370 mg, 1.10 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 2 h. The reaction mixture was quenched with water (4 mL) and extracted with CH₂Cl₂ (10 mL × 2). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified with silica gel column chromatography (AcOEt : Hexane = 1 : 20) to give complex **5** (471 mg, 0.90 mmol, 82% from **S3**).

5: red oil; IR (neat): 2022 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.43 (td, J = 7.6, 1.0 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 6.12 (s, 1H), 5.52 (s, 2H), 2.50 (t, J = 7.1 Hz, 2H), 1.69-1.58 (m, 2H), 1.58-1.45 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.1, 165.6, 134.5, 131.8, 131.0, 130.1, 127.1, 125.2, 96.5, 88.7, 79.3, 72.2, 65.4, 30.8, 22.1, 19.6, 13.7; HRMS (ESI): calcd for C₂₂H₁₆O₈Co₂Na ([M+Na]⁺): 548.9401, found 548.9393.

2-2. Synthesis of reagent 6

Methyl 2-((trimethylsilyl)ethynyl)benzoate (S4)

To a solution of methyl 2-iodobenzoate (5.24 g, 20.0 mmol) and TMS acetylene (3.39 mL, 24.0 mmol) in Et₃N (60 mL) was added Pd(PPh₃)₂Cl₂ (14.0 mg, 0.02 mmol) and CuI (3.8 mg, 0.02 mmol) at room temperature. The reaction mixture was stirred at the same temperature overnight and concentrated under vacuo. To the residue was added CH₂Cl₂ (30 mL) and the organic layer was washed with sat. aq.NH₄Cl (30 mL), dried over MgSO₄, and filtered. The filtrate was concentrated under vacuo and purified by column chromatography on silica gel (AcOEt : hexane = 1 : 30) to give alkyne **S4** (5.14 g, quant.). Characterization data were in agreement with previously reported values.³

2-Ethynylbenzoic acid (S5)

To a solution of benzoate S4 (996 mg, 4.29 mmol) in MeOH (18 mL) was added 1 M NaOH (18 mL) at room temperature. The reaction mixture was stirred at the same temperature for 3 h. The mixture was poured into conc. HCl (4 mL), and extracted with Et_2O (30 mL × 3). The combined organic layers were washed with brine, dried over MgSO₄, and filtered. The filtrate was concentrated under vacuo and purified by column chromatography on silica gel (AcOEt : hexane = 4 : 1 to 1 : 1) to give benzoic acid S5 (412 mg, 2.82 mmol, 66%). Characterization data were in agreement with previously

reported values.4

Reagent 6

To a solution of benzoic acid **S5** (295 mg, 2.02 mmol) in CH₂Cl₂ (6.8 mL) was added (COCl)₂ (0.21 mL, 2.42 mmol) and DMF (10 μ L, 0.13 μ mol) at room temperature. The reaction mixture was stirred at the same temperature for 1 h. The reaction mixture was concentrated in vacuo. To the residue was added CH₂Cl₂ (10 mL), pyridine (1.6 mL) and alkyne cobalt complex **S3** (345 mg, 1.01 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 2 h. The reaction mixture was quenched with water (10 mL) and extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 20) to give complex **6** (395 mg, 0.830 mmol, 82% from **S3**).

6: red oil; IR (neat): 2036 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 7.4 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 6.13 (s, 1H), 5.54 (s, 2H), 3.44 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.1, 165.3, 135.2, 132.0, 131.7, 130.2, 128.5, 123.1, 88.3, 82.6, 82.0, 72.3, 65.6; HRMS (ESI): calcd for C₁₈H₈O₈Co₂Na ([M+Na]⁺): 492.8775, found 492.8754.

2-3. Synthesis of reagent 7

Methyl 2-ethynylbenzoate (S6)

To a solution of alkyne **S4** (2.0 g, 8.6 mmol) in MeOH (45 mL) was added K₂CO₃ (2.3 g, 17.0 mmol) at room temperature. The mixture was stirred at the same temperature for 3 h. To the mixture was added sat. NH₄Cl aq. (30 mL), and the resulting mixture was extracted with Et₂O (30 mL × 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under vacuo, and purified by column chromatography on silica gel (AcOEt : hexane = 1: 8) to give terminal alkyne **S6** (1.3 g, 8.2 mmol, 95%). Characterization data were in agreement with previously reported values.³

Methyl 2-(5,5,6,6,7,7,8,8,8-nonafluorooct-1-yn-1-yl)benzoate (S8)

To a solution of $(\pi$ -allyl)₂Pd₂Cl₂ (92 mg, 0.25 mmol), 1,3-di(1-adamantyl)imidazolium hydrochloride (IAd) (198 mg, 0.5 mmol), CuI (216 mg, 1.12 mmol), and Cs₂CO₃ (2.28 g, 7.0 mmol) in DMF-Et₂O (1:2) (10 mL) was added alkyne **S6** (0.92 mL, 3.75 mmol) and 2-(nonafluorobutyl)ethyl iodide (**S7**) (0.86 mL, 5.0 mmol) at room temperature. The reaction mixture was stirred at 40 °C for 24 h, the reaction mixture was concentrated under vacuo and purified by column chromatography on silica gel (CH₂Cl₂ : Hexane = 1 : 30 to 1 : 8) to give alkyne **S8** (1.08 g, 2.70 mmol, 53% from **S6**).

S8: yellow oil; IR (neat): 2955, 1734 cm⁻¹; 1H-NMR (600 MHz, CDCl₃): δ 8.02 (d, J = 8.2 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 3.88 (s, 3H), 3.37 (t, J = 7.6 Hz, 2H), 2.56-2.41 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 195.8, 193.3, 167.3, 138.2, 133.4, 131.5, 129.5, 129.2, 129.1, 52.9, 27.9, 24.8 (t, ¹ $J_{CF} = 23.1$ Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 84.1 (s, 3F), 117.5 (s, 2F), 127.5 (s, 2F), 129.2 (s, 2F); HRMS (ESI): calcd for C₁₁H₁₁O₂F₉Na ([M+Na]⁺): 429.0508, found 429.0505.

2-(5,5,6,6,7,7,8,8,8-Nonafluorooct-1-yn-1-yl)benzoic acid (S9)

To a solution of benzoate **S8** (274 mg, 0.67 mmol) in 2,2,2-trifluoroethanol (TFE) (1.8 mL) was added 2 M KOH (1.8 mL) at room temperature. The reaction mixture was and stirred at 50 °C for 16 h. To the mixture was added 1 M HCl (5 mL), and the resulting mixture was extracted with CH_2Cl_2 (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 20) to give benzoic acid **S9** (244 mg, 0.62 mmol, 92%).

S9: white solid; mp. 82-84 °C; IR (neat): 1705 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.51 (t, *J* = 7.7, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 2.82 (t, *J* = 7.7 Hz, 2H), 2.64-2.38 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 170.8, 134.3, 132.6, 131.2, 130.8, 127.9, 124.2, 92.7, 80.2, 30.3 (t, ¹*J*_{CF} = 21.3 Hz), 11.9 (t, ²*J*_{CF} = 4.9 Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 84.1 (s, 3F), 118.5 (s, 2F) 127.6 (s, 2F), 129.1 (s, 2F); HRMS (EI): calcd for C₁₅H₉O₂F₉ (M⁺): 392.0459, found 392.0440.

Reagent 7

To a solution of benzoic acid **S9** (196 mg, 0.50 mmol) in CH₂Cl₂ (1.7 mL) was added (COCl)₂ (58 μ L, 0.65 mmol) and DMF (4.0 μ L, 0.05 μ mol) at room temperature. The

reaction mixture was stirred at the same temperature for 1 h. The reaction mixture was concentrated under vacuo. To the residue was added CH_2Cl_2 (2.5 mL), pyridine (0.38 mL, 5.0 mmol) and then alkyne cobalt complex **S3** (128 mg, 0.38 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 2 h. The reaction mixture was quenched with water (5 mL), extracted with CH_2Cl_2 (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified with silica gel column chromatography (AcOEt : Hexane = 1 : 100) to give reagent 7 (231 mg, 0.32 mmol, 84% from **S3**).

7: red oil; IR (neat): 2030, 1732 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 8.01 (d, *J* = 8.2 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 6.13 (s, 1H), 5.53 (s, 2H), 2.82 (t, *J* = 6.8 Hz, 2H), 2.56-2.43 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 199.0, 165.2, 134.4, 132.0, 131.1, 130.2, 127.7, 124.3, 92.0, 88.6, 80.4, 72.1, 65.4, 30.4 (t, ¹*J*_{CF} = 21.5 Hz), 11.9 (t, ²*J*_{CF} = 5.7 Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 84.1 (s, 3F), 118.6 (s, 2F), 127.7 (s, 2F), 129.9 (s, 2F); HRMS (EI): calcd for C₂₁H₁₁F₉O₅Co₂ ([M-3CO]⁺): 631.9127, found: 631.9111.

