Supporting Information

Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide

Ingrid M.E. 't Hart, ${ }^{\text {a }}$ Tiehai Li, ${ }^{b}$ Margreet A. Wolfert, ${ }^{\mathrm{a}, \mathrm{b}}$ Shuo Wang, ${ }^{\text {b }}$ Kelley W. Moremen, ${ }^{\text {b,c }}$ Geert-Jan Boons ${ }^{\text {a,b,d }}$ *

${ }^{\text {a Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and }}$ Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, ${ }^{\text {bComplex Carbohydrate Research Center, University of Georgia, } 315 \text { Riverbend Road, Athens, }}$ GA 30602, USA; CDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA, ©Department of Chemistry, University of Georgia, Athens, GA 30602, USA.

Table of Contents

1. Chemical synthesis S2
1.1 General procedures S2
1.2 NMR nomenclature S2
1.3 Experimental procedures S3
2. Enzymatic synthesis S14
2.1 Human glycosyl transferase expression S14
2.2 Experimental procedures for enzymatic synthesis S14
3. Microarray S16
3.1 Experimental procedures S16
3.2 Results and discussion printing controls S17
4. References S18
5. NMR spectra S19

1. Chemical synthesis

1.1 General procedures

All chemicals were purchased from commercial sources. NMR spectra ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}, \mathrm{HSQC}\right)$ were obtained on an Agilent $400-\mathrm{MR}$ DD2 or Bruker 750 MHz . Chemical shifts are reported in part per million (ppm) relative to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$, TMS (0.00 ppm) or $\mathrm{D}_{2} \mathrm{O}(4.79 \mathrm{ppm})$. NMR data is presented as: chemical shift, multiplicity (where $s=$ singlet, $d=$ doublet, $t=$ triplet, $d d=$ doublet of doublets, $m=$ multiplet) and the coupling constant in Hertz (Hz). Mass spectra were obtained on a Shimadzu ESI LC-MS QP8000 or Kratos Analytical Maxima-CFR MALDI-TOF system (using 2,5-dihydroxybenzoic acid matrix). Reported HRMS data was obtained on an Agilent technologies 6560 Ion mobility Q-TOF. Semi-preparative HPLC was performed on an Applied Biosystems 400 solvent delivery system and 757 Absorbance Detector (UV absorbance set on 214 nm) using HILIC column (XBridge ${ }^{\circledR}$ Amide $5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ column, Waters). The mobile phase for analytical and semi-preparative HPLC runs consisted of buffers A and B . For C_{18} columns buffer A is 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$ and buffer B is $10 \% \mathrm{~A}+90 \% \mathrm{CH}_{3} \mathrm{CN}$ and a gradient was used. For HILIC column chromatography buffer A is $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{COOH}$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH}=4)$ and B is $10 \% A+90 \% \mathrm{CH}_{3} \mathrm{CN}$ at isocratic conditions. Size exclusion chromatography was performed on Bio-Gel P-2 (45-90 $\mu \mathrm{m}$) with water as the eluent. Column chromatography was performed on silica gel G60 (Silicycle $60-200 \mu \mathrm{~m}, 60 \AA$). TLC analysis was conducted on silica gel 60 F254 (EMD Chemicals Inc.) with detection by UV light (254 nm) and staining by $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in EtOH or p-anisaldehyde solution, followed by heating for visualization. Molecular sieves (4 Å) were flame-dried prior to use.

1.2 NMR nomenclature

The monosaccharides of glycan DSGb5 have been labeled as shown in Figure S1. Starting from the reducing end of the pentasaccharide core Gb5, these were labeled as GIc-I, Gal-II, Gal-III, GalNAc-IV, Gal-V. The sialosides were named Neu5Ac-VI for the $\alpha 2,3$-linked sialic acid and Neu5Ac-VII for the $\alpha 2,6$-linked sialic acid.

Figure S1. Monosaccharide labeling system for DSGb5

1.3 Experimental procedures

2,2,2-Trichloroacetimidate 2,3,4,6-O-acetyl- α-D-galactopyranoside (9). Compound 9 was synthesized
 according to previous synthesis. ${ }^{1}$ NMRs of the α-anomer of the title compound are described below. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}$, $\mathrm{H}-1), 5.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}, \mathrm{H}-4), 5.45-5.31(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-2), 4.43(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\mathrm{H}-5), 4.20-4.01(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.03-1.98\left(9 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}\right.$ OAc). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2$ (C, OAc), 170.0 (C, OAc), 170.0 (C, OAc), 169.9 (C, OAc),
160.8 (C=NH), 93.4 (C-1), 68.9 (C-5), 67.40, 67.27, 66.80, 61.2 (C-6), 20.6 (CH3, OAc), 20.5 ($\mathrm{CH}_{3}, \mathrm{OAc}$), 20.5 $\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.4\left(\mathrm{CH}_{3}, \mathrm{OAc}\right)$.

22

23

Scheme S1. Synthesis of GalNHTroc acceptor $\mathbf{1 0}$ (similar to the procedure as described for GlcNH_{2}). ${ }^{2}$

1,3,4,6-tetra-O-acetyl-2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-galactopyranoside (22). NaHCO_{3}
 $(23 \mathrm{~g}, 278 \mathrm{mmol})$ was added to Galactosamine $\cdot \mathrm{HCl}(20 \mathrm{~g}, 93 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(180 \mathrm{~mL})$ and after 30 min 2,2,2-trichloroethyl chloroformate ($15.3 \mathrm{~mL}, 111 \mathrm{mmol}$) was added. After overnight stirring the white solids were filtered off, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under high vacuum overnight. The solids were dissolved in pyridine (100 mL) and acetic anhydride (80 mL) was added. The reaction mixture was stirred for 3 h and concentrated in vacuo. The obtained oil was dissolved in DCM, washed with $1 \mathrm{M} \mathrm{HCl}(2 x), \mathrm{H}_{2} \mathrm{O}$, sat. aq. NaHCO_{3} and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford 22 ($19 \mathrm{~g}, 40 \%$, over two steps). ESI HRMS (m / z): [$\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NO}_{11}, 544.0156$; found 544.0155. [α] $\frac{25}{589}=326.1^{\circ}\left(\mathrm{C}=0.1 ; \mathrm{CHCl}_{3}\right)$.

Dimethylthexylsilyl
3,4,6-tri-O-acetyl-2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-
 galactopyranoside (23). Hydrazine acetate ($3.7 \mathrm{~g}, 40 \mathrm{mmol}$) was added to a solution of compound 22 (19 g, 36 mmol) in DMF (60 mL). The mixture was stirred overnight, concentrated in vacuo, dissolved in EtOAc, washed with sat. aq. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo. The resulting crude was dissolved in DCM $(80 \mathrm{~mL})$ and imidazole ($7.4 \mathrm{~g}, 109 \mathrm{mmol}$) was added. When all imidazole was dissolved, terthexyldimethylsilyl chloride ($8.6 \mathrm{~mL}, 44 \mathrm{mmol}$) was added. The mixture was stirred overnight, washed with 1 M HCl , sat. aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained residue was purified by silica column chromatography using Toluene:EtOAc (1:0 to 6:4 v/v) as the eluent to afford 23 ($17.2 \mathrm{~g}, 76 \%$, over two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{H}-4), 5.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9$ $\mathrm{Hz}, \mathrm{H}-3), 4.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{NH}), 4.84-4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 ; \mathrm{CHH}, \mathrm{Troc}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{CHH}$, Troc), $4.20-4.05(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.89(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-5), 3.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.4,9.2 \mathrm{~Hz}, \mathrm{H}-2), 2.16(2 \mathrm{H}, \mathrm{s}$,
$\mathrm{OAc}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.66-1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{TDS}), 0.95-0.76\left(12 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \mathrm{CH}_{3}, \mathrm{TDS}\right)$, $0.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5(\mathrm{C}, \mathrm{OAc}), 170.4$ (C, OAc), 170.3 (C, OAc), 154.0 ($\mathrm{C}=0, \operatorname{Troc}$), 96.4 ($\mathrm{C}-1$), $95.3\left(\mathrm{CCl}_{3}\right), 74.5\left(\mathrm{CH}_{2}, \mathrm{Troc}\right), 70.7$ (C-5), 69.9 (C-3), 66.9 (C-4), 61.8 (C-6), 54.7 (C-2), 33.9 (CH, TDS), $24.8(\mathrm{C}, \mathrm{TDS}), 20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.6\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.6\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 19.9(2 x$ $\left.\mathrm{CH}_{3}, \mathrm{TDS}\right), 18.5(2 \mathrm{x} \mathrm{CH} 3, \mathrm{TDS}),-1.9\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-3.4\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$. ESI HRMS $(\mathrm{m} / \mathrm{z}):\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{NO}_{10} \mathrm{Si}, 639.1669$; found 639.1675. [$\left.\alpha\right] \frac{25}{589}=-32.7^{\circ}\left(\mathrm{C}=0.1 ; \mathrm{CHCl}_{3}\right)$.
Dimethylthexylsilyl 2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-galactopyranoside (24). Freshly
 prepared NaOMe was added to compound 23 ($17.3 \mathrm{~g}, 28 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$. After 2 h the reaction was quenched by addition of Amberlite H^{+}resin, filtered and concentrated in vacuo to afford 24 ($13 \mathrm{~g}, 95 \%$). This product was then used in the next step without additional purification. ESI HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{NO}_{7} \mathrm{Si}$, 518.0911; found 518.0913. [α] $\frac{25}{589}=-77.0^{\circ}\left(\mathrm{C}=0.1 ; \mathrm{CHCl}_{3}\right)$.

Dimethylthexylsilyl 4,6-O-benzylidene-2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-galactopyranoside (10). Benzaldehyde dimethyl acetal ($4.57 \mathrm{~mL}, 30.4 \mathrm{mmol}$) and $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.05 \mathrm{~g}, 5.5 \mathrm{mmol})$
 were added to a solution of compound $24(13 \mathrm{~g}, 26 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(90 \mathrm{~mL})$. After 1 h the mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, concentrated in vacuo and the obtained residue was purified by silica column chromatography using Hexane:EtOAc (1:0 to $3: 1 \mathrm{v} / \mathrm{v}$) as the eluent to obtain compound 10 ($4.6 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.48$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.43-7.35(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 5.57\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.05(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.80$ (1H, d, J = 7.8 Hz, H-1), 4.69 (2H, s, CH2, Troc), $4.28(1 \mathrm{H}, \mathrm{d}, J=12.3,1.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.20$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}, \mathrm{H}-4), 4.07(1 \mathrm{H}, \mathrm{d}, J=12.4,1.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 3.92(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-3), 3.63(1 \mathrm{H}, \mathrm{d}, J=9.4$ $\mathrm{Hz}, \mathrm{H}-2), 3.47(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 2.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{OH}), 1.66-1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{TDS}), 0.94-0.78$ (12H, m, $4 \mathrm{xCH} 3, \mathrm{TDS}), 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.7$ (C=O, Troc), 137.5 (C, Ar), 129.3, 128.5, 128.3, 126.4, 101.4 ($\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}$), 95.7 (C-1), $75.0(\mathrm{C}-4), 74.7\left(\mathrm{CH}_{2}, \mathrm{Troc}\right), 70.4$ (C-3), 69.3 (C-6), $66.5(\mathrm{C}-5), 57.8(\mathrm{C}-2), 34.0(\mathrm{CH}, \mathrm{TDS}), 20.1\left(\mathrm{CH}_{3}, \mathrm{TDS}\right), 20.1\left(\mathrm{CH}_{3}, \mathrm{TDS}\right), 18.5\left(\mathrm{CH}_{3}, \mathrm{TDS}\right), 18.5\left(\mathrm{CH}_{3}\right.$, TDS), -1.7 $\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$, $-2.9\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$. ESI HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{Cl}_{3} \mathrm{NO}_{7} \mathrm{Si}, 606.1224$; found 606.1227. $[\alpha] \frac{25}{589}=-22.5^{\circ}\left(\mathrm{C}=1 ; \mathrm{CHCl}_{3}\right)$.