2-4. Synthesis of reagent 2

Methyl 2-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodec-1-yn-1-yl)benzoate (S11)

To a solution of $(\pi$ -allyl)₂Pd₂Cl₂ (46 mg, 0.13 mmol), IAd (99 mg, 0.25 mmol), CuI (108 mg, 0.56 mmol), and Cs₂CO₃ (1.14 g, 3.5 mmol) in DMF-Et₂O (1:2) (5 mL) was added alkyne **S6** (0.46 mL, 1.88 mmol), and 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-8-iodooctane (**S10**) (0.60 mL, 2.5 mmol) at room temperature. The reaction mixture was stirred at 40 °C for 24 h and concentrated under vacuo and purified by column chromatography on silica gel (CH₂Cl₂ : Hexane = 1 : 30 to 1 : 8) to give alkyne **S11** (629 mg, 1.24 mmol, 67% from **S6**).

S11: yellow oil; IR (neat): 1733 cm⁻¹; 1H-NMR (600 MHz, CDCl₃): δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 3.92 (s, 3H), 2.82 (t, *J* = 7.6 Hz, 2H), 2.56-2.42 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 166.6, 134.2, 132.0, 131.6, 130.3, 127.7, 123.6, 91.5, 80.4, 52.0, 30.6 (t, ¹*J*_{CF} = 21.7 Hz), 11.9 (t, ²*J*_{CF} = 5.8 Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 83.9 (s, 3F), 118.3 (s, 2F), 125.1 (s, 2F), 126.0 (s, 2F), 126.7 (s, 2F), 129.3 (s, 2F); HRMS (EI): calcd for C₁₈H₁₁O₂F₁₃ (M⁺): 506.0551, found 506.0543.

2-(5,5,6,6,7,7,8,8,9,9,10,10,10-Tridecafluorodec-1-yn-1-yl)benzoic acid (S12)

To a solution of benzoate **S11** (1.37 g, 2.71 mmol) in TFE (7.3 mL) was added 2 M KOH (7.3 mL) at room temperature. The reaction mixture was stirred at 50 °C for 10 h. The mixture was added 1 M HCl (15 mL), and the mixture was extracted with Et₂O (20 mL \times 3), and concentrated under vacuo. The crude mixture was dissolved in CH₂Cl₂ (10 mL) and extracted with 1 M NaOH (15 mL \times 2), and neutralized with 1 M HCl (30 mL), and the mixture was extracted with Et₂O (30 mL \times 3). The organic layer was dried over MgSO₄, filtered, and concentrated under vacuo to give carboxylic acid **S12** (1.24 g, 2.5 mmol, 93%).

S12: white solid; mp. 78-80 °C; IR (neat): 1698 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 8.06 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 2.83 (t, J = 7.6 Hz, 2H), 2.56-2.44 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 170.5, 134.3, 132.5, 131.2, 130.7, 127.9, 124.1, 92.7, 80.2, 30.4 (t, ¹*J*_{CF} = 21.7 Hz), 11.9 (t, ²*J*_{CF} = 5.8 Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 83.9 (s, 3F), 118.3 (s, 2F), 125.1 (s, 2F), 126.0 (s, 2F), 126.7 (s, 2F), 129.3 (s, 2F); HRMS (EI): calcd for C₁₇H₉O₂F₁₃ (M⁺): 492.0395, found 492.0373.

Reagent 2

To a solution of benzoic acid **S12** (248 mg, 0.50 mmol) in CH₂Cl₂ (5.0 mL) was added (COCl)₂ (56 μ L, 0.65 mmol) and DMF (10 μ L, 0.13 μ mol) at room temperature. The reaction mixture was stirred at the same temperature for 1 h. The reaction mixture was concentrated under vacuo. To the residue was added CH₂Cl₂ (5.0 mL), pyridine (0.38 mL, 5.0 mmol) and then alkyne cobalt complex **S3** (128 mg, 0.38 mmol). The reaction mixture was stirred at the same temperature for 2 h. The reaction mixture was quenched with water (10 mL), extracted with CH₂Cl₂ (15 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 100) to give reagent **2** (257 mg, 0.31 mmol, 84% from **S3**).

2: red solid; IR (neat): 2029, 1733 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 8.01 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 6.13 (s, 1H), 5.52 (s, 2H), 2.83 (t, J = 7.6 Hz, 2H), 2.61-2.45 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 199.1, 165.2, 134.4, 132.0, 131.1, 130.2, 127.7, 124.3, 92.0, 88.6, 80.4, 72.1, 65.4, 30.5 (t, ¹ J_{CF} = 23.1 Hz), 11.9 (t, ² J_{CF} = 5.8 Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 83.9 (s, 3F), 118.3 (s, 2F), 125.0 (s, 2F), 125.9 (s, 2F), 126.6 (s, 2F), 129.2 (s, 2F); HRMS

(ESI): calcd for $C_{26}H_{11}O_8Co_2F_{13}Na([M+Na]^+)$: 838.8803, found 838.8793.

2-5. Attempted synthesis of reagent S13

2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododec-1-yn-1-yl)benzoate (S15)

To a solution of $(\pi$ -allyl)₂Pd₂Cl₂ (28 mg, 75 µmol), IAd (56 mg, 0.15 mmol), CuI (65 mg, 0.34 mmol), Cs₂CO₃ (684 mg, 2.1 mmol) in DMF-Et₂O (1:2) (3 mL) was added alkyne **S6** (0.16 mL, 1.1 mmol), 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-heptadecafluoro-10-iododecane (**S14**) (861 mg, 1.5 mmol) at room temperature. The reaction mixture was stirred at 40 °C for 24 h and concentrated under vacuo and purified by column chromatography on silica gel (CH₂Cl₂ : Hexane = 1 : 30 to 1 : 8) to give alkyne **S15** (327 mg, 0.54 mmol, 48% from **S6**).

S15: yellow oil; IR (neat): 2926, 1735 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 7.92 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 3.92 (s, 3H), 2.82 (t, J = 7.6 Hz, 2H), 2.57-2.44 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 166.6, 134.2, 132.0, 131.6, 130.3, 127.7, 123.6, 91.5, 80.4, 52.1, 30.6 (t, ¹ $J_{CF} = 21.7$ Hz), 11.9 (t, ² $J_{CF} = 5.8$ Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 83.9 (s, 3F), 117.8 (s, 2F), 1118.3 (s, 2F), 124.8 (s, 2F), 125.0 (s, 2F), 125.8 (s, 2F), 126.6 (s, 2F), 129.2 (s, 2F);

HRMS (EI): calcd for $C_{20}H_{11}O_2F_{17}$ (M⁺): 606.0488, found 606.0482.

3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyl)-1*H*-isochromen-1-one (S16)

To a solution of benzoate **S15** (327 mg, 0.54 mmol) in TFE (1.5 mL) was added 2 M KOH (1.5 mL) at room temperature. The reaction mixture was stirred at the same temperature for 26 h. The mixture was added 1 M HCl (5 mL), and the mixture was extracted with Et_2O (15 mL × 2). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 20) to give isocoumalin **S16** (124 mg, 0.21 mmol, 39%). Carboxylic acid was not obtained.

S16: white solid; mp. 74-76 °C; IR (neat): 1718 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 8.27 (d, J = 7.5 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 2.86 (t, J = 7.5 Hz, 2H), 2.62-2.49 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 162.4, 154.2, 136.9, 135.0, 129.7, 128.3, 125.3, 120.3, 104.2, 28.7 (t, ¹*J*_{CF} = 22.9 Hz), 25.0 (t, ²*J*_{CF} = 4.3 Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 83.9 (s, 3F), 117.5 (s, 2F), 117.9 (s, 2F), 124.8 (s, 2F), 125.0 (s, 2F), 125.8 (s, 2F), 126.5 (s, 2F), 129.2 (s, 2F); HRMS (EI): calcd for C₁₉H₉O₂F₁₇ (M⁺): 592.0331, found 592.0310.

3. Reagent screening

3-1. Reaction of reagent 5 with substrate 3

To a solution of **5** (0.1 mmol), naproxen methyl ester **3** (0.2 mmol) and MS4A (50 mg) in CH_2Cl_2 (1.6 mL) was added a solution of 2.5 mM PPh₃AuSbF₆ in CH_2Cl_2 (0.4 mL) at room temperature. The reaction mixture was stirred at the same temperature for 30 min. The reaction mixture was quenched with sat. NaHCO₃ aq. (2 mL), extracted with CH_2Cl_2 (4 mL × 2). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo to give a crude mixture of **4** and **8** and **9**. The ratio was determined by ¹H-NMR used toluene as the internal standard.

The analytical samples were obtained by extensive PTLC (AcOEt : hexane = 1 : 8).

8: Characterization data were in agreement with previously reported values.⁵

9: red oil; IR (neat): 2017 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.33 (d, J = 7.6 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6, 1H), 7.52 (t, J = 7.6 Hz, 1H), 5.93 (s, 1H), 4.19 (s, 2H), 2.69 (t, J = 7.5 Hz, 2H), 1.77 (quint, J = 7.5 Hz, 2H), 1.45 (sext, J = 7.5 Hz, 2H), 0.98 (t, J = 7.5 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.3, 162.2, 155.6, 137.0, 134.5, 130.2, 127.7, 122.8, 120.8, 111.5, 93.1, 73.8, 30.9, 29.8, 22.5, 13.8; HRMS (EI): calcd for C₁₉H₁₆O₅Co₂ ([M-3CO]⁺): 441.9662, found 441.9668.

3-2. Reaction of reagent 6 with substrate 3

To a solution of **6** (0.1 mmol), naproxen methyl ester **3** (0.2 mmol) and MS4A (50 mg) in CH₂Cl₂ (1.6 mL) was added a solution of 2.5 mM PPh₃AuSbF₆ in CH₂Cl₂ (0.4 mL) at room temperature. The reaction mixture was stirred at the same temperature for 30 min. The reaction mixture was quenched with sat. NaHCO₃ aq. (2 mL), extracted with CH₂Cl₂ (4 mL \times 2). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo to give crude mixture of **4** and **10** and **11**. The ratio was determined by ¹H-NMR used toluene as the internal standard.

The analytical samples were obtained by PTLC (AcOEt : Hexane 1 : 8).

10: Characterization data were in agreement with previously reported values.⁶

11: red oil; IR (neat): 2019 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 7.8 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.75 (t, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 6.09 (s, 1H), 6.01 (t, *J* = 8.3 Hz, 1H), 4.11 (d, *J* = 8.3 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.3, 166.5, 146.8, 137.6, 134.5, 130.3, 126.4, 125.9, 122.9, 110.8, 93.2, 72.8, 30.5; HRMS (ESI): calcd for C₁₈H₈O₈Co₂Na ([M+Na]⁺): 492.8775, found 492.8765.

3-3. Reaction of reagent 7 with substrate 3

To a solution of 7 (71.6 mg, 0.1 mmol), naproxen methyl ester **3** (60.6 mg, 0.2 mmol) and MS4A (50 mg) in CH₂Cl₂ (1.6 mL) was added a solution of 2.5 mM PPh₃AuSbF₆ in CH₂Cl₂ (0.4 mL) at room temperature. The reaction mixture was stirred at the same temperature for 30 min. The reaction mixture was quenched with sat. aq. NaHCO₃ (2 mL), extracted with CH₂Cl₂ (7 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo to give crude mixture of **3** and **4** and **12**. The ratio was determined by ¹H-NMR used toluene as the internal standard.

The analytical samples were obtained by PTLC (AcOEt : Hexane 1 : 8).

12: white solid; mp. 50-52 °C; IR (neat): 1734 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 8.27 (d, *J* = 8.2 Hz, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 6.37 (s, 1H), 2.86 (t, *J* = 7.6 Hz, 2H), 2.65-2.47 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 162.3, 154.2, 136.9, 135.0, 129.7, 128.3, 125.3, 120.3, 104.3, 28.6 (t, ¹*J*_{CF} = 21.7 Hz), 25.0 (t, ²*J*_{CF} = 4.3 Hz); HRMS (EI): calcd for C₁₅H₉F₉O₂ (M⁺): 392.0459, found 392.0477.

3-4. Reaction of reagent 2 with substrate 3

To a solution of **2** (81.6 mg, 0.1 mmol), naproxen methyl ester **3** (60.6 mg, 0.2 mmol) and MS4A (50 mg) in CH₂Cl₂ (1.6 mL) was added a solution of 2.5 mM PPh₃AuSbF₆ in CH₂Cl₂ (0.4 mL) at room temperature. The reaction mixture was stirred at the same temperature for 30 min. The reaction mixture was quenched with sat. aq. NaHCO₃ (2 mL), extracted with CH₂Cl₂ (7 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo to give crude mixture of **3** and **4** and **14**. The ratio was determined by ¹H-NMR used toluene as the internal standard.

The analytical samples were obtained by PTLC (AcOEt : Hexane 1 : 8).

14: white solid; mp. 54-56 °C; IR (neat): 1736 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 8.28 (d, *J* = 8.2 Hz, 1H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 7.5 Hz, 1H), 6.38 (s, 1H), 2.87 (t, *J* = 8.2 Hz, 2H), 2.61-2.48 (m, 2H); ¹³C-NMR (150 MHz, CDCl₃): δ 162.3, 154.2, 136.9, 135.0, 129.7, 128.3, 125.3, 120.3, 104.2, 28.7 (t, ¹*J*_{CF} = 22.9 Hz), 25.0 (t, ²*J*_{CF} = 4.3 Hz); ¹⁹F-NMR (562 MHz, CDCl₃): δ 83.9 (s, 3F), 117.9 (s, 2F), 125.0 (s, 2F), 126.0 (s, 2F), 126.5 (s, 2F), 129.2 (s, 2F); HRMS (EI): calcd for C₁₇H₉F₁₃O₂ (M⁺): 492.0395, found: 492.0366.

4. Synthesis of gold catalyst 18g

To CH_2Cl_2 (5.2 mL) was added gold catalyst **S17** (164 mg, 0.3 mmol), AgNTf₂ (116 mg, 0.3 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 24 h. AgCl was removed by filtration through Celite and concentrated under vacuo to give gold catalyst **18g** (211 mg, 0.27 mmol, 89%).

18g: white crystal; IR (neat): 1590, 1496 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.55-7.44 (m, 2H), 7.30-7.19 (m, 2H) ; ¹³C-NMR (100 MHz, CDCl₃): δ 165.5 (dd, ¹*J*_{CF} = 257.2 Hz, ¹*J*_{CP} = 3.3 Hz), 136.3 (dd, ²*J*_{CP} = 15.6 Hz, ²*J*_{CF} = 9.0 Hz), 122.7 (dd, ³*J*_{CP} = 69.6 Hz, ³*J*_{CF} = 3.3 Hz), 119.4 (q, ⁵*J*_{CF} = 322.8 Hz), 117.5 (dd, ⁴*J*_{CF} = 22.1 Hz, ⁴*J*_{CP} = 13.9 Hz); HRMS (EI): calcd for C₂₀H₁₂F₉NO₄PS₂Au (M⁺): 792.9467, found: 792.9479.

5. Synthesis of substrates

2-Isopropoxynaphthalene (S18)

To a solution of 2-naphthol (446 mg, 2.0 mmol) in DMF (6.1 mL) was added 60% NaH (200 mg, 5.0 mmol) at 0 °C. The reaction mixture was stirred for 30 min at room temperature. The reaction mixture cooled to 0 °C and added isopropyl iodide (0.50 mL, 5.0 mmol). The reaction mixture was allowed to room temperature and stirred for 2 h. The solution was quenched with sat. NH₄Cl aq. (10 mL) at 0 °C and extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 30) to give isoproxyether **S18** (362 mg, 1.88 mmol, 97%). Characterization data were in agreement with previously reported values.⁷

2-Phenoxynaphthalene (S19)

To solution of 2-bromonaphthalene (414 mg, 2.0 mmol) in toluene (6.7 mL) was added Cs_2CO_3 (3.26 g, 5.0 mmol), XPhos (76 mg, 0.16 mmol), Pd(dba)₂ (18 mg, 40 µmol), and phenol (471 mg, 5.0 mmol) at room temperature. The reaction mixture was heated to reflux and stirred for 10 h. The solution was quenched with H₂O (10 mL) at room temperature and extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (Hexane) to give phenyl ether **S19** (48.7 mg, 0.22 mmol, 11%). Characterization data were in agreement with previously reported values.⁸

2-(Benzyloxy)naphthalene (20)

To a solution of 2-naphthol (446 mg, 2.0 mmol) in DMF (6.1 mL) was added 60% NaH (200 mg, 5.0 mmol) at 0 °C. The reaction mixture was stirred for 30 min at room temperature. The reaction mixture cooled to 0 °C and added BnBr (0.36 mL, 3.0 mmol). The reaction mixture was allowed to room temperature and stirred for 2 h. The solution was quenched with MeOH (5.0 mL) and sat. NH₄Cl aq. (10 mL) at 0 °C and extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 30) to give benzyl ether **S20** (322 mg, 1.37 mmol, 69%). Characterization data were in agreement with previously reported values.⁹

2-Allyl-6-methoxynaphthalene (S21)

To a solution of bromide (**S22**) (120 mg, 0.5 mmol) in DMF (1.7 mL) was added LiCl (64 mg, 1.0 mmol), Pd(PPh₃)₄ (15 mg, 13 µmol), and allyltributyltin (0.2 mL, 0.65 mmol) at room temperature. The reaction mixture was heated to 100 °C and stirred for 5 h. The solution was quenched with sat.NaHCO₃ aq. (2 mL) at room temperature and extracted with Et₂O (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel including 10% K₂CO₃ (AcOEt : Hexane = 1 : 50) to give alkene **S21** (98.7 mg, 0.49 mmol, 99%). Characterization data were in agreement with previously reported values.¹⁰

2-(1-Hydroxymethyl)-6-methoxynaphthalene (S23)

To a solution of 6-methoxy-2-naphthaldehyde (376 mg, 2.0 mmol) in EtOH (6.7 mL) added NaBH₄ (151 mg, 4.0 mmol) at 0 °C. The reaction mixture was allowed to room temperature and stirred for 20 min. The solution was added sat. NH₄Cl aq. (10 mL) slowly at 0 °C and extracted with Et₂O (15 mL \times 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel column chromatography (AcOEt : Hexane = 1: 4) to give alcohol **S23** (370 mg, 1.96 mmol, 98%). Characterization data were in agreement with previously reported values.¹¹

2-Methoxy-6-((methoxymethoxy)methyl)naphthalene (S24)

To a solution of alcohol **S23** (94 mg, 0.5 mmol) in DMF (5.0 mL) was added 60% NaH (50 mg, 1.3 mmol) at 0 °C. The reaction mixture was stirred for 30 min at room temperature. The reaction mixture cooled to 0 °C and added MOMCl (76 μ L, 1.0 mmol). The reaction mixture was allowed to room temperature and stirred for 24 h. The solution was quenched with sat. NH₄Cl aq. (5 mL) at 0 °C and extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 10) to give ether **S24** (94 mg, 0.34 mmol, 40%). Characterization data were in agreement with previously reported values.¹²

Tert-butyl((6-methoxynaphthalen-2-yl)methoxy)dimethylsilane (40)

To a solution of alcohol **S23** (94 mg, 0.5 mmol) and imidazole (64 mg, 1.0 mmol) in DMF (1.7 mL) was added TBSCl (150 mg, 1.0 mmol) at 0 °C. The reaction mixture was stirred for 6 h at room temperature. The solution was quenched with sat. NH₄Cl aq. (2 mL) at 0 °C and extracted with Et₂O (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was concentrated under vacuo and purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 30) to give TBS ether **40** (153 mg, quant.).