Scheme S2. Chemical glycosylation of donor 9 and acceptor 10 and formation of disaccharide donor 7a.

Dimethylthexylsilyl 2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl-(1-3)-4,6-O-benzylidene-2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-galactopyranoside (13). A mixture of acceptor 10 (1.0 g, 1.7
 $\mathrm{mmol})$, donor 9 ($1.3 \mathrm{~g}, 2.6 \mathrm{mmol}$) and $4 \AA$ Å molecular sieves was stirred in DCM $(5 \mathrm{~mL})$ for 2 h . The reaction mixture was cooled to $-35^{\circ} \mathrm{C}$ and TMSOTf ($62 \mu \mathrm{~L}, 0.3$ $\mathrm{mmol})$ was added. After 30 min the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, filtered over a pad of Celite and concentrated in vacuo. The obtained residue was purified by silica column chromatography using Toluene:EtOAc (1:0 to 8.5:1.5 v / v) as the eluent to afford compound $13(878 \mathrm{mg}, 56 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.52(2 \mathrm{H}, \mathrm{m}$,

H-Ar), $7.42-7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 5.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.4,0.8 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{GaI}-\mathrm{V}), 5.32-5.26$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-1$, GalNAc-IV), $5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-2$, Gal-V), 4.96 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 10.4, 3.5 Hz, H-3, Gal-V), 4.78 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-1$, Gal-V), $4.75-4.60$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{Troc}$), 4.46 (1H, dd, J $=11.1,2.7 \mathrm{~Hz}, \mathrm{H}-3$, GaINAc-IV), $4.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{H}-4$, GaINAc-IV), $4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2,1.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$, GalNAc-IV), $4.22-4.07$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$, Gal-V), 4.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6 \mathrm{~b}, \mathrm{GalNAc}-\mathrm{IV}$), 3.88 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-5, \mathrm{Gal}-$ V), 3.54 - 3.36 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, GalNAc-IV; H-5, GalNAc-IV), 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 2.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), $2.04(3 \mathrm{H}, \mathrm{s}$, OAc), 1.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), $1.63(1 \mathrm{H}, \mathrm{p}, \mathrm{J}=13.7,6.9 \mathrm{~Hz}, \mathrm{CH}, \mathrm{TDS}$), $0.92-0.78$ ($12 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \mathrm{CH} 3$, TDS), $0.19(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}$), 0.13 (3H, s, CH ${ }_{3}-\mathrm{Si}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2$ (C, OAc), 170.0 (C, OAc), 169.3 (C, OAc), 153.8 (C=O, Troc), $138.0\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.0,128.2,126.3,101.6$ (C-1, Gal-V), $100.7\left(\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 95.20\left(\mathrm{CCl}_{3}\right)$, 94.5 (C-1, GalNAc-IV), 76.1 (C-4, GalNAc-IV), 75.7 (C-3, GaINAc-IV), 74.5 (CH2, Troc), 70.8 (C-5, Gal-V), 70.8 (C-3, Gal-V), 69.3 (C-6, GalNAc-IV), 68.8 (C-2, Gal-V), 67.0 (C-4, Gal-V), 66.4 (C-5, GalNAc-IV), 61.6 (C-6, GalV), 55.9 (C-2, GalNAc-IV), 34.0 (CH, TDS), 24.8 (C, TDS), $20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right)$, $20.5\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.1\left(\mathrm{CH}_{3}, \mathrm{TDS}\right), 20.0\left(\mathrm{CH}_{3}, \mathrm{TDS}\right), 18.6\left(\mathrm{CH}_{3}, \mathrm{TDS}\right), 18.5\left(\mathrm{CH}_{3}, \mathrm{TDS}\right),-1.8\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-3.1\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$. ESI HRMS $(\mathrm{m} / \mathrm{z}):\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{Cl}_{3} \mathrm{NO}_{16} \mathrm{Si}$, 931.2616; found 931.2634. $[\alpha] \frac{25}{589}=223.8^{\circ}$ (C = 0.1; CHCl_{3}).

2,2,2-Trichloroacetimidate 2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)-4,6-O-benzylidene-2-[(2,2,2-trichloromethoxy)carbonylamino]- α-D-galactopyranoside (7a). HF•Pyridine ($70 \% \mathrm{HF}, 1.2 \mathrm{~mL}$) was added to a stirring solution of disaccharide $13(1.2 \mathrm{~g}, 1.3 \mathrm{mmol})$ in pyridine (12 mL) in a plastic round bottom flask. After 2.5 h , the mixture was diluted with DCM and quenched
 by addition of sat. aq. NaHCO_{3}. The organic phase was washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated in vacuo and 2 x co-evaporated with toluene. The obtained intermediate was dissolved in DCM, stirred with $4 \AA$ molecular sieves for 30 min and 2,2,2-Trichloroethyl chloroformate ($615 \mu \mathrm{~L}, 6.14 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(400 \mathrm{mg}, 1.23 \mathrm{mmol})$ were added. After 3 h the reaction mixture was concentrated in vacuo and the obtained residue was purified by silica column chromatography using Hexane:EtOAc (1:0 to 1:1 v / v) as the eluent to isolate the α-anomer of the title compound. ($859 \mathrm{mg}, 71 \%$, over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{NH}$), $7.59-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.44-7.29(3 \mathrm{H}, \mathrm{m}$, Ar-H), $6.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{H}-1\right.$, GalNAc-IV), $5.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{Gal}-\mathrm{V}), 5.32$ -5.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, Gal-V; NHTroc), $5.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,3.3 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{Gal}-\mathrm{V}$), $4.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-1$, Gal-V), 4.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{CHH}, \mathrm{Troc}$), $4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{CHH}, \mathrm{Troc}), 4.56$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.9,7.4$, $3.1 \mathrm{~Hz}, \mathrm{H}-2$, GalNAc-IV), 4.46 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-4$, GalNAc-IV), $4.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$, GalNAc-IV), 4.27 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,3.1 \mathrm{~Hz}, \mathrm{H}-3$, GalNAc-IV), 4.22 - 3.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$, Gal-V; H-6b, GalNAc-IV; H-5, Gal-V), 3.88 (1H, s, H-5, GalNAc-IV), 2.18 (3H, s, OAc), 2.05 (3H, s, OAc), 2.04 (3H, s, OAc), 1.99 (3H, s, OAc). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2$ (C, OAc), 170.0 (C, OAc), 169.9 (C, OAc), 169.6 (C, OAc), 160.2 (C=NH), 154.0 (C=O, Troc), 137.4 (C, $\mathrm{C}_{6} \mathrm{H}_{5}$), 129.1, 128.2, 126.2, $101.0\left(\mathrm{CH}_{-} \mathrm{C}_{6} \mathrm{H}_{5}\right), 100.0(\mathrm{C}-1, \mathrm{Gal}-\mathrm{V}), 96.3$ (C-1, GalNAc-IV), $95.4\left(\mathrm{CCl}_{3}\right)$, 74.6 (C-4, GalNAc-IV), 74.5 (CH2, Troc), 71.8 (C-3, GalNAc-IV), 71.3 (C-5, Gal-V), 70.8 (C-3, GalV), 68.9 (C-6, GalNAc-IV), 68.4 (C-2, Gal-V), 66.4 (C-4, Gal-V), 65.3 (C-5, GalNAc-IV), 60.9 (C-6, Gal-V), 49.9 (C-2, GalNAc-IV), $20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.6\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.5\left(\mathrm{CH}_{3}, \mathrm{OAc}\right)$.

Scheme S3. Formation of disaccharide donor 7b from disaccharide 13.

2,2,2-Trichloroacetimidate 2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl-(1-3)-4,6-di-O-acetyl-2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-galactopyranoside (7b). A solution of disaccharide 13 (350 mg , 0.38 mmol) in 80% aq $\mathrm{AcOH}(4 \mathrm{~mL})$ was heated to $80^{\circ} \mathrm{C}$ for 4 h . The mixture was allowed to cool to room temperature (RT) and was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$, sat aq. $\mathrm{NaHCO}_{3}(3 \mathrm{x})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained crude was dissolved in pyridine (3 mL) and $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL})$ was slowly added, followed by DMAP (cat.). After 1 h , the reaction showed complete conversion by TLC and the mixture was concentrated in vacuo. The crude was dissolved in pyridine (3.5 mL) and transferred to a plastic round bottom flask. HF•Pyridine ($70 \% \mathrm{HF}, 350 \mu \mathrm{~L}$) was added and the mixture was stirred overnight. The reaction mixture was diluted with EtOAc, washed with sat. aq. $\mathrm{NaHCO}_{3}(3 x)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated in vacuo and co-evaporated with toluene. Quick silica column purification Hexane:EtOAc (1:0 to 1:3 v/v) provided the intermediate in 81% yield. The obtained intermediate (237 mg , 0.31 mmol) was dissolved in DCM and stirred with $4 \AA$ molecular sieves at $0^{\circ} \mathrm{C} .2,2,2$-trichloroethyl chloroformate ($297 \mu \mathrm{~L}, 2.96 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(301 \mathrm{mg}, 0.92 \mathrm{mmol})$ were added after 30 min . After 22 h the reaction mixture was concentrated in vacuo and the obtained residue was purified by silica column chromatography using Hexane:EtOAc (1:0 to 1:1 v/v) as the eluent to isolate the α-anomer of the title compound ($143 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(1 \mathrm{H} \mathrm{s}, \mathrm{C}=\mathrm{NH}), 6.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{H}-1$, GalNAc-IV), 5.50-5.34 (3H, m, H-4, GalNAc-IV; NHTroc; H-4, Gal-V), 5.28-5.20 (1H, m, H-2, Gal-V), 4.99 $(1 \mathrm{H}, \mathrm{dd}, J=10.3,3.2 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{Gal}-\mathrm{V}), 4.84(1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{CHH}, \operatorname{Troc}), 4.76(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{Gal}-\mathrm{V})$, $4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CHH}, \mathrm{Troc}), 4.41-4.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, GalNAc-IV), $4.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-5$, GalNAcIV), 4.25 - 4.04 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}$, GalNAc-IV; H-3, GalNAc-IV; H-6, Gal-V), $4.04-3.92$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{Gal}-\mathrm{V} ; \mathrm{H}-6 \mathrm{~b}$, GalNAc-IV), $2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.04(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{OAc}), 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$.