40: white solid; IR (neat): 1606 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.76-7.67 (m, 3H), 7.45 (d, *J* = 8.7 Hz, 1H), 7.13 (dd, *J* = 7.2 Hz, *J* = 2.4 Hz, 1H), 7.12 (s, 1H), 4.86 (s, 2H),

3.92 (s, 3H), 0.96 (s, 9H), 0.12 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 157.4, 136.8, 133.8, 129.3, 128.8, 126.7, 125.3, 124.4, 118.7, 105.8, 65.2, 55.3, 26.0, 18.5, -5.2; HRMS (EI): calcd for C₁₈H₂₆O₂Si (M⁺): 302.1702, found: 302.1703.

((6-Methoxynaphthalen-2-yl)methoxy)trimethylsilane (S25)

To a solution of alcohol **S23** (94 mg, 0.5 mmol) and imidazole (136 mg, 2.0 mmol) in DMF (3.3 mL) was dropwised TMSCl (0.19 mL, 1.5 mmol) at 0 °C. The reaction mixture was stirred for 1.5 h at room temperature. The solution was quenched with H₂O (2 mL) at 0 °C and extracted with Hexane (5 mL \times 2). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 100) to give TMS ether **S25** (87.7 mg, 0.34 mmol, 67%).

S25: white solid; IR (neat): 1609 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.84-7.64 (m, 3H), 7.40 (dd, *J* = 8.5 Hz, *J* = 1.4 Hz, 1H), 7.18-7.08 (m, 2H), 4.82 (s, 2H), 3.92 (s, 3H), 0.17 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 157.5, 136.2, 133.9, 129.3, 128.8, 126.9, 125.7, 125.0, 118.7, 105.7, 64.8, 55.3, -0.3; HRMS (EI): calcd for C₁₅H₂₀O₂Si (M⁺): 260.1233, found: 260.1233.

Tert-butyl ((4-nitrophenyl)sulfonyl)carbamate (S26)

To a solution of nosylamide (1.04 g, 5.2 mmol) in CH₂Cl₂ (10 mL) was added Et₃N (1.1

mL, 8.7 mmol), DMAP (63 mg, 0.52 mmol), and Boc₂O (1.35 g, 6.2 mmol) at room temperature. The reaction mixture was stirred at the same temperature overnight. The solution was quenched with sat. 1 M HCl (10 mL) at 0 °C and filtered, and washed with Hexane : $Et_2O = 1 : 2$ (10 mL) to carbamate **S26** (1.40 g, quant.). Characterization data were in agreement with previously reported values.¹³

Tert-butyl ((6-methoxynaphthalen-2-yl)methyl)carbamate (S27)

To a solution of alcohol **S23** (263 mg, 1.38 mmol), carbamate **S26** (235 mg, 0.77 mmol), and PPh₃ (367 mg, 1.54 mmol) in benzene (4.5 mL) was dropwised ca. 2.2 M DEAD in toluene (0.71 mL, 1.56 mmol) at 0 °C. The reaction mixture was stirred overnight at room temperature. The solution was quenched with H₂O (5 mL) at 0 °C and extracted with CH₂Cl₂ (7 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (CHCl₃) to give carbamate **S28** (crude).

To a solution of carbamate **S28** (crude) in DMF (4.0 mL) was added LiOH•H₂O (130 mg, 3.08 mmol), and thioglycol acid (0.11 mL, 1.54 mmol) at room temperature. The reaction mixture was stirred overnight. The solution was quenched with sat. NaHCO₃ aq. (5 mL) and extracted with Et₂O (8 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 5) to give carbamate **S27** (156 mg,

0.54 mmol, 71% over 2 steps).

S27: white solid; IR (neat): 3350 (br), 1697 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.7, 1H), 7.70 (d, J = 8.7, 1H), 7.64 (s, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.20-7.08 (m, 2H), 4.87 (brs, 1H), 4.44 (d, J = 5.3 Hz, 2H), 3.92 (s, 3H), 1.48 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 157.5, 155.9, 134.0, 133.7, 129.0, 128.7, 127.0, 126.2, 125.7, 118.8, 105.6, 79.2, 55.1, 44.6, 28.3; HRMS (EI): calcd for C₁₇H₂₁NO₃ (M⁺): 287.1521, found: 287.1504.

Tert-butyl ((6-methoxynaphthalen-2-yl)methyl)(methyl)carbamate (S29)

To a solution of carbamate **S27** (156 mg, 0.54 mmol) in DMF (1.8 mL) was added 60% NaH (82 mg, 1.4 mmol) at 0 °C. The reaction mixture was stirred for 30 min at room temperature. The reaction mixture cooled to 0 °C and added MeI (86 μ L, 1.0 mmol). The reaction mixture was allowed to room temperature and stirred for 5 h. The solution was quenched with sat. NH₄Cl aq. (2 mL) at 0 °C and extracted with Et₂O (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 10) to give carbamate **S29** (149 mg, 0.49 mmol, 91%).

S29 (a mixture of two rotamers): yellowish oil; IR (neat): 1692 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 7.69 (d, *J* = 8.3, 1H), 7.68 (d, *J* = 8.9, 1H), 7.56 (s, 1H), 7.32 (brs, 1H), 7.19-7.05 (m, 2H), 4.52 (s, 2H), 3.88 (s, 3H), 2.86 (brs, 1.5H), 2.79 (brs, 1.5H), 1.50 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 157.6, 156.2, 155.9, 133.8, 133.2, 129.1, 128.8, 127.2, 126.6, 126.3, 126.0, 125.8, 118.9, 105.7, 79.7, 55.2, 52.7, 52.0, 33.8, 28.5; HRMS

(EI): calcd for C₁₈H₂₃NO₃ (M⁺): 301.1678, found: 301.1702.

(9*H*-Fluoren-9-yl)methyl ((6-methoxynaphthalen-2-yl)methyl)(methyl)carbamate (S30)

To a solution of carbamate **S29** (160 mg, 0.53 mmol) in CH_2Cl_2 (5.3 mL) was dropwised TFA (0.41 mL, 5.3 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 24 h. The solution was quenched with sat. 1 M NaOH (10 mL) at 0 °C and extracted with CH_2Cl_2 (15 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo to give amine **S31** (73.8 mg, <0.36 mmol, <67%).

To solution of crude in THF (3.6 mL) was added K₂CO₃ (150 mg, 1.09 mmol) and FmocCl (140 mg, 0.54 mmol) at 0 °C. The reaction mixture was stirred at the same temperature overnight. The solution was quenched with sat. NH₄Cl aq. (5 mL) at 0 °C and extracted with Et₂O (8 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (toluene : Hexane = 1 : 8) to give carbamate **S30** (149 mg, 0.35 mmol, 66% over 2 steps).

S30 (a mixture of two rotamers): amorphous; IR (neat): 1699 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.85-7.56 (m, 5H), 7.55-7.22 (m, 5H), 7.21-7.07 (m, 4H), 4.63 (s, 1H), 4.51 (s, 3H), 4.30 (brs, 0.5H), 4.25 (brs, 0.5H), 3.93 (s, 3H), 2.92 (brs, 1.5H), 2.87 (brs, 1.5H); ¹³C-NMR (150 MHz, CDCl₃): δ 157.6, 156.7, 156.3, 144.03, 143.96, 141.3, 133.9,

132.5, 132.3, 129.2, 128.7, 127.6, 127.3, 127.0, 126.5, 125.8, 125.7, 125.0, 124.8, 119.9, 118.9, 105.7, 67.4, 55.2, 52.6, 52.2, 47.4, 47.3, 34.4, 33.4; HRMS (EI): calcd for C₂₈H₂₅NO₃ (M⁺): 423.1834, found: 423.1815.