Scheme S4. Synthesis of disaccharide acceptors 12a and 12b from protected lactose $\mathbf{2 5}$.

Para-methoxyphenyl 2,3,6-tri-O-benzyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-glucopyranoside (12a). Compound $25^{3}(8.1 \mathrm{~g}, 8.2 \mathrm{mmol})$ was stirred in DCM (50 mL) with 4 Å molecular sieves for 3 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$ and after adding $\mathrm{Et}_{3} \mathrm{SiH}(6.5 \mathrm{~mL}$,
 41 mmol) stirring was continued for another 30 min . $\mathrm{TfOH}(1.45 \mathrm{~mL}, 16.4$ mmol) was introduced and after 2.5 h , the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The resulting mixture was filtered over Celite and the filtrate
was washed with $\mathrm{H}_{2} \mathrm{O}$, sat. aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained residue was purified by silica gel chromatography using Toluene:EtOAc (1:0 to 20:1 v/v) as the eluent to afford compound 12a ($2.28 \mathrm{~g}, 64$ \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.14(30 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=9.1 \mathrm{~Hz}, \mathrm{OMP}), 6.79(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{OMP}), 5.00\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{Bn}\right), 4.85(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}-1$, Glc-I), $4.83-4.64$ ($6 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}, \mathrm{CH}_{2}, \mathrm{Bn}$), $4.53-4.35$ ($5 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}, \mathrm{Bn} ; \mathrm{H}-1$, Gal-II), $4.06-3.96$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$, Gal-II; H-5 Gal-II), $3.82-3.74$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}, \mathrm{OMP} ; \mathrm{H}-6 \mathrm{Glc}-\mathrm{I}$), $3.72-3.57$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{Glc-l} ; \mathrm{H}-6 \mathrm{a}, \mathrm{Gal}-\mathrm{II} ; \mathrm{H}-2$, Glc-I; H-2, Gal-II), 3.52 - 3.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$, Glc-I; H6-b, Gal-II), 3.40 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.3,3.4 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{Gal}-\mathrm{II}), 3.35$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{H}-3, \mathrm{Glc}-\mathrm{I}), 2.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2$ (C, OMP), 151.6 (C, OMP), 139.0 (C, OBn), 138.5 (C, OBn), 138.4 (C, OBn), 138.3 (C, OBn, 138.2 (C, OBn), 137.9 (C, OBn), 128.43, 128.34, 128.28, 128.25, 128.20, 128.08, 128.04, 127.83, 127.78, 127.73, 127.62, 127.59, 127.54, 127.40, $127.25,118.4$ ($2 x$ CH, OMP), 114.5 ($2 x$ CH, OMP), 102.8 (C-1, Glc-I), 102.6 (C-1, Gal-II), 82.9 (C-4, Glc-I), 81.6 (C-2, Glc-I), 81.1 (C-3, Gal-II), 79.4 (C-2, Gal-II), 77.2 (C-5, Gal-II), 75.4 (CH_{2}), 75.3 ($2 \times \mathrm{CH}_{2}$), 75.1 (C-5, Glc-I), $73.5\left(\mathrm{CH}_{2}\right), 73.1\left(\mathrm{CH}_{2}\right), 72.8(\mathrm{C}-3, \mathrm{Glc}-\mathrm{I}), 72.0\left(\mathrm{CH}_{2}\right), 68.4(\mathrm{C}-6, \mathrm{Glc}-\mathrm{I}), 68.3(\mathrm{C}-6, \mathrm{GaI}-\mathrm{II}), 66.1$ (C-4, Gal-II), 55.6 $\left(\mathrm{CH}_{3}, \mathrm{OMP}\right)$. ESI HRMS $(\mathrm{m} / \mathrm{z})$: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{61} \mathrm{H}_{64} \mathrm{O}_{12}, 1006.4736$; found 1006.4750.
N-(Benzyl)-benzyloxycarbonyl-5-aminopentan-1-ol (28). The protected aminopentanol linker was NO NBnCbz synthesized as described before. ${ }^{4}$
N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl 2,3-di-O-benzyl-4,6-O-benzylidene- β-D-galactopyranosyl($1 \rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-glucopyranoside (27). Oven-dried ($90^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$) ceric ammonium nitrate

($1.67 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added to a stirring solution of compound $25^{3}(2.0 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(40 / 10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min, the mixture was diluted with DCM, washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x})$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by silica column chromatography using Hexane:EtOAc (1:0 to 1:1 v / v) as the eluent provided the product, which was directly used in the next step. 2,2,2-Trichloroacetonitrile ($848 \mu \mathrm{~L}, 8.5 \mathrm{mmol}$) and DBU ($51 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) were added to the intermediate $(1.49 \mathrm{~g}, 1.7 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ with $4 \AA$ molecular sieves at $0^{\circ} \mathrm{C}$. After 15 min the reaction mixture was concentrated in vacuo and the obtained crude was directly purified by silica column chromatography using Toluene:EtOAc (1:0 to $8: 2 \mathrm{v} / \mathrm{v}$) as the eluent. The obtained compound 26 was directly used in the next
 was stirred in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ for 1 h . The mixture was cooled to $-30^{\circ} \mathrm{C}$ and TMSOTf ($11 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) was added. The reaction mixture was allowed to warm to $15^{\circ} \mathrm{C}$ over 2 h . The reaction mixture was with $\mathrm{Et}_{3} \mathrm{~N}$, filtered over a pad of Celite and concentrated in vacuo. The obtained residue was diluted with EtOAc, washed with NaHCO_{3}. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained crude was purified by silica column chromatography using Toluene:EtOAc (1:0 to 7:3 v/v) as the eluent to afford compound 27 ($305 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.07$ ($40 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 5.45 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.22-5.09(3 \mathrm{H}, \mathrm{m}), 4.93-4.67(6 \mathrm{H}, \mathrm{m}), 4.54(1 \mathrm{H}, \mathrm{d}), 4.50-4.41\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{Glc}^{2} \mathrm{I} ; \mathrm{CH}_{2}\right.$, pentyl), $4.39-4.14$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$, Gal-II), 4.01 ($1 \mathrm{H} \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{Gal}-\mathrm{II}$), 3.97 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,7.1 \mathrm{~Hz}, \mathrm{H}-$ 5, Glc), 3.93 - 3.66 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, Glc-I), 3.66 - 3.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$, Gal-II), 3.57 - 3.31 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{Gal}-\mathrm{II} ; \mathrm{H}-3$, Glc-I; H-4, Glc-I), 3.28-3.10 (2H, m, CH2, pentyl), 2.92 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5, \mathrm{Gal}-\mathrm{II}$), $1.74-1.42$ ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$, pentyl), 1.41 - 1.17 (2H, m, CH2, pentyl). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5$ (C=O, Cbz), 138.9, 138.8, 138.7, 138.5, 138.3, 138.1, 129.0, 128.8, 128.6, 128.6, 128.5, 128.4, 128.4, 128.3, 128.3, 128.3, 128.2, 128.2, 128.2, 128.1, 128.0, 127.8, 127.8, 127.7, 127.6, 127.5, 127.5, 127.4, 126.6, 103.6 (C-1, GIc-I), 102.9 (C-1, Gal-II), 101.4 (CH-C C_{5}), $92.1,83.0$ (C-3, Gal-II), 81.8 (C-2, Gal-II), $79.6,78.9$ (C-2, Glc-I), 77.6, 7578, 75.3, 75.0, 75.0, 73.7 (C-4, Gal-II), 73.0, 71.7, 69.9, 69.0, 68.3, 67.2, 66.3 (C-5, Gal-II), 50.6, 50.3, 47.2, 46.3, 29.5, 28.0, 23.4.
N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl 2,3,6-tri-O-benzyl- β-D-galactopyranosyl-(1-4)-2,3,6-tri-O-benzyl- β-D-glucopyranoside (12b). Compound $\mathbf{2 7}$ ($300 \mathrm{mg}, 0.25 \mathrm{mmol}$) was stirred in DCM with $4 \AA$
 molecular sieves for 2 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$ and after adding $\mathrm{Et}_{3} \mathrm{SiH}(201 \mu \mathrm{~L}, 1.26 \mathrm{mmol})$ stirring was continued for another 30 min . TfOH ($45 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) was introduced. More $\mathrm{Et}_{3} \mathrm{SiH}(200 \mu \mathrm{~L})$ and $\mathrm{TfOH}(70 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$ were added over time and after 2.5 h the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The quenched mixture was filtered over Celite, washed with $\mathrm{H}_{2} \mathrm{O}$, sat. aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained residue was purified by silica gel chromatography using Toluene:EtOAc (1:0 to 5:1 v/v) as the eluent to afford compound 12b ($191 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-6.95$ ($40 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $5.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}), 4.89-4.61(6 \mathrm{H}, \mathrm{m}), 4.61-4.27(8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{Glc} \mathrm{I} ; \mathrm{H}-1, \mathrm{Gal}-$ II), 4.01 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$, Gal-II), $3.99-3.91(1 \mathrm{H}, \mathrm{m}), 3.91-3.28$ ($13 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{GIc-I}$; H-2, Gal-II), $3.28-3.10(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$, pentyl), $2.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.71-1.42\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}\right.$, pentyl), $1.42-1.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, pentyl). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,138.7,138.6,138.3,138.2,137.9,128.5,128.5,128.4,128.3,128.0,127.9$, 127.8, 127.8, 127.8, 127.7, 127.6, 127.5, 127.5, 127.2, 103.6 (C-1, Glc-I), 102.5 (C-1, Gal-II), 82.9, 81.8 (C-2, Glc-I), 81.1, 79.4 (C-2, Gal-II), 76.6 (C-3, Gal-II), 75.3, 75.2, 75.1, 74.9, 73.5, 73.1, 72.7, 72.0, 68.4, 68.3, 67.1, 66.1 (C-4, Gal-II), 50.5, 50.2, 47.2, 46.2, 29.4, 28.0, 27.5, 23.4.