2-Bromo-6-methoxynaphthalene (S22)

To a solution of 6-bromo-2-naphthol (446 mg, 2.0 mmol) in DMF (6.1 mL) was added 60% NaH (200 mg, 5.0 mmol) at 0 °C. The reaction mixture was stirred for 30 min at room temperature. The reaction mixture cooled to 0 °C and added MeI (0.31 mL, 5.0 mmol). The reaction mixture was allowed to room temperature and stirred overnight. The solution was quenched with sat. NH₄Cl aq. (10 mL) at 0 °C and extracted with CH₂Cl₂ (10mL \times 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 30) to give methyl ether **S22** (446 mg, 1.88 mmol, 94%). Characterization data were in agreement with previously reported values.¹⁴

2-(1-Hydroxyethyl)-6-methoxynaphthalene (S32)

To a solution of 6-methoxy-2-naphthaldehyde (376 mg, 3.0 mmol) in Et₂O (10 mL) was added ca. 3 M MeMgBr in Et₂O (1.0 mL, 3.0 mmol) over 3 min at 0 °C. The reaction mixture was allowed to room temperature and stirred for 1 h. The solution was quenched with 1 M HCl (10 mL) at 0 °C and extracted with Et₂O (15 mL \times 3). The combined

organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 8) to give alcohol **S32** (276 mg, 1.37 mmol, 68%). Characterization data were in agreement with previously reported values.¹⁵

Nor-AZADO (2 mol%) CuCl (4 mol%) bpy (2 mol%) DMAP (4 mol%) MeCN (0.2 M) O O2 balloon S33

To a solution of alcohol **S32** (101 mg, 0.50 mmol), DMAP (2.44 mg, 0.02 mmol), bpy (1.56 mg, 0.01 mmol) and Nor-AZADO (1.52 mg, 0.01 mmol) in MeCN (2.5 mL) was added CuCl (3.64 mg, 0.0368 mmol) at room temperature. The mixture was stirred at the same temperature under O₂ atomosphere overnight. The reaction mixture was quenched with sat. NaHCO₃ aq. (5 mL), extracted with CH₂Cl₂ (7 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel column chromatography (AcOEt : Hexane = 1: 20) to give ketone **S33** (87 mg, 0.43 mmol, 86%). Characterization data were in agreement with previously reported values.¹⁶

1-Methoxynaphthalene (S34)

2-Acetyl-6-methoxynaphthalene (S33)

To a solution of 1-naphthol (288 mg, 2.0 mmol) in DMF (6.1 mL) was added 60% NaH (200 mg, 5.0 mmol) at 0 °C. The reaction mixture was stirred for 30 min at room temperature. The reaction mixture cooled to 0 °C and added MeI (0.31 mL, 5.0 mmol).

The reaction mixture was allowed to room temperature and stirred for 2 h. The solution was quenched with sat. NH₄Cl aq. (10 mL) at 0 °C and extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 100) to give methyl ether **S34** (235 mg, 1.49 mmol, 74%). Characterization data were in agreement with previously reported values.¹⁷

(5*R*,5*aR*,8*aR*,9*R*)-9-((*Tert*-butyldimethylsilyl)oxy)-5-(3,4,5-trimethoxyphenyl)-5,8,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-*d*][1,3]dioxol-6(5*aH*)-one (37).

To a solution of podophyllotoxin (207 mg, 0.5 mmol) and imidazole (102 mg, 1.5 mmol) in DMF (1.7 mL) was added TBSCl (150 mg, 1.0 mmol) at 0 °C. The reaction mixture was stirred for 6 h at room temperature. The solution was quenched with sat. NH4Cl aq. (2 mL) at 0 °C and extracted with Et₂O (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 2) to give TBS ether **37** (211 mg, 0.40 mmol, 80%). Characterization data were in agreement with previously reported values.¹⁸

6. Functionalization

Procedure A

Two-necked flask containing MS4A (50 mg) was dried using heat gun under vacuo and then cooled to room temperature. After done heating and cooling three times, in the flask was added substrate (50 µmol), reagent **2** (50 mg, 60 µmol), and DCE (1.0 mL) at room temperature. To the reaction mixture was added gold catalyst **18g** (5-20 mol%) and stirred at the same temperature for 15 min. The reaction mixture was quenched with sat. NaHCO₃ aq. (2 mL), and extracted with CH_2Cl_2 (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel column chromatography to give a desired product.

Procedure B

Two-necked flask containing MS4A (50 mg) was dried using heat gun under vacuo and then cooled to room temperature. After done heating and cooling three times, in the flask was added substrate (50 μ mol), reagent **2** (50 mg, 60 μ mol), DCE (1.0 mL), and HFIP (0.1 mL) at room temperature. To the reaction mixture was added gold catalyst **18g** (5-20 mol%) and stirred at the same temperature for 15 min. The reaction mixture was quenched with sat. NaHCO₃ aq. (2 mL), and extracted with CH₂Cl₂ (5 mL \times 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel column chromatography to give a desired product.

Procedure C

Two-necked flask containing MS4A (50 mg) was dried using heat gun under vacuo and then cooled to room temperature. After done heating and cooling three times, in the flask was added substrate (50 μ mol), reagent **2** (61 mg, 75 μ mol), DCE (1.0 mL), and HFIP

(0.1 mL) at room temperature. To the reaction mixture was added gold catalyst **18g** (5-20 mol%) and stirred at the same temperature for 15 min. The reaction mixture was quenched with sat. NaHCO₃ aq. (2 mL), and extracted with CH_2Cl_2 (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel column chromatography to give a desired product.

Procedure D

Two-necked flask containing MS4A (50 mg) was dried using heat gun under vacuo and then cooled to room temperature. After done heating and cooling three times, in the flask was added substrate (50 µmol), reagent **2** (50 mg, 60 µmol), and DCE (1.0 mL) at room temperature. To the reaction mixture was added gold catalyst **18g** (5-20 mol%) and stirred at the same temperature for 15 min. The reaction mixture was quenched with sat. NaHCO₃ aq. (2 mL), and extracted with CH₂Cl₂ (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel column chromatography. After concentrated under vacuo, the residue was purified fluorous silica gel chromatography (H₂O : MeOH = 1 : 4). Fraction was extracted with CH₂Cl₂ (3 mL × 3) and then dried over MgSO₄, filtered, and concentrated under vacuo to give a desired product.

Functionalization of 2-methoxynaphthalene (16)

Procedure A was followed and used gold catalyst **18g** (1.98 mg, 2.5 μ mol). The crude mixture was purified by silica gel column chromatography (Hexane) to give **17** (23.8 mg, 49.3 μ mol, 99%).

17: red oil; IR (neat): 2017 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.7 Hz, 1H), 7.82-7.74 (m, 2H), 7.52 (brt, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.26 (d, *J* = 8.7 Hz, 1H), 5.93 (s, 1H), 4.63 (s, 2H), 3.97 (s, 3H) ; ¹³C-NMR (100 MHz, CDCl₃): δ 199.8, 154.1, 132.7, 129.2, 128.9, 128.7, 126.5, 123.3, 123.2, 121.3, 112.4, 96.4, 73.6, 55.6, 29.0 ; HRMS (EI): calcd for C₁₉H₁₂O₆Co₂ ([M-CO]⁺): 453.9298, found: 453.9312.

Functionalization of 2-isopropoxynaphthalene (S18)

Procedure A was followed and used gold catalyst 18g (1.98 mg, 2.5 µmol). The crude mixture was purified by silica gel column chromatography (Hexane) to give 19 (30.0 mg, 48.9 µmol, 98%).

19: red oil; IR (neat): 2017 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.2 Hz, 1H),

7.77 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 9.2 Hz, 1H), 7.52 (t, J = 8.2 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 9.2 Hz, 1H), 5.91 (s, 1H), 4.72 (quint, J = 6.3 Hz, 1H), 4.63 (s, 2H), 1.42 (d, J = 6.3 Hz, 6H) ; ¹³C-NMR (100 MHz, CDCl₃): δ 199.9, 152.7, 132.8, 129.2, 128.7, 128.6, 126.4, 123.41, 123.36, 122.6, 115.4, 96.4, 73.9, 71.3, 29.6, 22.4; HRMS (EI): calcd for C₁₉H₁₈O₄Co₂ ([M-5CO]⁺): 369.9814, found: 369.9786.

Functionalization of 2-phenoxynaphthalene (S19)

Procedure B was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (Hexane) to give **20** (26.2 mg, 48.2 μ mol, 96%).

20: red oil; IR (neat): 2019 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.7 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 8.7 Hz, 1H), 7.60 (dt, *J* = 7.7 Hz, *J* = 1.0 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.14 (d, *J* = 7.7 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 7.7 Hz, 2H), 5.91 (s, 1H), 4.63 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.6, 157.8, 151.0, 132.7, 131.1, 129.8, 129.2, 128.8, 126.7, 125.9, 124.9, 123.9, 122.8, 119.9, 117.6, 95.5, 73.7, 29.8; HRMS (EI): calcd for C₂₂H₁₄O₄Co₂ ([M-3CO]⁺): 459.9556, found: 459.9544.

Functionalization of 2-(benzyloxy)naphthalene (S20)

Procedure B was followed and used gold catalyst **18g** (3.96 mg, 5.0 μ mol). The crude mixture was purified by silica gel column chromatography (Hexane to CH₂Cl₂ : Hexane = 1 : 50) to give **21** (26.7 mg, 47.8 μ mol, 96%).