Scheme S5. Synthesis of galactosyl donor $\mathbf{1 1}$ from compound $\mathbf{2 9 . 5}$

Phenyl 3-O-(2-naphthyl)methyl-4,6-O-di-tert-butylsilanediyl-1-thio- β-D-galactopyranoside (30). Bu2SnO
 ($5.78 \mathrm{~g}, 23 \mathrm{mmol}$) was added to compound $29^{5}(7.98 \mathrm{~g}, 19 \mathrm{mmol})$ in toluene (100 mL) and the suspension was heated under reflux for 3 h . The resulting clear solution was cooled to $90^{\circ} \mathrm{C}$ and after the addition of 2-(bromomethyl) naphthalene ($4.70 \mathrm{~g}, 21$ $\mathrm{mmol})$, tetrabutylammonium iodide ($7.86 \mathrm{~g}, 21 \mathrm{mmol}$) was added portionwise over 1 h . After overnight stirring at $90^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo. The obtained crude was dissolved in DCM, washed with sat. aq. NaHCO_{3}, extracted with DCM (2 x), washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered over a pad of Celite. The concentrated crude was purified by silica column chromatography using Toluene:EtOAc (1:0 to $10: 1 \mathrm{v} / \mathrm{v}$) as the eluent to afford compound $30(5.88 \mathrm{~g}, 55 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.75(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.58-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ H), 7.51 - 7.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.34-7.22$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 4.96 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{CHH}, \mathrm{Nap}$), 4.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.9 \mathrm{~Hz}, \mathrm{CHH}, \mathrm{Nap}), 4.61-4.54(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-4), 4.23(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,1.9 \mathrm{~Hz}, \mathrm{H}-6), 4.06$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5$, $1.9 \mathrm{~Hz}, \mathrm{H}-2), 3.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,3.0 \mathrm{~Hz}, \mathrm{H}-3), 3.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 2.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}, \mathrm{OH}, \mathrm{H}-2), 1.08(9 \mathrm{H}$, s, t-Bu), $1.07(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,133.60,133.25,133.09,132.53,128.85$, $128.37,127.87,127.72,127.67,126.61,126.19,125.99,125.85,89.2(\mathrm{C}-1), 81.8$ (C-3), $75.1(\mathrm{C}-5), 70.5\left(\mathrm{CH}_{2}\right.$, Nap), 69.5 (C-4), 68.6 (C-2), 67.4 (C-6), 27.7 ($3 \mathrm{XCH}_{3}, t-\mathrm{Bu}$), 27.6 ($3 \mathrm{xCH}_{3}, t-\mathrm{Bu}$), 23.4 (C, t-Bu), 20.7 (C, t-Bu). ESI HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SSi}, 575,2263$; found 575.2260. $[\alpha] \frac{25}{589}=-10.0^{\circ}$ ($\mathrm{C}=0.01$; CHCl_{3}).

Phenyl 2-O-benzyl-3-O-(2-naphthyl)methyl-4,6-O-di-tert-butylsilanediyl-1-thio- β-D-galactopyranoside (11). A mixture of compound $30(1.9 \mathrm{~g}, 3.4 \mathrm{mmol})$ and $\mathrm{NaH}(60 \%$ dispersion in oil; $275 \mathrm{mg}, 6.9 \mathrm{mmol})$ in
 DMF (10 mL) was stirred at $0^{\circ} \mathrm{C}$ for 10 min . Benzyl bromide ($612 \mu \mathrm{~L}, 5.2 \mathrm{mmol}$) was added dropwise and the mixture was stirred at RT for another 30 min before quenching with AcOH in MeOH . The mixture was concentrated in vacuo, diluted with DCM and washed with 1 M HCl and water. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Crystallization from MeOH provided compound 11 ($1.39 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.77$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.76-7.69$ (1H, m, Ar-H), $7.57-7.50$ (3H, m, Ar-H), $7.50-7.40$ (3H, m, Ar-H), $7.38-7.18$ (7H, m, Ar-H), $4.98-4.82$ ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}, \mathrm{Bn}, \mathrm{Nap}$), $4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{H}-1), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}-4), 4.18(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,1.9$ $\mathrm{Hz}, \mathrm{H}-6), 3.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{H}-2), 3.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,3.0 \mathrm{~Hz}, \mathrm{H}-3), 3.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 1.15(9 \mathrm{H}, \mathrm{s}, \mathrm{t}-\mathrm{Bu})$, 1.09 ($9 \mathrm{H}, \mathrm{s}, t$-Bu). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.37,135.83,134.82,133.21,133.01,132.02,128.70$, $128.41,128.29,128.19,127.84,127.69,127.66,127.22,126.44,126.07,125.86,88.7$ (C-1), 82.6 (C-3) 77.3 (C-2), 75.9, 74.7 (C-5), 71.1, 70.1 (C-4), 67.3 (C-6), $27.7\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 27.6$ ($\left.\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 23.4$ (C, t-Bu), 20.7 (C, t-Bu). ESI HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{SSi}, 665.2733$; found 665.2731. $[\alpha] \frac{25}{589}=4.5^{\circ}(\mathrm{C}=0.1$; CHCl_{3}).

Para-methoxyphenyl 2-O-benzyl-3-O-(2-naphthyl)methyl-4,6-O-di-tert-butylsilanediyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-glucopyranoside (15a). A mixture of acceptor 12a ($1.54 \mathrm{~g}, 1.56 \mathrm{mmol}$), donor $11(1.20 \mathrm{~g}, 1.87 \mathrm{mmol})$ and $4 \AA$ molecular sieves was stirred in DCM (15 mL) for 1 h . The reaction
 mixture was cooled to $-30^{\circ} \mathrm{C}$ and N -iodosuccinimide ($700 \mathrm{mg}, 3.1$ mmol) and triflic acid ($14 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) were added. After 35 min the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, filtered over a pad of Celite and concentrated in vacuo. The obtained residue was purified by silica gel chromatography using Toluene:EtOAc (1:0 to 20:1 v / v) as the eluent to afford compound $15 \mathrm{a}(2.13 \mathrm{~g}, 90 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84$ -7.64 (4H, m, Ar-H), $7.49-7.39$ (4H, m, Ar-H), $7.36-7.13$ (34H, m, ArH), $7.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{OMP}), 6.78(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{OMP}), 5.12-5.07(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{CHH}), 5.01-$ 4.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{Gal}-\mathrm{III} ; \mathrm{CHH}$), 4.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{Glc}-\mathrm{I}$), $4.83-4.64$ ($8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \mathrm{CH} 2$), $4.62-4.52$ (2H, m, 2x CHH), 4.52-4.41 (3H, m, CHH; H-1, Gal-II; H-4, Gal-III), 4.40-4.24 (3H, m, CH2; CHH), $4.17-$ 3.87 (6H, m, H-6a, Gal-II; H-4, GIc-I; H-2, Gal-III, H-5, Gal-II; H-4, Gal-II; H-3, Gal-III) 3.83-3.78 (4H, m, H-6, Glc-l; H-6, Gal-III), 3.76 (3H, s, CH3, OMP), 3.70-3.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, Glc-l; H-5, Gal-III), 3.59-3.43 (3H, m, H2, Gal-II; H-6b, Gal-II; H-5, Glc-I), 3.35 (1H, dd, J = 8.1, $5.5 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{Glc}-\mathrm{I}$), 3.29 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,2.7 \mathrm{~Hz}, \mathrm{H}-3$, Gal-II), 1.01 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$), 0.99 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$). ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2$ (C, OMP), 151.6 (C, OMP), 139.2 (C, Ar), 138.7 (C, Ar), 138.5 (C, Ar), 138.4 (C, Ar), 138.3 (C, Ar), 138.2 (C, Ar), 136.7 (C, Ar), 133.2, 132.9, 129.0, 128.5, 128.4, 128.4, 128.3, 128.2, 128.2, 128.2, 128.1, 127.9, 127.8, 127.7, 127.7, 127.6, $127.6,127.6,127.5,127.4,127.4,127.4,127.4,126.0,125.9,125.9,125.7,118.5$ (2 x CH, OMP), 114.5 (2 x CH, OMP), 103.1 (C-1, GlC-I), 102.7 (C-1, Gal-II), 100.2 (C-1, Gal-III), 82.5 (C-5, Gal-III), 81.5 (C-2, GIC-I), 81.1 (C-3, Gal-II), 79.1 (C-2, Gal-II), 78.0 (C-3, Gal-III), 77.2 (C-5, Gal-II), 75.3 (C-5, Glc-I), 75.2, 75.1, 74.9, 74.3 (C2, Gal-III), 73.7, 73.5 (C-4, Glc-I), 73.4 (C-3, Glc-I), 73.2, 73.1, 72.2, 71.2 (C-4, Gal-III), 70.6, 68.4 (C-6, Glc-I), 67.7 (C-6, Gal-II), 67.5 (C-4, Gal-II), 67.1 (C-6, Gal-III), 55.6 ($\mathrm{CH}_{3}, \mathrm{OMP}$), 27.7 ($\left.\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 27.3$ (CH3, t-Bu), 23.3 (C, t-Bu), 20.7 (C, t-Bu). ESI HRMS (m / z): $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{93} \mathrm{H}_{104} \mathrm{O}_{17} \mathrm{Si}$, 1538.7381; found 1538.7403. $[\alpha] \frac{25}{589}=357.2^{\circ}\left(\mathrm{C}=0.1 ; \mathrm{CHCl}_{3}\right)$.

Para-methoxyphenyl 2-O-benzyl-4,6-O-di-tert-butylsilanediyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-glucopyranoside (8 a). DDQ ($377 \mathrm{mg}, 1.7$
 mmol) was added to a stirring solution of compound 15 a ($2.1 \mathrm{~g}, 1.4$ mmol) in DCM (120 mL) and PBS buffer ($\mathrm{pH} 7.4,5 \mathrm{~mL}$) and the reaction mixture was kept in darkness. After 3 h , the mixture was diluted with DCM, washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x}), \mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by silica column chromatography using Toluene:EtOAc (1:0 to 4:1 v/v) as the eluent provided compound 8a ($987 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.36-7.17$ ($33 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.01 $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{OMP}), 6.78(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{OMP}), 5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.6 \mathrm{~Hz}, \mathrm{CHH}), 5.01-4.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{GaI}-\mathrm{III} ; \mathrm{CHH}), 4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{Glc}-\mathrm{I}), 4.81-4.56(8 \mathrm{H}, \mathrm{m}$, $4 \mathrm{xCH} 2), 4.51-4.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{GaI} \mathrm{II} ; \mathrm{CHH}), 4.40-4.27\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} ; \mathrm{CHH}\right), 4.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{H}-4$, Gal-III), 4.09 - 3.95 (5H, m, H-4, Gal-II; H-4, GIc-I; H-6a, Gal-II; H-3, Gal-III; H-5, Gal-II), 3.79 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1$ Hz, H-6, Glc-I), 3.76 (3H, s, CH3, OMP), 3.72 (2H, s, H-6, Gal-III), $3.70-3.61$ (3H, m, H-2, Glc-l; H-5, Gal-III; $\mathrm{H}-2$, Gal-III), 3.56 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.9,7.7 \mathrm{~Hz}, \mathrm{H}-2$, Gal-II), $3.51-3.43$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{Gal}-\mathrm{II} ; \mathrm{H}-5, \mathrm{Glc}-\mathrm{I}$), $3.34(1 \mathrm{H}$, dd, J = 8.3, 5.5 Hz, H-3, Glc-I), 3.29 (1H, dd, J = 10.0, $2.7 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{Gal}-\mathrm{II}), 2.40-2.31(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 0.97(9 \mathrm{H}$, $\mathrm{s}, t-\mathrm{Bu}), 0.90$ ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2$ (C, OMP), 151.6 (C, OMP), 139.3 (C, Ar), 138.4 (C, Ar), 138.4 (C, Ar), 138.4 ($2 \mathrm{C}, \mathrm{Ar}$), 138.2 (C, Ar), 138.1 (C, Ar), 128.4, 128.3, 128.3, 128.3, 128.2, 128.2, $128.1,128.0,127.9,127.7,127.7,127.6,127.6,127.6,127.5,127.4,127.3,127.1,118.4$ ($2 x \mathrm{CH}, \mathrm{OMP}$), 114.5 ($2 x$ CH, OMP), 103.1 (C-1, Gal-II), 102.7 (C-1, Glc-I), 99.4 (C-1, Gal-III), 82.7 (C-5, Gal-III), 81.6 (C-2, Glc-I), 81.1 (C-3, Gal-II), 79.0 (C-2, Gal-II), 77.3 (C-5, Gal-II), 75.5 (C-2, Gal-III), 75.3 (C-5, Glc-I), 75.1, 75.0, 75.0, 73.9 (C-4, Gal-III), 73.2 (C-4, Glc-I), 73.1 (C-3, Glc-I), 73.0, 72.3, 70.1 (C-3, Gal-III), 68.4 (C-6, GIc-I), 67.5 (C-6, Gal, II), 67.1 (C-4, Gal-II), 66.7 (C-6, Gal-III), 55.6 ($\mathrm{CH}_{3}, \mathrm{OMP}$), $27.5\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 27.2\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 23.2$ (C, $t-\mathrm{Bu}$), 20.6 ($\mathrm{C}, t-\mathrm{Bu}$). ESI HRMS (m / z): $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{82} \mathrm{H}_{96} \mathrm{O}_{17} \mathrm{Si}$, 1398.6755; found 1398.6760. $[\alpha] \frac{25}{589}=54.2^{\circ}\left(\mathrm{C}=0.05 ; \mathrm{CHCl}_{3}\right)$.
N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl 2-O-benzyl-3-O-(2-naphthyl)methyl-4,6-O-di-tert-butylsilanediyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-glucopyranoside (15b). A mixture of acceptor 12b
 ($189 \mathrm{mg}, 0.19 \mathrm{mmol}$), donor $11(147 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $4 \AA$ molecular sieves was stirred in DCM (1.5 mL) for 1 h . The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and N -iodosuccinimide $(86 \mathrm{mg}, 0.38 \mathrm{mmol})$ and triflic acid ($1.7 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) were added. After 20 min the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, filtered over a pad of Celite and concentrated in vacuo. The obtained residue was purified by silica gel chromatography using Toluene:EtOAc (1:0 to 5:1 v/v) as the eluent to afford compound 15b ($197 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.54-6.79(48 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=$ $11.1 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{H}-1$, Gal-III), $4.87-4.62(7 \mathrm{H}, \mathrm{m}), 4.62-4.38(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{Gal}-\mathrm{II}), 4.37-$ 4.17 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{Glc}-\mathrm{I}$), $4.16-4.07(1 \mathrm{H}, \mathrm{m}), 4.06-3.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{Gal}$ III), $3.98-3.63(10 \mathrm{H}, \mathrm{m}), 3.62-$ 3.07 (10H, m, H-2, Gal-II, H-2, Glc-I), $1.68-1.40$ ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}, \mathrm{CH}_{2}$, pentyl), $1.40-1.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, pentyl), 1.00 (9H, s, t-Bu), 0.97 (9H, s, t-Bu). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.3,138.7,138.7,138.5,138.3,138.2$, 136.7, 133.2, 132.9, 129.0, 128.5, 128.4, 128.4, 128.3, 128.2, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.6, 127.4, 127.4, 127.3, 126.0, 125.9, 125.9, 125.6, 125.3, 103.5 (C-1, GlC-I), 102.9 (C-1, Gal-II), 100.1 (C-1, Gal-III), 82.5, 81.7 (C-2, Glc-I), 81.1, 79.0 (C-2, Gal-II), 78.0, 77.2, 75.1, 75.0, 74.9, 74.9, 74.2, 73.6 (C2, Gal-III), 73.1, 73.1, 72.1, 71.2, 70.6, 70.1, 69.7, 68.3, 67.6, 67.5, 67.1, 67.1, 50.2, 47.2, 46.2, 29.4, 27.6 $\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 27.6,27.3\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 23.3(\mathrm{C}, t-\mathrm{Bu}), 20.7(\mathrm{C}, t-\mathrm{Bu}) .[\alpha] \frac{25}{589}=-23.5^{\circ}\left(\mathrm{C}=0.02 ; \mathrm{CHCl}_{3}\right)$. galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzyl- β-D-

glucopyranoside (8b). β-Pinene ($71 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$) and DDQ ($51 \mathrm{mg}, 0.22 \mathrm{mmol}$) were added to a stirring solution of compound 15b ($2.1 \mathrm{~g}, 1.4 \mathrm{mmol}$) in DCM/ $\mathrm{H}_{2} \mathrm{O}(9 / 1 \mathrm{~mL})$. The reaction mixture was kept in darkness and stirred overnight. The mixture was diluted with DCM, washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by silica column chromatography using Toluene:EtOAc (1:0 to $10: 1.2 \mathrm{v} / \mathrm{v}$) as the eluent provided compound 8 b ($105 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.09$ ($45 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 5.15 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CHH}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{Gal}-\mathrm{III}), 4.89-4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 4.80$ -4.26 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$, Gal-II; H-1, Glc-I), 4.23 (1H, d, J = $2.8 \mathrm{~Hz}, \mathrm{H}-4$, Gal-III), $4.09-3.68$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{Gal}-\mathrm{III})$, 3.65 (1 H , dd, J = 9.9, 3.2 Hz, H-2, Gal-III), 3.61-3.09 (10H, m, H-2, Gal-II; H-2, Glc-I), 2.39-2.31 (1H, m, OH), $1.78-1.42\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH} 2\right.$, pentyl), $1.38-1.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, pentyl), 0.97 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$), $0.90(9 \mathrm{H}, \mathrm{s}, t-$ $\mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,138.6,138.4,138.4,138.2,128.5,128.4,128.3,128.3,128.2,128.2$, 128.1, 128.0, 127.9, 127.8, 127.7, 127.7, 127.6, 127.6, 127.5, 127.4, 127.3, 127.1, 103.5 (C-1, Glc-I), 103.0 (C-1, Gal-II), 99.4 (C-1, Gal-III), 82.6, 81.7 (C-2, GIc-I), 81.0, 78.9 (C-2, Gal-II), 77.2, 75.5 (C-2, Gal-III), 75.1, 75.0, 74.9, 73.9 (C-4, Gal-III), 73.2, 73.1, 73.1, 73.0, 72.2, 70.1 (C-3, Gal-III), 68.4, 67.5, 67.1, 66.7, 29.4, 27.5 $\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 27.2\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 23.4,23.2(\mathrm{C}, t-\mathrm{Bu}), 20.6(\mathrm{C}, t-\mathrm{Bu}) .[\alpha] \frac{25}{589}=-53^{\circ}\left(\mathrm{C}=0.01 ; \mathrm{CHCl}_{3}\right)$.

Table S1. Glycosylation conditions of trisaccharide acceptor 8a and disaccharide donor 7a or 7b to afford protected Gb5 (16a, 16b).

Donor	Activator	Temperature	Total product	Isolated $\boldsymbol{\beta}$-product*
$\mathbf{8 a}$	TMSOTf (0.2eq)	$-30^{\circ} \mathrm{C}$	$56-59 \%$	$37-42 \%$
$\mathbf{8 a}$	TMSOTf (0.2-0.3eq)	$-60^{\circ} \mathrm{C}$	$72-76 \%$	$42-45 \%$
$\mathbf{8 a}$	TfOH (0.1eq)	$-10^{\circ} \mathrm{C}$	32%	32%
$\mathbf{8 a}$	TfOH (0.1eq)	$-50^{\circ} \mathrm{C}$	43%	$24-28 \%$
$\mathbf{8 b}$	TfOH (0.1eq)	$-10^{\circ} \mathrm{C}$	$19-44 \%$	$19-44 \%$
$\mathbf{8 b}$	TfOH (0.1eq)	$-50^{\circ} \mathrm{C}$	52%	52%

The highest overall yield of the glycosylation was obtained at the coldest activation temperature. However, changes in temperature or activator did not improve β / α selectivities when donor 8 a was used. The
glycosylation proved most successful with donor $\mathbf{7 b}$ and acceptor $\mathbf{8 a}$ in DCM with molecular sieves at -50 ${ }^{\circ} \mathrm{C}$, since no α-product was formed.