21: red oil; IR (neat): 2018 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.75 (d, *J* = 9.2 Hz, 1H), 7.53 (dt, *J* = 8.2 Hz, *J* = 1.2 Hz, 1H), 7.51-7.45 (m, 2H), 7.43-7.32 (m, 4H), 7.30 (d, *J* = 9.2 Hz, 1H), 5.90 (s, 1H), 5.26 (s, 2H), 4.68 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.7, 153.4, 137.1, 132.7, 129.4, 128.9, 128.64, 128.59, 127.9, 127.3, 126.6, 123.6, 123.4, 122.1, 114.2, 96.1, 73.9, 70.9, 29.5; HRMS (EI): calcd for C₂₃H₁₆O₄Co₂ ([M-3CO]⁺): 473.9713, found: 473.9738.

Functionalization of 2-allyl-6-methoxynaphthalene (S21)

Procedure A was followed and used gold catalyst 18g (1.98 mg, 2.5 µmol). The crude mixture was purified by silica gel column chromatography (Hexane) to give 22 (24.5 mg,

46.8 µmol, 94%).

22: red oil; IR (neat): 2017 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.72 (d, *J* = 8.7 Hz, 1H), 7.57 (s, 1H), 7.38 (d, *J* = 8.7 Hz, 1H), 7.22 (d, *J* = 9.2 Hz, 1H), 6.13-5.98 (m, 1H), 5.92 (s, 1H), 5.14 (d, *J* = 5.8 Hz, 1H), 5.10 (s, 1H), 4.61 (s, 2H), 3.96 (s, 3H), 3.52 (d, *J* = 6.3 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.8, 153.7, 137.4, 134.8, 131.3, 129.3, 128.4, 128.1, 127.4, 123.3, 121.1, 116.0, 112.5, 96.4, 73.6, 55.6, 40.0, 29.0; HRMS (EI): calcd for C₁₈H₁₆O₂Co₂ ([M-5CO]⁺): 381.9814, found: 381.9833.

Functionalization of 2-methoxy-6-((methoxymethoxy)methyl)naphthalene (S24)

Procedure D was followed and used gold catalyst **18g** (3.96 mg, 5.0 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 50) and then fluorous silica gel column chromatography to give **23** (16.1 mg, 29 μ mol, 58%).

23: red oil; IR (neat): 2017 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.7 Hz, 1H), 7.77 (d, *J* = 9.2 Hz, 1H), 7.76 (s, 1H), 7.52 (dd, *J* = 9.2 Hz, *J* = 1.9 Hz, 1H), 7.25 (d, *J* = 9.2 Hz, 1H), 5.92 (s, 1H), 4.75 (s, 2H), 4.74 (s, 2H), 4.62 (s, 2H), 3.97 (s, 3H), 3.45 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.8, 154.2, 132.6, 132.2, 128.92, 128.88, 127.6, 126.7, 123.6, 121.2, 112.6, 96.2, 73.5, 69.2, 55.6, 55.4, 29.0; HRMS (EI): calcd for C₂₀H₁₈O₆Co₂ ([M-3CO]⁺): 471.9767, found: 471.9776. Functionalization of *tert*-butyl((6-methoxynaphthalen-2-yl)methoxy) dimethylsilane (40)

Procedure A was followed and used gold catalyst **18g** (3.96 mg, 5.0 μ mol). The crude mixture was purified by silica gel column chromatography (CHCl₃ : Hexane = 1 : 20 to CHCl₃ : Hexane = 1 : 15) to give **24** (29.0 mg, quant.).

24: red oil; IR (neat): 2019 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.7 Hz, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 7.71 (s, 1H), 7.48 (dd, *J* = 8.7 Hz, *J* = 1.0 Hz, 1H), 7.23 (d, *J* = 8.7 Hz, 1H), 5.92 (s, 1H), 4.88 (s, 2H), 4.62 (s, 2H), 3.96 (s, 3H), 0.97 (s, 9H), 0.13 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.8, 153.9, 136.3, 131.9, 129.0, 128.8, 125.5, 125.3, 123.2, 121.2, 112.4, 96.4, 73.5, 65.1, 55.6, 29.1, 26.0, 18.5, -5.2; HRMS (EI): calcd for C₂₅H₂₈O₆SiCo₂ ([M-2CO]⁺): 570.0319, found: 570.0313.

Functionalization of ((6-methoxynaphthalen-2-yl)methoxy)trimethylsilane (S25)

Procedure A was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (CHCl₃ : Hexane = 1 : 20 to CHCl₃ : Hexane = 1 : 15) to give **25** (<10.46 mg, <17.9 μ mol, <36%).

To a solution of **25** (<10.46 mg, <17.9 μ mol, <36%) in MeOH (2.0 mL) was added K₂CO₃ (10 mg, 7.23 μ mol) at room temperature. The reaction mixture was stirred for 90 min at the same temperature. The solution was quenched with sat. NH₄Cl aq. (1 mL) and extracted with CH₂Cl₂ (3 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 30 to AcOEt : Hexane = 1 : 4) to give **S35** (7.86 mg, 15.3 μ mol, 31% over 2 steps)

S35: red oil; IR (neat): 3321 (br), 2017 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.76 (s, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 5.92 (s, 1H), 4.84 (s, 2H), 4.62 (s, 2H), 3.97 (s, 3H), 1.70 (brs, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.8, 154.2, 135.7, 132.2, 129.0, 128.9, 126.4, 126.0, 123.7,
121.3, 112.7, 96.3, 73.5, 65.4, 55.6, 29.0; HRMS (EI): calcd for C₁₆H₁₄O₃Co₂ ([M-5CO]⁺): 371.9607, found: 371.9633.

Functionalization of *tert*-butyl ((6-methoxynaphthalen-2-yl)methyl)(methyl) carbamate (S29)

Procedure B was followed and used gold catalyst **18g** (3.96 mg, 5.0 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 50 to 1 : 20) to give **26** (23.8 mg, 38.0 μ mol, 76%).

26 (a mixture of two rotamers): red oil; IR (neat): 2019, 1694 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 7.92 (d, *J* = 8.9 Hz, 1H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.58 (brs, 1H), 7.41 (brs, 1H), 7.27-7.23 (m, 1H), 5.93 (s, 1H), 4.62 (s, 2H), 4.55 (brs, 2H), 3.97 (s, 3H), 2.88 (brs, 1.5H), 2.80 (brs, 1.5H), 1.49 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 199.8, 156.3, 155.9, 154.1, 133.0, 131.9, 129.0, 128.6, 127.5, 127.4, 127.3, 126.7, 126.2, 123.7, 121.3, 112.7, 96.3, 79.8, 73.5, 55.6, 52.6, 51.8, 33.9, 33.8, 29.0, 28.5; HRMS (FAB): calcd for C_{22H25}NO₄Co₂ ([M-5CO]⁺): 485.0448, found: 485.0455.

Functionalization of (9*H*-fluoren-9-yl)methyl ((6-methoxynaphthalen-2-yl) methyl)(methyl)carbamate (S30)

Procedure B was followed and used gold catalyst **18g** (3.96 mg, 5.0 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 30 to 1 : 10) to give **27** (35.4 mg, 49.9 μ mol, 99%).

27 (a mixture of two rotamers): red oil; IR (neat): 2019, 1702 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 7.92 (d, J = 8.9 Hz, 0.5H), 7.87 (d, J = 8.2 Hz, 0.5H), 7.82-7.68 (m, 3H), 7.63 (brs, 1.5H), 7.51 (brd, J = 8.2 Hz, 1.5H), 7.41 (t, J = 6.8 Hz, 1.5H), 7.38-7.29 (m, 2H), 7.26 (d, J = 6.8 Hz, 1H), 7.18 (brd, J = 6.8 Hz, 1.5H), 5.92 (s, 1H), 4.69-4.59 (m, 3H), 4.57-4.46 (m, 3H), 4.31 (brs, 0.5H), 4.25 (brs, 0.5H), 3.97 (s, 3H), 2.92 (brs, 1.5H), 2.88 (brs, 1.5H) ; ¹³C-NMR (150 MHz, CDCl₃): δ 199.8, 156.8, 156.4, 154.2, 144.0, 141.4, 132.2, 132.0, 128.9, 128.7, 127.7, 127.6, 127.4, 127.0, 126.7, 126.1, 125.0, 124.9, 123.9, 121.3, 120.0, 112.7, 96.2, 73.5, 67.5, 55.6, 52.5, 52.2, 47.4, 34.4, 33.4, 29.7, 29.0; HRMS (FAB): calcd for C₃₄H₂₇NO₆Co₂ ([M-3CO]⁺): 663.0502, found: 663.0504.

Functionalization of 2-bromo-6-methoxynaphthalene (S22)

Procedure B was followed and used gold catalyst **18g** (3.96 mg, 5.0 μ mol). The crude mixture was purified by silica gel column chromatography (Hexane) to give **28** (25.2 mg, 44.9 μ mol, 90%).