Para-methoxyphenyl 2,3,4,6-tetra- O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 3$)-4,6-O-benzylidene-2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-galactopyranosyl-($1 \rightarrow 3$)-2-O-benzyl-4,6-O-di-tert-butyl-silanediyl- α-D-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri- O-benzyl- β-D-galactopyranosyl-(1 $\boldsymbol{\rightarrow} \mathbf{4}$)-2,3,6-tri- \boldsymbol{O}-benzyl- $\boldsymbol{\beta}$-D-glucopyranoside (16a). A mixture of acceptor
 8a ($987 \mathrm{mg}, 0.71 \mathrm{mmol}$), donor $7 \mathbf{a}(845 \mathrm{mg}, 0.92$ mmol) and $4 \AA$ molecular sieves was stirred in DCM $(9 \mathrm{~mL})$ for 1 h . The mixture was cooled to $-35^{\circ} \mathrm{C}$ and TMSOTf ($26 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) was added. After 5 min the reaction was quenched by addition of $E t_{3} \mathrm{~N}$. The mixture was filtered over Celite and concentrated in vасиo. The obtained residue was purified by silica gel chromatography using Toluene:EtOAc (1:0 to $8: 2 \mathrm{v} / \mathrm{v}$) as the eluent to give compound 16a as an oil. The β-anomer of the title pentasaccharide ($562 \mathrm{mg}, 37 \%$). (total isolated α / β yield: 59%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ - 7.09 ($40 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.00 ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{OMP}$), 6.78 (2 H , d, $J=8.8 \mathrm{~Hz}, \mathrm{OMP}), 5.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.36(1 \mathrm{H}, \mathrm{s}), 5.16(1 \mathrm{H}, \mathrm{dd}), 5.09-4.94(3 \mathrm{H}, \mathrm{m}), 4.93$ $-3.95(32 \mathrm{H}, \mathrm{m}, 5 \mathrm{x} \mathrm{H}-1), 3.95-3.70(10 \mathrm{H}, \mathrm{m}), 3.70-3.55(3 \mathrm{H}, \mathrm{m}), 3.53-3.42(2 \mathrm{H}, \mathrm{m}), 3.37-$ $3.27(2 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{s}), 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.95(3 \mathrm{H}, \mathrm{s}$, OAc), $1.03-0.85\left(18 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} t\right.$-Bu). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3$ (C, OAc), 170.1 (C, OAc), 169.4 (C, OAc), 155.2 (C, OMP), 153.7 (C=O, Troc), 151.5 (C, OMP), 139.4 (C, Ar), 138.5 (C, Ar), 138.4 (C, Ar), 138.3 (C, Ar), 138.1 (C, Ar), 138.0 (C, Ar), 137.9 (C, Ar), 129.0, 129.0, $128.5,128.4,128.3,128.2,128.1,128.0,127.8,127.7,127.7,127.6,127.5,127.5,127.4,126.5$, 125.3, 118.4 (2x CH, OMP), 114.5 ($2 x \mathrm{CH}, \mathrm{OMP}$), 103.1 (C-1, Gal-II), 102.7 (C-1, Glc-I), 101.5 (C-1, Gal-V), 101.4 (C-1, GalNAc-IV), 100.8 (CH-C6H5), 99.9 (C-1, Gal-III), 95.3 (CCl_{3}), 81.6, 81.2, 79.3, 78.9, 77.2, 75.9, 75.5, 75.3, 75.1, 74.9, 74.3, 74.2, 73.8, 73.5, 73.3, 73.1, 73.0, 72.1, $70.8,68.9,68.7,68.4,67.8,67.5,67.0,66.0,61.4,55.6\left(\mathrm{CH}_{3}, \mathrm{OMP}\right), 53.7,27.5\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 27.4$ $\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 23.30,20.8\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.5\left(\mathrm{CH}_{3}, \mathrm{OAc}\right)$. ESI $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{112} \mathrm{H}_{130} \mathrm{Cl}_{3} \mathrm{NO}_{32} \mathrm{Si} 2156.7309 ; 2156.7454$ found. $[\alpha] \frac{25}{589}=55.0^{\circ}$ ($\mathrm{C}=0.05 ; \mathrm{CHCl}_{3}$).
N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl 2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)-4,6-O-benzylidene-2-[(2,2,2-trichloromethoxy)carbonylamino]- β-D-galactopyranosyl-(1 $\rightarrow 3$)-2-O-benzyl-4,6-O-di-tert-butylsilanediyl- α-D-galactopyranosyl-(1-4)-2,3,6-tri-O-benzyl- β-D-galactopyranosyl$(1 \rightarrow 4)-2,3,6$-tri-O-benzyl- β-D-glucopyranoside (16c). A mixture of acceptor $\mathbf{8 b}$ ($100 \mathrm{mg}, 0.063 \mathrm{mmol}$), donor 7 a ($75 \mathrm{mg}, 0.082 \mathrm{mmol}$) and 4 Å molecular
 sieves was stirred in DCM (9 mL) for 1 h . The mixture was cooled to $-30^{\circ} \mathrm{C}$ and TMSOTf ($2 \mu \mathrm{~L}$, 0.013 mmol) was added. After 20 min the reaction was quenched by addition of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was filtered over Celite and concentrated in vacuo. The obtained residue was purified by silica gel chromatography using Toluene:EtOAc (1:0 to $8: 2 \mathrm{v} / \mathrm{v}$) as the eluent to give compound $\mathbf{1 6 c}$ as an oil. The β-anomer of the title pentasaccharide ($62 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-6.95$ ($50 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 5.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}), 5.20-5.11(3 \mathrm{H}, \mathrm{m}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.94-4.41(19 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$, Gal-

III; H-1, Gal-V; H-1, GalNAc-IV; H-1, Gal-II), $4.40-3.63$ (24H, m, H-1, Glc-I), $3.62-3.08(10 \mathrm{H}, \mathrm{m}), 2.91$ (1H, s), $2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.67-1.43\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right.$, pentyl), $1.39-1.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, pentyl), $0.97-0.92(18 \mathrm{H}, \mathrm{m}, 2 x t-\mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3$, $170.1,169.3,153.6,139.5,139.5,138.6,138.5,138.4,138.3,138.1,138.1,138.0,137.9,137.8,133.8$, $129.1,129.0,128.5,128.5,128.4,128.3,128.2,128.2,128.0,127.9,127.8,127.7,127.6,127.5,127.4$, 126.5, 125.5, 125.3, 111.9, 103.5 (C-1, Glc-I), 102.9 (C-1, Gal-II), 101.5 (C-1, Gal-V), 101.3 (C-1, GalNAc-IV), $100.7\left(\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 99.5(\mathrm{C}-1$, Gal-III), 95.3, 88.0, 81.7, 81.6, 81.2, 79.3, 78.7, 77.2, 76.8, 76.2, 75.9, 75.5, 75.0, $74.9,74.2,74.2,73.9,73.4,73.2,73.1,72.1,70.8,69.7,68.9,68.6,68.4,67.7,67.5,67.1,67.0,67.0,66.0$, $61.4,57.4,53.8,53.4,50.5,50.2,47.1,46.2,29.7,29.4,27.5\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 27.4\left(\mathrm{CH}_{3}, t-\mathrm{Bu}\right), 23.4,23.3(\mathrm{C}, t-$ $\mathrm{Bu}), 20.8(\mathrm{C}, t-\mathrm{Bu}), 20.8\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.6\left(\mathrm{CH}_{3}, \mathrm{OAc}\right), 20.5\left(\mathrm{CH}_{3}, \mathrm{OAc}\right) .[\alpha] \frac{25}{589}=-84^{\circ}(\mathrm{C}=$ $\left.0.01 ; \mathrm{CHCl}_{3}\right)$.
β-D-Galactopyranosyl-(1-3)-2-acetamido-2-deoxy- β-D-galactopyranosyl-(1-3)- α-D-galactopyranosyl$(1 \rightarrow 4)-\beta$-D-galactopyranosyl-(1-4)- α / β-D-glucopyranose (4a). Pentasaccharide 16 a was deprotected in
 a total of six steps, all steps were monitored by TLC and MALDI-TOF-MS. HF-Pyridine ($300 \mu \mathrm{~L}$ of 70%) was added to a mixture of compound 16 ($590 \mathrm{mg}, 0.28 \mathrm{mmol}$) in pyridine $(6 \mathrm{~mL})$. The mixture was stirred at RT overnight, diluted with EtOAc, washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{x})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained crude was co-evaporated with toluene (3 x) and dissolved in THF (10 $\mathrm{mL})$. To this mixture $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ was added and after heating to refluxed $\left(80^{\circ} \mathrm{C}\right)$ overnight, the mixture was concentrated in vacuo and co-evaporated with toluene (2 x). The resulting intermediate was dissolved in pyridine (10 mL) and $\mathrm{Ac}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added. The mixture was stirred at RT for 6 h , diluted with EA, washed with $1 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, sat. aq. $\mathrm{NaHCO}_{3}(4 \mathrm{x})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained residue was purified by silica column chromatography using Hexane:EtOAc (1:0 to 1:4 v / v) as the eluent to obtain the intermediate product ($417 \mathrm{mg}, 76 \%$ over 3 steps). Ammonium cerium(IV) nitrate ($587 \mathrm{mg}, 1.07 \mathrm{mmol}$) was added to a solution of this intermediate in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 7 min the mixture was quenched by addition of sat. aq. NaHCO_{3}. The layers were separated and the organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}(2 x), \mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The obtained crude was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$, freshly prepared NaOMe was added and the mixture was stirred at r.t for 2 h . The mixture was neutralized with Dowex H^{+}resin, filtered, concentrated in vacuo. The crude intermediate was dissolved in a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}(3 / 3 / 1 \mathrm{~mL})$, followed by the addition of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(560 \mathrm{mg}, 20 \%$, Degussa type) and the reaction mixture was left stirring overnight under the atmosphere of hydrogen. The mixture was filtered over a pad of Celite, concentrated in vacuo and purified by Bio-Gel P-2 size exclusion chromatography to give the title compound as a white amorphous solid ($131 \mathrm{mg}, 70 \%$, over three steps) Additional purification by HPLC with a semi-preparative HILIC column (XBridge ${ }^{\circledR}$ Amide $5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ column, Waters) under isocratic conditions (74% B) with UV detection (210 nm) affords analytically pure glycan. ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.21(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=3.7 \mathrm{~Hz}, \mathrm{H}-1 \alpha$, Glc-I), $4.90(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}, \mathrm{H}-1$, Gal-III), $4.70-4.61$ (1.5H, m, H-1, GalNAc-IV; H-1ß Glc-I), $4.50(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-1$, Gal-II), $4.45(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{Gal}-\mathrm{V}), 4.38(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}-5$, Gal-III), $4.24(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H}-4$, Gal-III), 4.17 ($1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{H}-4$, GalNAc-IV), $4.10-4.01(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, GalNAcIV; H-4, Gal-II), 3.99 - 3.54 (23H, m, H-2, Gal-III; H-2, Gal-II), 3.50 (1H, dd, J = 9.8, $7.8 \mathrm{~Hz}, \mathrm{H}-2$, Gal-V), 3.27 $(0.5 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{Glc}-\mathrm{I} \beta), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{NHAc}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 175.0$ ($\mathrm{C}=\mathrm{O}$ NHAc), 104.7 (C1, Gal-V), 103.2 (C-1, Gal-II), 102.9 (C-1, GalNAc-IV), 100.3 (C-1, Gal-III), 95.6 (C-1ß, Glc-I), 92.1 (C-1 α, GlcI), $79.5,78.6,78.6,77.1,75.4,74.8,74.5,74.4,73.8$ (C-2, Glc-I), 72.4, 72.0, 71.4, 71.1 (C-2, Gal-III), 70.81 (C-2, Gal-II), 70.51 (C-2, Gal-V), 70.2, 70.1, 68.9, 68.5, 67.9, 67.5, 60.9, 60.9, 60.3, 60.3, 60.3, 51.4 (C-2, GalNAc-IV), $22.2\left(\mathrm{CH}_{3}, \mathrm{NHAc}\right)$. ESI HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{NO}_{26}, 892.2910$; found 892.2912.

5-aminopentyl β-D-Galactopyranosyl-(1-3)-2-acetamido-2-deoxy- β-D-galactopyranosyl-(1-3)- α-D-galactopyranosyl-(1 $\rightarrow 4$)- β-D-galactopyranosyl-(1 $\rightarrow 4$)- β-D-glucopyranoside (4b). Pentasaccharide 16c
 was deprotected in a total of 5 steps, all steps were the same as for Gb5-OMP, without the CAN reaction. ($4.57 \mathrm{mg}, 19 \%$, over 5 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 4.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1$, Gal-III), $4.67(1 \mathrm{H}$, d, $J=8.5 \mathrm{~Hz}, \mathrm{H}-1$, GalNAc-IV), $4.54-4.40(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 1, Gal-II; H-1, Glc-I; H-1, Gal-V), 4.37 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, H-5, Gal-III), 4.23 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$, Gal-III) 4.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-4$, GalNAc-IV), $4.10-3.46$ ($28 \mathrm{H}, \mathrm{m}$), 3.28 (1 H , $\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{Glc}-\mathrm{I}), 3.03-2.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, pentyl), 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NHAc}$), $1.76-1.58$ ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}$, pentyl), $1.50-1.38$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ pentyl). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 175.0$ (C=O, NHAc), 104.7 (C-1, Gal-V), 103.2 (C-1, Gal-II), 102.8 (C-1, GalNAc-IV), 101.9 (C-1, GIc-I), 100.3 (C-1, Gal-III), 79.5, 78.7, 78.6, 77.1, 75.3, 74.9, 74.7, 74.5, 74.4, 72.8 (C-2, GIc-I), 72.3, 72.0, 70.8 (C-2, Gal-II), 70.5 (C-2, Gal-V), 70.2, 70.0, 68.8 (C-2, Gal-III), 68.5, 67.9, 67.5, 60.9, 60.8, 60.2, 60.2, 59.9, 51.4 (C-2, GaINAc-IV), $39.2\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$, $22.2\left(\mathrm{CH}_{3}, \mathrm{NHAc}\right), 22.0\left(\mathrm{CH}_{2}\right)$. ESI HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{26}$, 955.3977; found 955.3979.