28: red oil; IR (neat): 2017 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 1.4 Hz, 1H), 7.82 (d, *J* = 9.2 Hz, 1H), 7.70 (d, *J* = 9.2 Hz, 1H), 7.58 (dd, *J* = 9.2 Hz, *J* = 1.4 Hz, 1H), 7.28 (s, 1H), 5.92 (s, 1H), 4.59 (s, 2H), 3.97 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): - δ 199.7, 154.3, 131.1, 130.5, 130.2, 129.8, 128.0, 125.0, 121.5, 117.0, 113.4, 95.7, 73.4, 55.6, 28.8; HRMS (EI): calcd for C₁₆H₁₁⁷⁹BrO₃Co₂ ([M-4CO]⁺): 447.8556, found: 447.8568.

Functionalization of 2-acetyl-6-methoxynaphthalene (S33)

Procedure A was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 50 to

1 : 20) to give **29** (19.5 mg, 37.2 µmol, 74%).

29: red oil; IR (neat): 2017, 1677 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 8.08 (dd, *J* = 9.2 Hz, 1.9 Hz, 1H), 7.99 (d, *J* = 9.2 Hz, 1H), 7.92 (d, *J* = 9.2 Hz, 1H), 7.33 (d, *J* = 9.2 Hz, 1H), 5.93 (s, 1H), 4.63 (s, 2H), 4.00 (s, 3H), 2.71 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.7, 197.7, 156.3, 135.0, 132.3, 131.2, 130.9, 127.9, 124.6, 123.6, 121.6, 113.1, 95.6, 73.5, 55.6, 28.8, 26.5; HRMS (EI): calcd for C₁₇H₁₄O₃Co₂ ([M-5CO]⁺): 383.9607, found: 383.9607.

Functionalization of 3-methylbenzofuran

Procedure A was followed and used gold catalyst **18g** (1.98 mg, 2.5 μ mol). The crude mixture was purified by silica gel column chromatography (Hexane) to give **30** (17.8 mg, 39.0 μ mol, 78%).

30: red oil; IR (neat): 2019 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.45 (dd, *J* = 6.8 Hz, 1.4 Hz, 1H), 7.38 (dd, *J* = 6.8 Hz, 1.4 Hz, 1H), 7.24 (d, *J* = 7.2 Hz, 1.9 Hz, 1H), 7.20 (dt, *J* = 7.2 Hz, 1.4 Hz, 1H), 6.09 (s, 1H), 4.23 (s, 2H), 2.23 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.4, 153.9, 150.9, 129.8, 123.9, 122.2, 119.1, 111.1, 110.9, 93.3, 73.1, 30.4, 7.9; HRMS (EI): calcd for C₁₇H₁₀O₇Co₂ ([M-5CO]⁺): 427.9141, found: 427.9161.

Functionalization of 3-metylbenzothiophene

Procedure B was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (Hexane) to give **31** (16.2 mg, 34.2 μ mol, 68%).

31: red oil; IR (neat): 2018 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.2 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 1H), 6.10 (s, 1H), 4.37 (s, 2H), 2.40 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.4, 140.3, 138.3, 136.5, 128.1, 124.2, 124.0, 122.2, 121.7, 95.1, 73.6, 32.7, 11.7; HRMS (EI): calcd for C₁₇H₁₀O₅SCo₂ ([M-CO]⁺): 443.8913, found: 443.8926.

Functionalization of 1-methylindole

Procedure A was followed and used gold catalyst 18g (3.96 mg, 5.0 µmol). The crude mixture was purified by silica gel column chromatography (Hexane) to give 32 (15.7 mg,

34.4 µmol, 69%).

32: red oil; IR (neat): 2015 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.94 (s, 1H), 6.05 (s, 1H), 4.27 (s, 2H), 3.75 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.7, 137.0, 127.3, 126.9, 121.8, 119.0, 118.7, 114.1, 109.3, 98.9, 73.6, 32.6, 30.1; HRMS (EI): calcd for C₁₆H₁₁NO₄Co₂ ([M-2CO]⁺): 398.9352, found: 398.9341.

Functionalization of 1-methoxynaphthalene (S34)

Procedure A was followed and used gold catalyst **18g** (1.98 mg, 2.5 μ mol). The crude mixture was purified by silica gel column chromatography (Hexane) to give **33a** (16.6 mg, 34.7 μ mol, 69%), **33b** (5.17 mg, 10.7 μ mol, 21%), **33c** (3.22 mg, 4.2 μ mol, 8%).

33a: red oil; IR (neat): 2016 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.30 (d, *J* = 8.2 Hz, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 6.74 (d, *J* = 7.2 Hz, 1H), 5.94 (s, 1H), 4.49 (s, 2H), 3.98 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.6, 155.2, 132.2, 128.8, 126.9, 126.5, 126.1, 125.1, 123.7, 122.8, 103.3, 97.4, 73.7, 55.5, 37.5; HRMS (EI): calcd for C₁₅H₁₂O₂Co₂ ([M-5CO]⁺): 341.9501,

found: 341.9494.

33b: red oil; IR (neat): 2020 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.54-7.43 (m, 2H), 7.46 (dt, J = 8.2 Hz, J = 1.5 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 6.07 (s, 1H), 4.30 (s, 2H), 3.99 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.7, 153.7, 134.4, 128.4, 128.2, 128.1, 126.0, 125.7, 125.6, 124.3, 122.3, 96.6, 73.6, 62.2, 34.3; HRMS (EI): calcd for C₁₅H₁₂O₂Co₂ ([M-5CO]⁺): 341.9501, found: 341.9510.

33c: red oil; IR (neat): 2018 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.15-8.10 (m, 1H), 8.06-8.01 (m, 1H), 7.58-7.50 (m, 2H), 7.30 (s, 1H), 6.05 (s, 1H), 5.97 (s, 1H), 4.51 (s, 2H), 4.28 (s, 2H), 3.90 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.7, 153.5, 133.1, 132.0, 129.2, 128.7, 127.9, 126.02, 125.99, 124.3, 123.1, 96.8, 96.2, 73.8, 73.5, 62.2, 37.3, 34.3; HRMS (EI): calcd for C₂₈H₁₄O₁₂Co₄ ([M-CO]⁺): 777.7813, found: 777.7826.

Functionalization of naproxen methyl ester (3)

Procedure D was followed and used gold catalyst **18g** (1.98 mg, 2.5 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 30), and then fluorous silica gel column chromatography to give **4** (27.5 mg, 48.4 μ mol, 97%). Characterization data were in agreement with previously reported values.¹⁹

Functionalization of estrone methyl ether (34)

Procedure C was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 20) to give a mixture of **34a** and **34b** (62.02 mg). Characterization data were in agreement with previously reported values.¹⁹

Functionalization of indometacin methyl ester (35)

Procedure C was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 50 to AcOEt : Hexane = 1 : 20) to give **35a** (15.6 mg, 22.5 μ mol, 45%) and **35b** (14.52 mg, 20.9 μ mol, 42%). Characterization data were in agreement with previously reported

values.19

Functionalization of mestranol (36)

Procedure B was followed and used gold catalyst **18g** (7.92 mg, 10 μmol). The crude mixture was purified by silica gel column chromatography (Pentane) to give a mixture of **36a** and **36b** (12.56 mg) and a mixture of **S36** and **S37** (21.98 mg). Characterization data were in agreement with previously reported values.¹⁹

Functionalization of (*5R*, *5aR*, *8aR*, *9R*)-9-((*tert*-butyldimethylsilyl)oxy)-5-(3,4,5-trimethoxyphenyl)-5,8,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3*d*][1,3]dioxol-6(5a*H*)-one (37).

Procedure C was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (AcOEt : Hexane = 1 : 50 to 1 : 4) to give **37a** (9.58 mg, 11.2 μ mol, brsm 99%).

37a: red oil; IR (neat): 2019, 1782 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃): δ 6.96 (s, 1H), 6.39 (s, 1H), 6.061 (s, 1H), 6.055 (s, 1H), 5.98 (s, 1H), 5.97 (s, 1H), 4.93 (d, *J* = 9.6 Hz, 1H), 4.91 (s, 1H), 4.81 (d, *J* = 9.6 Hz, 1H), 4.55 (t, *J* = 7.5 Hz, 1H), 4.43 (d, *J* = 15.7 Hz, 1H), 4.00 (dt, *J* = 11.1 Hz, *J* = 8.6 Hz, 1H), 3.90 (s, 3H), 3.79 (s, 3H), 3.58 (s, 3H), 3.11-3.01 (m, 1H), 2.98-2.89 (m, 1H), 0.97 (s, 9H), 0.30 (s, 1H), 0.14 (s, 3H); ¹³C-NMR (150 MHz, CDCl₃): δ 173.7, 151.9, 151.8, 147.5, 147.3, 141.4, 133.64, 133.60, 132.1, 127.8, 110.8, 109.0, 106.6, 101.4, 96.8, 72.7, 72.3, 71.5, 60.5, 60.4, 55.8, 44.9, 40.9, 39.5, 31.5, 25.8, 18.0, -3.8, -4.1; HRMS (FAB): calcd for C₃₂H₃₈O₉Co₂ ([M-5CO]⁺): 712.0949, found: 712.0972.