2. Enzymatic synthesis

2.1 Human glycosyl transferase expression

The catalytic domains of human glycosyl transferases (see Table S2 below) were expressed as soluble, secreted fusion proteins by transient transfection of HEK293 suspension cultures. ${ }^{6}$ The coding regions were amplified from Mammalian Gene Collection clones using primers that appended a tobacco etch virus (TEV) protease cleavage site ${ }^{66,7}$ to the NH_{2}-terminal end of the coding region and attL1 and attL2 Gateway adaptor sites to the 5^{\prime} and 3^{\prime} terminal ends of the amplimer products. The amplimers were recombined via BP clonase reaction into the pDONR221 vector and the DNA sequences were confirmed. The pDONR221 clone was then recombined via LR clonase reaction into a custom Gateway adapted version of the pGEn2 mammalian expression vector ${ }^{6,8}$ to assemble a recombinant coding region comprised of a 25 amino acid NH_{2}-terminal signal sequence from the T. cruzi lysosomal α-mannosidase ${ }^{9}$ followed by an $8 x H$ is tag, 17 amino acid AviTag, ${ }^{10}$ "superfolder" GFP, ${ }^{11}$ the nine amino acid sequence encoded by attB1 recombination site, followed by the TEV protease cleavage site and the respective glycosyltransferase catalytic domain coding region.

Suspension culture HEK293 cells (Freestyle 293-F cells, Life Technologies, Grand Island, NY) were transfected as previously described ${ }^{6}$ and the culture supernatant was subjected to Ni-NTA superflow chromatography (Qiagen, Valencia, CA). Enzyme preparations eluted with 300 mM imidazole were concentrated to $\sim_{1} \mathrm{mg} \mathrm{mL}^{-1}$ using an ultrafiltration pressure cell membrane (Millipore, Billerica, MA) with a 10 kDa molecular weight cutoff.

Table S2. Enzyme expression details. ${ }^{6 b}$

Enzyme	Amino Acid Residues	Uniprot ID
ST3GAL1	$52-340$	Q11201
ST6GALNAC5	$50-336$	Q9BVH7
ST6GALNAC6	$31-333$	Q969X2

2.2 Experimental procedures for enzymatic synthesis

α Neu5Ac-(2 $\rightarrow 3$)- β-D-Galactopyranosyl-(1 $\rightarrow 3$)-2-acetamido-2-deoxy- β-D-galactopyranosyl-(1 $\rightarrow 3$)- α-D-galactopyranosyl-(1 $\rightarrow 4$)- β-D-galactopyranosyl-($1 \rightarrow 4$)- α / β-D-glucopyranose (5 a). ST3Gal1 and CIAP were
 added to compound 4 a ($6.5 \mathrm{mg}, 10 \mathrm{mM}$ final concentration) in $\mathrm{H}_{2} \mathrm{O}$ with CMP-Neu5Ac (15 mM), $\mathrm{MgCl}_{2}(20 \mathrm{mM})$, sodium cacodylate buffer (50 mM , pH 7.5). The mixture was shaken at $37^{\circ} \mathrm{C}$ for 94 h and monitored by TLC (EA:MeOH: $\mathrm{H}_{2} \mathrm{O}: \mathrm{HOAc}$ 4:3:2:1). More enzymes were added until no more starting material could be observed. Purification by Bio-Gel P-2 size exclusion chromatography and semi-preprarative HILIC column (XBridge ${ }^{\otimes}$ Amide $5 \mu \mathrm{~m}, 4.6$ $\mathrm{mm} \times 250 \mathrm{~mm}$ column, Waters, 70% B isocratic) provided compound 5 a ($4.57 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR (750 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.24(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{H}-1 \alpha, \mathrm{Glc}-\mathrm{I}), 4.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{Gal}-\mathrm{III}), 4.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5$ $\mathrm{Hz}, \mathrm{H}-1$, GalNAc-IV), 4.68 ($0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-1 \beta, \mathrm{Glc}-\mathrm{I}$), $4.55-4.51$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{GaI}-\mathrm{V} ; \mathrm{H}-1, \mathrm{Gal}-\mathrm{II}$), 4.41 - 4.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$, Gal-III), 4.26 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$, Gal-III), 4.19 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{H}-4$, GaINAc-IV), 4.08 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=9.9,3.2 \mathrm{~Hz}, \mathrm{H}-2$, GalNAc-IV; H-3, Gal-V), 4.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}, \mathrm{H}-4$, Gal-II), $4.01-3.57$ ($29.5 \mathrm{H}, \mathrm{m}$), 3.55 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-2, \mathrm{GaI}-\mathrm{V}$), $3.29(0.5 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{Glc}-\mathrm{I}), 2.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,4.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}, \mathrm{Neu} 5 \mathrm{Ac}-\mathrm{VI})$, 2.04 ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ NHAc), 1.79 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}, \mathrm{Neu5Ac}-\mathrm{VI}$). ESI HRMS (m / z): [$\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{34}, 1183.3864$; found 1183.3861.

5-aminopentyl $\quad \alpha$ Neu5Ac-(2 $\rightarrow 3$)- β-D-Galactopyranosyl-($1 \rightarrow 3$)-2-acetamido-2-deoxy- β-D-galacto-pyranosyl-($1 \rightarrow 3$)- α-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-glucopyranose (5b).
 ST3Gal1 and CIAP were added to compound 4 b ($2.0 \mathrm{mg}, 10 \mathrm{mM}$ final concentration) in $\mathrm{H}_{2} \mathrm{O}$ with CMPNeu5Ac (15 mM), $\mathrm{MgCl}_{2}(20 \mathrm{mM}$), sodium cacodylate buffer ($50 \mathrm{mM}, \mathrm{pH}$ 7.5). The mixture was shaken at $37^{\circ} \mathrm{C}$ for 24 h and monitored by TLC
(EA:MeOH: $\mathrm{H}_{2} \mathrm{O}: \mathrm{HOAc} 4: 4: 3.3: 2$). Purification by Bio-Gel P-2 size exclusion chromatography provided compound $5 \mathbf{5 b}(1.8 \mathrm{mg}, 69 \%){ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.92(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{Gal}-\mathrm{III}), 4.71(1 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{H}-1$, GalNAc-IV), $4.56-4.49$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ Gal-V; H-1, Gal-II; H-1, Glc-I), 4.39 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-5$, Gal-III), 4.26 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-4$, Gal-III), 4.19 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{GaINAc}-\mathrm{IV}), 4.13-3.48(34 \mathrm{H}, \mathrm{m})$, $3.36-3.27(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{Glc}-\mathrm{I}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH} 2), 2.76(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,4.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}, \mathrm{Neu5Ac}-$ VI), 2.04 ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xHAc}$), 1.79 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}$, Neu5Ac-VI), $1.75-1.65$ ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{CH}$, pentyl), $1.52-1.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, pentyl). ESI HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{~N}_{3} \mathrm{O}_{34}, 1246.4858$; found 1246.4970.
α Neu5Ac-(2 $\rightarrow 3$)- β-D-Galactopyranosyl-(1 $\rightarrow 3$)-[α Neu5Ac-(2 $\rightarrow 6$)]-2-acetamido-2-deoxy- β-D-galacto-pyranosyl-(1 $\rightarrow 3$)- α-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-galactopyranosyl-($1 \rightarrow 4$)- α / β-D-glucopyranose (6a).
 ST6GalNAc5 and CIAP were added to a mixture of compound 5 a ($4.2 \mathrm{mg}, 10 \mathrm{mM}$ final concentration) in $\mathrm{H}_{2} \mathrm{O}$ with CMP-Neu5Ac (15 mM), $\mathrm{MgCl}_{2}(20 \mathrm{mM})$, sodium cacodylate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$). The mixture was shaken at $37^{\circ} \mathrm{C}$ overnight and monitored by TLC (EA:MeOH: $\mathrm{H}_{2} \mathrm{O}: \mathrm{HOAc} 3: 3: 3: 2$). More enzymes were added until no more starting material could be observed. Purification by Bio-Gel

P-2 size exclusion chromatography and semi-preprarative HILIC column (XBridge ${ }^{\circledR}$ Amide $5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} x$ 250 mm column, Waters, 70% B isocratic) provided compound 6 a ($2.64 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(750 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 5.24(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{H}-1 \alpha, \mathrm{Glc}-\mathrm{I}, 4.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{GaI}-\mathrm{III}), 4.70-4.65(1.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \beta$, Glc-I; H-1, GalNAc-IV), $4.54-4.50$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$, Gal-II, H-1, Gal-V), $4.43-4.39$ (1H, m, H-5, Gal-III), 4.28 (1H, s, H-4, Gal-III), 4.20 (1H, d, J = 3.0 Hz, H-4, GalNAc-IV), $4.10-4.04$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, GalNAc-IV; H-3, Gal-V), 4.02 $-3.57(36.5 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=9.6,8.1 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{Gal}-\mathrm{V}), 3.29(0.5 \mathrm{H}, \mathrm{dd}, J=9.0,8.2 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{Glc}-\mathrm{I}), 2.79$ - 2.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{eq}$, Neu5Ac-VI; H-3eq, Neu5Ac-VII), $2.07-2.01$ ($9 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}$ NHAc), 1.80 (1H, t, J = 12.2 $\mathrm{Hz}, \mathrm{H}-3 \mathrm{ax}, \mathrm{Neu5Ac-VI}), 1.66(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}, \mathrm{Neu5Ac}-\mathrm{VII})$. ESI HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{89} \mathrm{~N}_{3} \mathrm{O}_{42}$, 1474.4818; found 1474.4807.