Functionalization of guaiazulene (38)

Procedure C was followed and used gold catalyst **18g** (7.92 mg, 10 μ mol). The crude mixture was purified by silica gel column chromatography (Pentane) to give **38a** (9.05 mg, 19.2 μ mol, 38%).

38a: black oil; IR (neat): 2021 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 2.0 Hz, 1H), 7.48 (s, 1H), 7.30 (d, *J* = 11.0 Hz, 1H), 6.90 (d, *J* = 11.0 Hz, 1H), 5.99 (s, 1H), 4.71 (s, 2H), 3.09-2.96 (m, 4H), 2.58 (s, 3H), 1.33 (d, *J* = 6.8 Hz, 6H); ¹³C-NMR (150 MHz, CDCl₃): δ 199.8, 144.6, 140.5, 139.6, 138.2, 134.6, 133.7, 131.8, 126.7, 126.0, 124.5, 99.6, 73.9, 37.7, 36.2, 26.5, 24.5, 12.7; HRMS (EI): calcd for C₂₄H₂₀O₆Co₂ ([M]⁺): 521.9924, found: 521.9934.

7. Decomplexation of dicobalt hexacarbonyl complexes Decomplexation of 17

To solution of functionalized compound 17 (5.32 mg, 35 μ mol) in THF (0.35 mL) and DMF (0.35 mL) was dropwised 1 M TBAF in THF (0.14 mL, 0.14 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 2 h. The solution was quenched with sat. NH₄Cl aq. (1 mL) at room temperature and extracted

with Et_2O (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (Hexane) to **39** (5.32 mg, 27.1 µmol, 78%).

39: white solid; IR (neat): 3291 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 8.3 Hz, 1H), 7.88-7.72 (m, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.28 (d, *J* = 8.8 Hz, 1H), 4.00 (d, *J* = 2.9 Hz, 2H), 3.98 (s, 3H), 1.97 (t, *J* = 2.9 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 154.0, 132.6, 129.3, 129.0, 128.5, 126.8, 123.6, 123.3, 117.7, 113.6, 82.9, 67.9, 56.9, 14.4; HRMS (EI): calcd for C₁₄H₁₂O ([M]⁺): 196.0888, found: 196.0895.

8. 1-Pot propargylation 1-Pot propargylation of 40

A solution of reagent 2 (50 mg, 60 μ mol), 40 (50 μ mol) and MS4A (50 mg) in DCE (1.0 mL) was added gold catalyst 18g (3.96 mg, 5.0 μ mol) at room temperature. The reaction mixture was stirred at the same temperature for 15 min. The reaction mixture was concentrated in vacuo. The residue was dissolved in THF (0.5 mL) and DMF (0.5 mL) and dropwised 1 M TBAF in THF (0.25 mL, 0.25 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 3 h. The solution was quenched

with sat. NH₄Cl aq. (2 mL) at room temperature and extracted with Et₂O (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 20 to 1 : 4) to **41** (9.10 mg, 40.2 µmol, 80%).

41: white solid; IR (neat): 3407 (br), 3288 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.7 Hz, 1H), 7.83-7.75 (m, 2H), 7.55 (dd, J = 9.2 Hz, J = 1.4 Hz, 1H), 7.34 (d, J = 9.2 Hz, 1H), 4.84 (s, 2H), 4.03-3.95 (m, 5H), 1.98 (t, J = 2.7 Hz, 1H), 1.70 (brs, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 154.1, 136.0, 132.2, 129.2, 128.9, 126.2, 123.9, 120.3, 117.7, 113.9, 82.8, 67.9, 65.4, 56.8, 14.4; HRMS (EI): calcd for C₁₅H₁₄O₂ ([M]⁺): 226.0994, found: 226.0991.

A solution of reagent 2 (50 mg, 60 μ mol), 3 (50 μ mol) and MS4A (50 mg) in DCE (1.0 mL) was added gold catalyst **18g** (3.96 mg, 5.0 μ mol) at room temperature. The reaction mixture was stirred at the same temperature for 15 min. The reaction mixture was concentrated in vacuo. The residue was dissolved in THF (0.5 mL) and DMF (0.5 mL)

and dropwised 1 M TBAF in THF (0.15 mL, 0.15 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 3 h. The solution was quenched with sat. NH₄Cl aq. (2 mL) at room temperature and extracted with Et₂O (5 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuo. The residue was purified by column chromatography on silica gel (AcOEt : Hexane = 1 : 50 to 1 : 30) and then fluorous silica gel column chromatography to give **42** (11.4 mg, 40.5 µmol, 81%). Characterization data were in agreement with previously reported values.¹⁹

9. References

1. A. S. K. Hashmi, C. Lothschütz, R. Döpp, M. Ackermann, J. D. B. Becker, M. Rudolph, C. Scholz, F. Rominger, *Adv. Synth. Catal.* **2012**, *354*, 133-147.

2. M. Gruselle, V. Philomin, F. Chaminant, G. Jaouen, K. M. Nicholas, J. Organomet. Chem. 1990, 399, 317-326.

3. S. Mehta, J. P. Waldo R. C. Larock, J. Org. Chem. 2009, 74, 1141-1147.

4. N. Conde, R. SanMartin, M. T. Herrero, E. Domínguez, *Adv. Synth. Catal.* **2016**, *358*, 3283-3292.

5. G. Jiang, J. Li, C. Zhu, W. Wu, H. Jiang, Org. Lett. 2017, 19, 4440-4443.

6. R Mancuso, C. S. Pomelli, P. Chiappetta, K. F. Gioia, A. Maner, N. Marino, L. Veltri,

C. Chiappe, B. Gabriele, J. Org. Chem. 2018, 83, 6673-6680.

7. M. Barbasiewicz, A. Szadkowska, A. Makal, K. Jarzembska, K. Woźniak, K. Grela, *Chem. Eur. J.* **2008**, *14*, 9330-9337.

8. F.-F. Yong, Y.-C. Teo, Y.-K. Yan, G.-L. Chua, Synlett. 2012, 23, 101-106.

9. D. Y. Ong, C. Tejo, K. Xu, H. Hirao, S. Chiba, *Angew. Chem. Int. Ed.* **2017**, *56*, 1840-1844.

10. S. E. Denmark, and N. S. Werner, J. Am. Chem. Soc. 2008, 130, 16382-16393.

11. X. Chen, J. Klöckner, J. Holze, C. Zimmermann, W. K. Seemann, R. Schrage, A. Bock,

K. Mohr, C. Tränkle, U. Holzgrabe, M. Decker, J. Med. Chem. 2015, 58, 560-576.

12. E. J. Corey, M. C. Noe, J. Am. Chem. Soc. 1996, 118, 319-329.

13. T. Fukuyama, M. Cheung, T. Kan, Synlett. 1999, 1301-1303.

14. E. M. Wiensch, J. Montgomery, Angew. Chem. Int. Ed. 2018, 57, 11045-11049.

15. H.-T. Song, W. Ding, Q.-Q. Zhou, J. Liu, L.-Q. Lu, W.-J. Xiao, J. Org. Chem. 2016, 81, 7250-7255.

16. T.-F. Niu, D.-Y. Jiang, S.-Y. Li, X.-G. Shu, H. Li, A.-L. Zhang, J.-Y. Xu, B.-Q. Ni, *Tetrahedron Lett.* **2017**, *58*, 1156-1159.

17. S. Gowrisankar, H. Neumann, M. Beller, Chem. Eur. J. 2012, 18, 2498-2502.

18. D. S. VanVliet, K.-H. Lee, Tetrahedron Lett. 1999, 40, 2259-2262.

 N. Kanoh, T. Okamura, T. Suzuki, Y. Iwabuchi, Org. Biomol. Chem. 2017, 15, 7190-7195.

10. NMR spectra

Bu seb-isocoumalin 13C

acetylene- reagent 13C

alkyne seb-cycle 13C

C4F9metylester 13C

C4F9metylester 19F

C4F9 COOH 1H

C4F9carboxylic acid 13C

C4F9carboxylic acid 19F

C4F9reagent 19F

-83.934

76

 $\begin{array}{c} 125.054 \\ 126.016 \\ 126.700 \\ 129.309 \end{array}$

118.314

164.900

COOH 19F

C6F13isocoumalin 19F

C8F17metylester 19F

C8F17isocoumalin 13C

TBS 1H

TMS 1H

TMS 13C

Boc 13C

functionalization Me ether 1H

functionalization Me ether 13C

functionalization of iPr ether 13C

functionalization Bn ether 13C

functionalization allyl 1H

functionalization allyl 13C

functionalization TBS 1H

functionalization TBS 13C

functionalization TMS 13C

Ξ

functionalization Boc 1H

Boc functionalization

Fmoc functionalization 13C

functionalization Br 13C

functionalization of Ac 13C

functionalization furan 1H

functionalization furan 13C

functionalization thiophene 1H

functionalization thiophene 13C

functionalozation of indole 1H

functionalozation of indole 13C

functionalization of 1-OMe-4 13C

functionalization of 1-OMe-2 13C

functionalization of 1-OMe-2,4 13C

pod functionalization 13C

guaiazulene 13C

decomplexation of Me ether 1H

decomplexation of Me ether 13C

decomplexation of TBS 13C