5-aminopentyl α Neu5Ac-(2 $\rightarrow 3$)- β-D-Galactopyranosyl-(1 $\rightarrow 3$)-[α Neu5Ac-(2 $\rightarrow 6$)]-2-acetamido-2-deoxy-β-D-galactopyranosyl-($1 \rightarrow 3$)- α-D-galactopyranosyl-($1 \rightarrow 4$)- β-D-galactopyranosyl-(1 $\rightarrow 4$)- β-D-glucopyranoside (6b). ST6GaINAc5 and CIAP were added to a mixture of compound $5 \mathbf{5 b}(1.0 \mathrm{mg}, 10 \mathrm{mM}$ final
 concentration) in $\mathrm{H}_{2} \mathrm{O}$ with CMPNeu5Ac (15 mM), MgCl_{2} (20 mM), sodium cacodylate buffer ($50 \mathrm{mM}, \mathrm{pH}$ 7.5). The mixture was shaken at $37^{\circ} \mathrm{C}$ for 4 h and monitored by TLC (EA:MeOH: $\mathrm{H}_{2} \mathrm{O}: \mathrm{HOAc} \quad 3: 3: 3: 2$). Purification by Bio-Gel P-2 size exclusion chromatography provided compound 6b ($0.7 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.92(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-1$, Gal-III), $4.69(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{GalNAc}-\mathrm{IV}), 4.55-4.49$ (3H, m, H-1, Gal-II; H-1, Gal-V; H-1, Glc-I), $4.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-5$, Gal-III), $4.28(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{H}-4$, Gal-III), 4.20 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{H}-4$, GalNAc-IV), 4.11 - 4.04 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, GalNAc-IV; H-3, Gal-V, H-4, Gal-II), $4.03-3.53(39 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{Glc}-\mathrm{I}), 3.06-2.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, pentyl), $2.80-2.70(2 \mathrm{H}, \mathrm{m}$, H-3eq, Neu5Ac-VI; H-3eq, Neu5Ac-VII), 2.07 - 2.00 ($9 \mathrm{H}, \mathrm{m}, 3 x \mathrm{NHAc}$), 1.79 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}$, Neu5Ac-VI), 1.75 - 1.63 (5H, m, 2x CH2, pentyl; H-3ax, Neu5Ac-VII), $1.51-1.43$ (2H, m, CH2, pentyl). ESI HRMS $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{59} \mathrm{H}_{100} \mathrm{~N}_{4} \mathrm{O}_{42}, 1537.5812$; found 1537.5874.

3. Microarray

3.1 Experimental procedures

The synthetic glycans ($100 \mu \mathrm{M}$ in sodium phosphate (250 mM), pH 8.5 buffer) were printed on activated glass slides (Nexterion Slide H, Schott Inc) by piezoelectric non-contact printing (sciFLEXARRAYER S3, Scienion Inc) with a drop volume of $\sim 400 \mathrm{pL}$ and 1 drop per spot at 50% relative humidity. The compounds were printed as replicates of 6 with on each slide 24 subarrays (3x8). The slides were incubation overnight in a saturated NaCl chamber (providing a 75% relative humidity environment), after which the remaining activated esters were quenched with ethanolamine (50 mM) in TRIS (100 mM), pH 9.0. Slides were rinsed with DI water, dried by centrifugation, and stored in a desiccator at RT.

Sub-arrays were incubated with biotinylated lectins (Maackia amurensis leukagglutinin (MAL-II), Soybean agglutinin (SBA) and Wheat Germ agglutinin (WGA); from Vector Labs) at $10 \mu \mathrm{~g} / \mathrm{mL}$ premixed with Streptavidin-AlexaFluor635 ($5 \mu \mathrm{~g} / \mathrm{mL}$; ThermoFisher Scientific, S32364) in TSM binding buffer (20 mM Tris $\mathrm{Cl}, \mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{CaCl} 2,2 \mathrm{mM} \mathrm{MgCl} 2,0.05 \%$ Tween, $1 \% \mathrm{BSA}$) for 1 h followed by washing. Wash steps involved 4 successive washes with each 5 min soak time with 1) TSM wash buffer (20 mM Tris
$\mathrm{Cl}, \mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{CaCl} 2,2 \mathrm{mM} \mathrm{MgCl} 2,0.05 \%$ Tween-20); 2) TSM buffer ($20 \mathrm{mM} \mathrm{Tris} \mathrm{Cl}, \mathrm{pH}$ $7.4,150 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{CaCl}, 2 \mathrm{mM} \mathrm{MgCl} 2$); 3) deionized $\mathrm{H}_{2} \mathrm{O}$; and 4) deionized $\mathrm{H}_{2} \mathrm{O}$.

Biotin-conjugated ganglioside GM1 polyclonal antibody ($2 \mu \mathrm{~g} / \mathrm{mL}$; Bioss, bs-2367R-Biotin) in TSM binding buffer was incubated for 1 h followed by washing as described above. Next the subarray was incubated with Streptavidin-AlexaFluor635 ($5 \mu \mathrm{~g} / \mathrm{mL}$) for 1 h followed by washing.

Using the same buffers as above, recombinant human Siglec-7 comp (a gift from Dr. R.L. Schnaar, Johns Hopkins University School of Medicine, Baltimore, MD, USA) was assayed at $50 \mu \mathrm{~g} / \mathrm{mL}$ premixed with 6 x His Tag monoclonal antibody-AlexaFluor647 ($5 \mu \mathrm{~g} / \mathrm{mL}$; ThermoFisher Scientific MA1-135-A647) with an incubation for 2 h .

All incubation and wash steps were performed at RT. Washed arrays were dried by centrifugation and immediately scanned for fluorescence on a GenePix 4000 B microarray scanner (Molecular Devices) using a detection gain adjusted to avoid saturation of the signal. The data were processed with GenePix Pro 7 software and further analyzed using our home written Microsoft Excel macro. The lowest and highest value of the 6 replicates were excluded, after which the mean fluorescence intensities (corrected for mean background) and standard deviations (SD) were calculated ($n=4$). Data were fitted using Prism software (GraphPad Software, Inc). The lowest concentration required for good responsiveness in the optimum dynamic range was selected for all proteins examined.

3.2 Results and discussion printing controls

The printing of the synthetic compounds was validated by the plant lectins MAL II, SBA and WGA and a GM1 antibody.

MAL-II binds the terminal trisaccharide sequence $\operatorname{Neu5Ac(\alpha 2-3)Gal(\beta 1-4)GIcNAc/GIc.~}{ }^{12}$ Compounds 17 and 20 (Neu5Ac($\alpha 2-8$)-Neu5Ac($\alpha 2-3$)Gal($\beta 1-4$)GIc) have three terminal intact sugars, and as expected binds to MAL II. Compounds $\mathbf{5 b}$ and $\mathbf{6 b}$, with the Neu5Ac($\alpha 2-3$)-Gal- $\beta 1,3$-GalNAc epitope at the terminal end, are not recognized by MAL II. Similarly, GT1b (21) with the same terminal epitope as $\mathbf{5 b}$ and $\mathbf{6 b}$ also did not show binding to MAL II.

SBA preferentially binds GaINAc, and also recognizes Gal residues although at much lower affinity. ${ }^{13}$ Binding to SBA was observed for compounds with either a GalNAc or Gal at the terminal residue: 18 (GM2; with GalNAc at the terminal residue) and $\mathbf{4 b}$ ($\mathrm{Gb5}$; with Gal at terminal residue). As expected sialylated compounds $\mathbf{5 b}$ and $\mathbf{6 b}$ (sialylated $\mathrm{Gb5}$; no Gal at the terminal residue) didn't show any binding. Also compound 19 (GM1a; with Gal at the terminal residue) didn't show any binding, due to the inhibition effect of Neu5Ac.

WGA preferentially binds GlcNAc moieties, and also interacts with some glycoproteins via terminal sialic acid residues. Indeed the terminal sialylated compound 21 (GT1b) and sialylated Gb5 ($\mathbf{5 b}$ and $\mathbf{6 b}$) showed binding, while the non-terminal sialylated compounds 18 (GM2), 19 (GM1a) and 4b (Gb5) did not bind. Compound 20 (GD3; with terminal $\alpha 2,8-\mathrm{Neu5Ac}-\mathrm{a} 2,3-\mathrm{Neu5Ac}$) also did not bind to WGA, apparently WGA does not recognize this sialylated epitope.

As expected only GM1a (19) showed binding to the GM1 antibody.

4. References

1 S. Vudhgiri, S. R. Routhu, C. G. Kumar, R. B. N. Prasad and R. C. R. Jala, Med. Chem. Res., 2018, 27, 285.
2 G.J. Boons and Z. Wang, US Utility Patent Number 9,938,312, titled "Compounds and Methods for Chemical and Chemo-Enzymatic Synthesis of Complex Glycans" issued April 10, 2018. Assignee: University of Georgia Research Foundation, Inc.
3 H. Kuyama, T. Nukada, Y. Nakahara and T. Ogawa, Tetrahedron Lett., 1993, 34, 2171.
4 C. Noti, J. L. de Paz, L. Polito and P. H. Seeberger, Chem. Eur. J., 2006, 12, 8664.
5 A. Imamura, H. Ando, S. Korogi, G. Tanabe, O. Muraoka, H. Ishida and M. Kiso, Tetrahedron Lett., 2003, 44, 6725
6 (a) L. Meng, F. Forouhar, D. Thieker, Z. Gao, A. Ramiah, H. Moniz, Y. Xiang, J. Seetharaman, S. Milaninia, M. Su, R. Bridger, L. Veillon, P. Azadi, G. Kornhaber, L. Wells, G. T. Montelione, R. J. Woods, L. Tong and K. W. Moremen, J. Biol. Chem., 2013, 288, 34680; (b) K. W. Moremen, A. Ramiah, M. Stuart, J. Steel, L. Meng, F. Forouhar, H. A. Moniz, G. Gahlay, Z. Gao, D. Chapla, S. Wang, J. Y. Yang, P. K. Prabhakar, R. Johnson, M. D. Rosa, C. Geisler, A. V. Nairn, J. Seetharaman, S. C. Wu, L. Tong, H. J. Gilbert, J. LaBaer and D. L. Jarvis, Nat. Chem. Biol., 2018, 14, 156.
7 J. Phan, A. Zdanov, A. G. Evdokimov, J. E. Tropea, H. K. Peters, R. B. Kapust, M. Li, A. Wlodawer and D. S. Waugh, J. Biol. Chem., 2002, 277, 50564.

8 A. W. Barb, L. Meng, Z. Gao, R. W. Johnson, K. W. Moremen and J. H. Prestegard, Biochemistry, 2012, 51, 4618.
9 A. S. Vandersall-Nairn, R. K. Merkle, K. O'Brien, T. N. Oeltmann and K. W. Moremen, Glycobiology, 1998, 8, 1183.
10 D. Beckett, E. Kovaleva and P. J. Schatz, Protein Sci., 1999, 8, 921.
11 J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger and G. S. Waldo, Nat. Biotechnol., 2006, $24,79$.
12 I. J. Goldstein, H. C. Winter and R. D. Poretz, in New Comprehensive Biochemistry, Elsevier, 1997, vol. 29, Part B, pp. 403.
13 V. S. R. Rao, K. Lam and P. K. Qasba, J. Biomol. Struct. Dyn., 1998, 15, 853.

[^0]

f1 (ppm)

 \sim

4a

(

[^0]:

