Supporting Information

(Z)-Tetrahydrothiophene and (Z)-Tetrahydrothiopyran Synthesis through Nucleophilic Substitution and Intramolecular Cycloaddition of Alkynyl Halide and EtOCS₂K

Xianglin Luo, Xiuwen Chen, Zhiyan Song, Junyi Liang, Chunshu Liao, Zhongzhi Zhu, Lu Chen, Yibiao Li*

School of Biotechnology & Health Sciences, Wuyi University, Jiangmen, Guangdong Province, 529090, P. R. China

E-mail: leeyib268@126.com

A. General methods	2
C. General Procedure for the preparation of 1-(5-chloropent-1-ynyl) benzene	2
D. General methods for the synthesis of (Z)- tetrahydrothiophenes	2
E. Synthesis of (Z)-2-benzylidenetetrahydrothio phene-2-oxide	2
F. Characterization data for prepared compounds	3
G: Crystal Structure of 3e	22
H: ¹ H NMR and ¹³ C NMR spectra for products	24

A. General methods

Unless otherwise noted, all commercial materials and solvents were used without further purification. ¹H NMR spectra were recorded in CDCl₃ at 400 MHz (or 600 Hz) and ¹³C NMR spectra were recorded in CDCl₃ at 100 MHz (or 150 Hz) respectively, ¹H and ¹³C NMR were referenced to CDCl₃ at δ 7.260 and 77.0 respectively. The different types of carbon in the structures have been identified by HSQC, HMBC and DEPT techniques. GC–MS was obtained using electron ionization. HRMS was carried out on a MAT 95XP (Thermo). IR spectra were obtained as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Brucker Vector 22 spectrometer. TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF₂₅₄), and visualization was effected at 254 nm. All the other chemicals were purchased from Aldrich Chemicals. Commercial reagents were used without further purification.

C. General Procedure for the preparation of 1-(5-chloropent-1-ynyl) benzene

A mixture of iodobenzene (1 mmol), 5-chloropent-1-yne (1.2 mmol), $PdCl_2(PPh_3)_2$ (5 mol %), CuI (10 mol %), Et₃N (1 mL), and CH₃CN (2 mL) was added successively in a 20 mL Schlenk tube. After being stirred for 8 h at 30 °C, the solution was filtered by a small amount of silica gel. Then the residue was concentrated in vacuo and the crude was purified by flash chromatography with petroleum ether to afford the 1-(5-chloropent-1-ynyl) benzene as a white oil in 92 % yield.

D. General methods for the synthesis of (Z)- tetrahydrothiophenes

A 25 mL Schlenk tube was charged with 1-(5-chloropent-1-ynyl) benzene (89 mg, 0.5 mmol), $EtOCS_2K$ (160 mg, 1 mmol), DMF (2 mL) and H₂O (10 mmol) and magnetic stirring bar. The reaction was performed for 12 h at 80 °C. After the reaction finished, the reaction mixture was diluted with ethyl acetate and passed through Celite. After evaporation of the solvent the residue was adsorbed on silica gel and the crude product was purified by column chromatography using petroleum as eluent.

E. Synthesis of (Z)-2-benzylidenetetrahydrothio phene-2-oxide

A 25 mL Schlenk tube was charged with (Z)-2-benzylidenetetrahydrothiophene (88 mg, 0.5 mmol), m-CPBA (190 mg, 1.1mmol), CH₂Cl₂ (2 mL) and magnetic stirring bar under N₂ atmosphere condition. The reaction was performed for 48 h at room temperature. After the reaction finished, the solvent was removed under reduce pressure, and the residue was purified by column chromatography (ethyl acetate: petroleum ether = 1: 1, Rf = 0.51) to afford the pure product **4a**.

F. Characterization data for prepared compounds

(5-Chloropent-1-yn-1-yl)benzene (1a)^[1]: Yellow liquid (78 mg, 88% yield); $R_f = 0.59$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.41 (dd, J = 6.5, 2.9 Hz, 2H), 7.33 – 7.26 (m, 3H), 3.73 (t, J = 6.4 Hz, 2H), 2.62 (t, J = 6.8 Hz, 2H), 2.07 (pent, J = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 131.5, 128.2, 127.8, 123.5, 88.0, 81.5, 43.7, 31.4, 16.8.

1-(5-Chloropent-1-yn-1-yl)-2-methylbenzene (1b): White liquid (70 mg, 73% yield); $R_f = 0.61$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.5 Hz, 1H), 7.22 – 7.17 (m, 2H), 7.15 – 7.09 (m, 1H), 3.75 (t, J = 6.4 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 2.42 (s, 3H), 2.08 (pent, J = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 139.9, 131.8, 129.3, 127.7, 125.4, 123.3, 91.9, 80.4, 43.7, 31.5, 20.7, 17.0; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₄Cl, 193.0779, found: 193.0787.

1-(5-Chloropent-1-yn-1-yl)-3-methylbenzene (1c): Yellow liquid (73 mg, 76% yield); $R_f = 0.57$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.17 (m, 3H), 7.11 (d, J = 7.3 Hz, 1H), 3.73 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.8 Hz, 2H), 2.33 (s, 3H), 2.08 – 2.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 132.1, 128.6, 128.6, 128.1, 123.3, 87.6, 81.6, 43.7, 31.4, 21.2, 16.8.

1-(5-Chloropent-1-yn-1-yl)-4-methylbenzene (1d): White liquid (77 mg, 80% yield); $R_f = 0.62$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 7.9 Hz, 2H), 3.72 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.8 Hz, 2H), 2.34 (s, 3H), 2.06 (pent, J = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.8, 131.4, 129.0, 120.4, 87.2, 81.5, 43.8, 31.5, 21.4, 16.8.

4-(5-Chloropent-1-yn-1-yl)-1,2-dimethylbenzene (1e): White liquid (92 mg, 89% yield); $R_f = 0.64$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.19 (s, 1H), 7.14 (d, J = 7.7 Hz, 1H), 7.05 (d, J = 7.7 Hz, 1H), 3.72 (t, J = 6.4 Hz, 2H), 2.60 (t, J = 6.8 Hz, 2H), 2.25 (s, 3H), 2.23 (s, 3H), 2.04 (dd, J = 13.2, 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 136.6, 136.5, 132.6, 129.5, 128.9, 120.7, 86.9, 81.6, 43.8, 31.5, 19.7, 19.5, 16.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₃H₁₆Cl, 207.0935, found: 207.0946.

1-(*tert*-Butyl)-4-(5-chloropent-1-yn-1-yl)benzene (1f): Yellow liquid (98 mg, 84% yield); R_f =0.61(petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.33 (q, *J* = 8.6 Hz, 4H), 3.73 (d, *J* = 6.4 Hz, 2H), 2.61 (t, *J* = 6.8 Hz, 2H), 2.06 (pent, *J* = 6.6 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 150.9, 131.2, 125.2, 120.5, 87.2, 81.5, 43.8, 34.7, 31.5, 31.1, 16.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₅H₂₀Cl, 235.1248, found: 235.1233.

1-(5-Chloropent-1-yn-1-yl)-4-methoxybenzene (1g)^[2]: White liquid (78 mg, 75% yield); $R_f = 0.59$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.29 (m, 2H), 6.87 – 6.76 (m, 2H), 3.79 (s, 3H), 3.71 (t, J = 6.4 Hz, 2H), 2.59 (t, J = 6.8 Hz, 2H), 2.04 (pent, J = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 132.8, 115.6, 113.7, 86.4, 81.1, 55.1, 43.7, 31.4, 16.7.

1-(5-chloropent-1-yn-1-yl)-4-nitrobenzene: Yellow liquid (90 mg, 81% yield); $R_f = 0.39$ (petroleum ether / ethyl acetate = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.10 (m, 2H), 7.52 – 7.47 (m, 2H), 3.70 (dd, J = 8.1, 4.5 Hz, 2H), 2.64 (t, J = 6.9 Hz, 2H), 2.10 – 2.04 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 146.6, 132.2, 130.5, 123.4, 94.2, 80.0, 43.5, 30.9, 16.9.

1-(5-Chloropent-1-yn-1-yl)-4-fluorobenzene (1i): White liquid (75 mg, 77% yield); $R_f = 0.63$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.02 – 6.95 (m, 2H), 3.71 (t, *J* = 6.3 Hz, 2H), 2.59 (t, *J* = 6.8 Hz, 2H), 2.05 (pent, *J* = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 162.1 (d, *J*_{C-F} = 246.8 Hz), 133.4 (d, *J*_{C-F} = 8.3 Hz), 119.6 (d, *J*_{C-F} = 3.6 Hz), 115.4 (d, *J*_{C-F} = 21.9 Hz), 87.7, 80.4, 43.7, 31.3, 16.7.

1-Chloro-4-(5-chloropent-1-yn-1-yl)benzene (1j): White liquid (86 mg, 81% yield); $R_f = 0.59$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.30 (m, 2H), 7.28 – 7.24 (m, 2H), 3.71 (t, *J* = 6.3 Hz, 2H), 2.60 (t, *J* = 6.8 Hz, 2H), 2.05 (pent, *J* = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 133.7, 132.8, 128.5, 122.0, 89.1, 80.4, 43.7, 31.3, 16.8.

4-(5-Chloropent-1-yn-1-yl)benzonitrile (1k) ^[3]: Yellow liquid (84 mg, 83% yield); $R_f = 0.55$ (petroleum ether / ethyl acetate = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 3.69 (t, J = 6.3 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.06 (pent, J = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 132.1, 131.9, 128.5, 118.5, 111.0, 93.1, 80.2, 43.5, 31.0, 16.8.

1-(5-Chloropent-1-yn-1-yl)-4-(trifluoromethyl)benzene (11): White liquid (92 mg, 75% yield); $R_f = 0.61$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 3.72 (t, J = 6.3 Hz, 2H), 2.64 (t, J = 6.8 Hz, 2H), 2.11 – 2.04 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 131.8, 129.5 (q, $J_{C-F} = 32.6$ Hz), 127.4, 125.1 (q, $J_{C-F} = 3.6$ Hz), 123.9 (q, $J_{C-F} = 270.4$ Hz), 90.9, 80.3, 43.6, 31.2, 16.8.

4-(5-Chloropent-1-yn-1-yl)-1,1'-biphenyl (1m): Yellow liquid (100 mg, 79% yield); $R_f = 0.53$ (petroleum ether / ethyl acetate = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, J = 5.2, 3.3 Hz, 2H),

7.60 – 7.56 (m, 2H), 7.55 – 7.51 (m, 2H), 7.49 (dd, J = 10.4, 4.8 Hz, 2H), 7.42 – 7.37 (m, 1H), 3.77 (t, J = 6.4 Hz, 2H), 2.68 (t, J = 6.8 Hz, 2H), 2.15 – 2.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 140.4, 140.2, 131.9, 128.7, 127.4, 126.9, 126.8, 122.4, 88.7, 81.3, 43.7, 31.4, 16.9; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₇H₁₆Cl, 255.0935, found: 255.0919.

2-(5-Chloropent-1-yn-1-yl)naphthalene (1n): Yellow liquid (97 mg, 85% yield); $R_f = 0.61$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 8.38 – 8.31 (m, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.61 – 7.57 (m, 1H), 7.53 (dd, *J* = 8.0, 7.0 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 1H), 3.81 (t, *J* = 6.3 Hz, 2H), 2.79 (t, *J* = 6.8 Hz, 2H), 2.20 – 2.15 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 133.4, 133.1, 130.2, 128.2, 128.2, 126.6, 126.3, 126.1, 125.2, 121.2, 93.0, 79.5, 43.8, 31.5, 17.1.

2-(5-Chloropent-1-yn-1-yl)pyridine (1o)^[4]: Yellow liquid (79 mg, 88% yield); $R_f = 0.54$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 7.62 (ddd, J = 9.2, 5.4, 1.5 Hz, 1H), 7.44 – 7.33 (m, 1H), 7.25 – 7.15 (m, 1H), 3.74 – 3.69 (m, 2H), 2.66 – 2.61 (m, 2H), 2.07 (tt, J = 8.1, 3.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.7, 143.4, 136.0, 126.8, 122.5, 88.6, 81.1, 43.6, 30.9, 16.6.

3-(5-Chloropent-1-yn-1-yl)pyridine (1p)^[5]: Yellow liquid (70 mg, 79% yield); $R_f = 0.56$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (s, 1H), 8.51 (d, *J* = 4.1 Hz, 1H), 7.74 – 7.65 (m, 1H), 7.24 (dd, *J* = 7.8, 4.9 Hz, 1H), 3.73 (t, *J* = 6.3 Hz, 2H), 2.65 (t, *J* = 6.8 Hz, 2H), 2.10 – 2.07 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 152.3, 148.1, 138.5, 122.9, 120.6, 91.7, 78.2, 43.6, 31.1, 16.8.

4-(5-Chloropent-1-yn-1-yl)pyridine (1q): Brown liquid (64 mg, 71% yield); $R_f = 0.57$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 4.4 Hz, 2H), 7.23 (d, *J* = 4.7 Hz, 2H), 3.68 (t, *J* = 6.3 Hz, 2H), 2.61 (t, *J* = 6.9 Hz, 2H), 2.04 (pent, *J* = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.6, 131.7, 125.7, 93.5, 79.2, 43.5, 30.9, 16.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₁ClN, 180.0575, found: 180.0563.

5-(5-Chloropent-1-yn-1-yl)-2-methoxypyridine (1r): White liquid (87 mg, 83% yield); $R_f = 0.59$ (petroleum ether / ethyl acetate = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 1.6 Hz, 1H), 7.57 (dd, J = 8.6, 2.2 Hz, 1H), 6.68 (d, J = 8.6 Hz, 1H), 3.94 (s, 3H), 3.72 (t, J = 6.3 Hz, 2H), 2.62 (t, J = 1.6 Hz, 1H), 2.62 (t, J = 1.6 Hz, 2H), 2.62 (t, J = 1.6 Hz, 1H), 2.62 (t, J = 1.6 Hz, 2H), 2.62 (

6.8 Hz, 2H), 2.07 (dd, *J* = 13.1, 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.0, 149.8, 141.2, 113.3, 110.5, 89.4, 78.1, 53.6, 43.7, 31.3, 16.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₃ClNO, 210.0680, found: 210.0668.

3-(5-Chloropent-1-yn-1-yl)-2-methoxypyridine (1s): Yellow liquid (86 mg, 82% yield); $R_f = 0.62$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 4.5 Hz, 1H), 7.62 (d, *J* = 7.3 Hz, 1H), 6.82 (dd, *J* = 7.1, 5.2 Hz, 1H), 3.99 (s, 3H), 3.73 (t, *J* = 6.4 Hz, 2H), 2.66 (t, *J* = 6.8 Hz, 2H), 2.08 (dd, *J* = 13.1, 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.6, 145.7, 141.6, 116.3, 107.6, 93.8, 76.2, 54.0, 43.7, 31.3, 17.2; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₃ClNO, 210.0680, found: 210.0667.

2-Bromo-5-(5-chloropent-1-yn-1-yl)pyridine (1t): Yellow solid (98 mg, 76% yield); $R_f = 0.59$ (petroleum ether / ethyl acetate = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J = 2.2 Hz, 1H), 7.49 (dd, J = 8.2, 2.4 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 3.68 – 3.65 (m, 2H), 2.60 (t, J = 6.9 Hz, 2H), 2.07 – 2.01 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 152.4, 140.6, 140.4, 127.4, 119.9, 93.2, 43.5, 30.9, 16.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₀ClNBr, 257.9680, found: 257.9662.

3-Bromo-5-(5-chloropent-1-yn-1-yl)pyridine (1u): Yellow liquid (91 mg, 71% yield); $R_f = 0.57$ (petroleum ether / ethyl acetate = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, J = 2.1 Hz, 1H), 8.51 (d, J = 1.4 Hz, 1H), 7.81 (t, J = 1.9 Hz, 1H), 3.68 (t, J = 6.3 Hz, 2H), 2.62 (t, J = 6.9 Hz, 2H), 2.04 (dd, J = 13.1, 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150.2, 149.3, 140.8, 122.0, 119.9, 93.3, 76.9, 43.5, 30.9, 16.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₀ClNBr, 257.9680, found: 257.9661.

2-Chloro-5-(5-chloropent-1-yn-1-yl)pyridine (1v): Yellow liquid (80 mg, 75% yield); $R_f = 0.61$ (petroleum ether / ethyl acetate = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, J = 2.1 Hz, 1H), 7.62 (d, J = 8.2, 2.3 Hz, 1H), 7.26 (d, J = 8.3 Hz, 1H), 3.70 (d, J = 6.3 Hz, 2H), 2.63 (t, J = 6.9 Hz, 2H), 2.05 (dd, J = 13.1, 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 152.0, 149.8, 141.0, 123.7, 119.5, 93.0, 77.0, 43.5, 31.0, 16.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₀Cl₂N, 214.0185, found: 214.0172.

6-(5-Chloropent-1-yn-1-yl)quinoline (1w): Yellow liquid (93 mg, 81% yield); $R_f = 0.54$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.97 – 8.80 (m, 1H), 8.06 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.85 (s, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.38 (ddd, J = 8.2, 4.0, 1.5 Hz, 1H), 3.73 (t, J = 6.3 Hz, 2H), 2.65 (t, J = 6.8 Hz, 2H), 2.07 (dd, J = 13.1, 6.6 Hz, 2H); ¹³C NMR (125

MHz, CDCl₃) δ 150.6, 147.3, 135.6, 132.3, 130.8, 129.3, 127.9, 121.8, 121.6, 89.5, 81.1, 43.7, 31.3, 16.9; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₄H₁₃ClN, 230.0731, found: 230.0715.

2-(5-Chloropent-1-yn-1-yl)thiophene (1x) ^{[3]:} Yellow liquid (79 mg, 86% yield); $R_f = 0.49$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.19 (dd, J = 5.2, 1.1 Hz, 1H), 7.14 (d, J = 3.6 Hz, 1H), 6.95 (dd, J = 5.2, 3.6 Hz, 1H), 3.70 (t, J = 6.3 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.05 (dd, J = 13.2, 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 131.3, 126.8, 126.28, 123.6, 92.1, 74.6, 43.7, 31.2, 17.1.

5-(5-Chloropent-1-yn-1-yl)-1-methyl-1H-pyrazole (1y): Yellow liquid (76 mg, 84% yield); $R_f = 0.59$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.40 (s, 1H), 6.33 (s, 1H), 3.89 (s, 3H), 3.69 (t, J = 6.3 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 2.06 (dd, J = 13.1, 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 138.2, 125.6, 109.5, 95.9, 70.1, 43.5, 37.1, 31.0, 16.9; ESI-HRMS (m/z): [M+H]⁺ calcd for C₉H₁₂ClN₂, 183.0684, found: 183.0673.

5-(6-Chlorohex-1-yn-1-yl)-1-methyl-1H-pyrazole (1z): Yellow liquid (85 mg, 87% yield); $R_f = 0.64$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 1.9 Hz, 1H), 6.31 (d, J = 1.9 Hz, 1H), 3.88 (s, 3H), 3.59 (t, J = 6.5 Hz, 2H), 2.51 (t, J = 7.0 Hz, 2H), 1.96 – 1.91 (m, 2H), 1.82 – 1.75 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 138.2, 125. 8, 109.4, 97.0, 69.8, 44.3, 37.1, 31.5, 25.5, 18.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₄ClN₂, 197.0840, found: 197.0828.

3-(6-Chlorohex-1-yn-1-yl)pyridine (1aa): Yellow liquid (83 mg, 86% yield); $R_f = 0.62$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, J = 1.3 Hz, 1H), 8.47 (dd, J = 4.9, 1.5 Hz, 1H), 7.65 (dt, J = 7.9, 1.8 Hz, 1H), 7.20 (ddd, J = 7.8, 4.9, 0.6 Hz, 1H), 3.59 (t, J = 6.5 Hz, 2H), 2.46 (t, J = 7.0 Hz, 2H), 1.96 – 1.90 (m, 2H), 1.78 – 1.72 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 152.2, 148.0, 138.4, 122.9, 120.8, 92.9, 77.9, 44.4, 31.5, 25.6, 18.7; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₃ClN, 194.0731, found: 194.0719.

(Z)-2-benzylidenetetrahydrothiophene (3a): yellow liquid (84 mg, 95% yield); $R_f = 0.58$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.25 (d, J = 7.0 Hz, 1H), 6.57 (s, 1H), 3.25 (t, J = 6.2 Hz, 2H), 2.89 (t, J = 6.6 Hz, 2H), 2.14 – 2.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 137.7, 128.1, 127.5, 125.5, 116.9, 40.1, 35.5, 28.2; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₃S, 177.0732, found: 177.0725.

(Z)-2-(2-methylbenzylidene)tetrahydrothiophene (3b): yellow liquid (85 mg, 89% yield); $R_f = 0.53$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 15.8, 8.0 Hz, 2H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.52 (s, 1H), 3.11 (t, *J* = 6.4 Hz, 2H), 2.81 (t, *J* = 6.6 Hz, 2H), 2.28 (s, 3H), 2.04 – 2.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 136.7, 135.4, 129.9, 127.0, 126.0, 125.6, 114.6, 39.6, 34.8, 28.5, 20.0; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₅S, 191.0889, found: 191.0883.

(Z)-2-(3-methylbenzylidene)tetrahydrothiophene (3c)^[6]: yellow liquid (72 mg, 76% yield); $R_f = 0.47$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 6.3 Hz, 3H), 6.96 (d, J = 6.6 Hz, 1H), 6.44 (s, 1H), 3.16 (t, J = 6.4 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.34 (s, 3H), 2.01 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 137.7, 128.3, 128.1, 126.5, 124. 7, 117.0, 40.1, 35.5, 28.3, 21.5.

(Z)-2-(4-methylbenzylidene)tetrahydrothiophene (3d): yellow liquid (65 mg, 68% yield); $R_f = 0.59$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.0 Hz, 2H), 7.15 – 7.10 (m, 2H), 6.44 (s, 1H), 3.16 (t, J = 6.4 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.32 (s, 3H), 2.01 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 135.3, 135.0, 128.9, 127.5, 116.9, 40.0, 35.5, 28.4, 21.1; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₅S, 191.0889, found: 191.0879.

(Z)-2-(3,4-dimethylbenzylidene)tetrahydrothiophene (3e): yellow solid (79 mg, 77% yield); $R_f = 0.41$ (petroleum ether); mp 70.5-71.0°C; ¹H NMR (600 MHz, CDCl₃) δ 7.18 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 7.8 Hz, 1H), 6.41 (s, 1H), 3.14 (t, J = 6.6 Hz, 2H), 2.77 (td, J = 6.8, 1.6 Hz, 2H), 2.24 (s, 3H), 2.22 (s, 3H), 1.98 (p, J = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 141.6, 136.1, 135.3, 133.9, 129.4, 128.8, 124.9, 116.8, 39.9, 35.4, 28.3, 19.8, 19.4; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₃H₁₇S, 205.1045, found: 205.1038.

(Z)-2-(3-(tert-butyl)benzylidene)tetrahydrothiophene (3f): yellow liquid (85 mg, 73% yield); $R_f = 0.55$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 4H), 6.45 (s, 1H), 3.15 (t, J = 6.4 Hz, 2H), 2.79 (t, J = 6.8 Hz, 2H), 2.00 (p, J = 6.6 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 142.0, 134.9, 127.3, 125.1, 116.7, 40.0, 35.4, 34.4, 31.3, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₅H₂₁S, 233.1358, found: 233.1347.

(Z)-2-(4-methoxybenzylidene)tetrahydrothiophene (3g): dark brown liquid (85 mg, 83% yield); $R_f = 0.62$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.42 (s, 1H), 3.78 (s, 3H), 3.16 (t, *J* = 6.4 Hz, 2H), 2.78 (t, *J* = 6.8 Hz, 2H), 2.00 (p, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 140.4, 130.6, 128.7, 116.4, 113.7, 55.2, 39.9, 35.4, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₅OS, 207.0838, found: 207.0830.

(Z)-4-((dihydrothiophen-2(3H)-ylidene)methyl)aniline (3h): dark brown liquid (79 mg, 83% yield); $R_f = 0.42$ (petroleum ether / ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.4 Hz, 2H), 6.63 (t, J = 8.4 Hz, 2H), 6.34 (s, 1H), 3.51 (s, 2H), 3.14 (q, J = 6.4 Hz, 2H), 2.76 (t, J = 6.8 Hz, 2H), 1.98 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 138.7, 128.6, 128.5, 116.8, 114.9, 39.8, 35.3, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₄NS, 192.0841, found: 192.0835.

(Z)-2-(4-fluorobenzylidene)tetrahydrothiophene (3i): yellow liquid (86 mg, 89% yield); $R_f = 0.58$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 8.5, 5.5 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 6.43 (s, 1H), 3.17 (t, J = 6.4 Hz, 2H), 2.79 (t, J = 6.9 Hz, 2H), 2.02 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8 (d, $J_{C-F} = 244$ Hz), 142. 7, 133.9 (d, $J_{C-F} = 3$ Hz), 129.0 (d, $J_{C-F} = 8$ Hz), 115.8, 115.0 (d, $J_{C-F} = 21$ Hz), 40.0, 35.5, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₂FS, 195.0638, found: 195.0632.

(Z)-2-(4-chlorobenzylidene)tetrahydrothiophene (3j): yellow liquid (90 mg, 86% yield); $R_f = 0.44$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 6.40 (s, 1H), 3.16 (t, J = 6.4 Hz, 2H), 2.78 (td, J = 6.9, 1.2 Hz, 2H), 2.00 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 136.2, 130.9, 128.7, 128.3, 115.7, 40.2, 35.6, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₂SCl, 211.0343, found: 211.0333.

(Z)-2-(4-isocyanobenzylidene)tetrahydrothiophene (3k): yellow solid (85 mg, 85% yield); $R_f = 0.49$ (petroleum ether/ethyl acetate = 10:1); mp 103.2-105.7°C; ¹H NMR (600 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.48 (d, J = 7.8 Hz, 2H), 6.47 (d, J = 9.6 Hz, 1H), 3.24 (t, J = 6.4 Hz, 2H), 2.87 (td, J = 7.2, 1.8 Hz, 2H), 2.07 (p, J = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 142.2, 132.1, 127.8, 119.4, 115.6, 108.2, 40.7, 36.1, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₂NS, 202.0685, found:202.0679.

(Z)-2-(4-(trifluoromethyl)benzylidene)tetrahydrothiophene (31): white liquid (106 mg, 87% yield); $R_f = 0.49$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.4Hz, 2H), 6.49 (s, 1H), 3.21 (t, J = 6.4 Hz, 2H), 2.84 (t, J = 6.8 Hz, 2H), 2.04 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 141.3, 127.6 (q, $J_{C-F}=3.2$ Hz, 1C), 127.0, 125.7, 125.1 (q, $J_{C-F}=3.8$ Hz), 115.7, 40.5, 35.8, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₂SF₃, 245.0606, found: 245.0594.

2-([1,1'-biphenyl]-4-ylmethylene)tetrahydrothiophene (3m): yellow liquid (91 mg, 72% yield); $R_f = 0.51$ (petroleum ether / ethyl acetate =20:1); mp 75.1-78.9°C; ¹H NMR (600 MHz, CDCl₃) δ 7.57 – 7.54 (m, 4H), 7.48 (d, J = 8.4 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.26 – 7.23 (m, 1H), 6.44 (s, 1H), 3.07 (t, J = 6.4 Hz, 2H), 2.71 (m, 2H), 1.89 (p, J = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 143.3, 140.6, 137.8, 136.7, 128.5, 127.8, 126.8, 126.6, 126.6, 116.3, 40.1, 35.5, 28.1; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₇H₁₇S, 253.1045, found: 253.1032.

(Z)-tetrahydro-2-((naphthalen-3-yl) methylene) thiophene (3n): yelow liquid (72 mg, 64% yield); $R_f = 0.52$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 8.0 Hz, 2H), 7.48 (t, J = 5.8 Hz, 2H), 7.45 (s, 1H), 7.06 (s, 1H), 3.13 (t, J = 6.4 Hz, 2H), 2.92 (t, J = 6.8 Hz, 2H), 2.09 (dd, J = 13.8, 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 135.0, 133.7, 131.3, 128.5, 126.7, 125.8, 125.6, 125.4, 125.2, 124.0, 113. 5, 39.5, 34.7, 28.7; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₅H₁₅S, 227.0889, found: 227.0880.

(Z)-2-(dihydrothiophen-2(3H)-ylidene)-1-phenylethan-1-one (3o): yelow liquid (95 mg, 93% yield); $R_f = 0.48$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.90 (m, 2H), 7.50 – 7.46 (m, 1H), 7.45 – 7.39 (m, 2H), 7.19 (t, *J* = 1.3 Hz, 1H), 3.08 (t, *J* = 6.5 Hz, 2H), 2.92 (td, *J* = 6.9, 1.3 Hz, 2H), 2.06 (p, *J* = 6.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 187.8, 171.5, 138.3, 131.8, 128.3 (2C), 127.7 (2C), 110.4, 40.0, 35.3, 27.6. ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₃OS, 205.0682, found: 205.0681.

3-(Z)-2-benzylidenetetrahydro-2H-thiopyran (3p) yelow liquid (71 mg, 75% yield); $R_f = 0.58$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.37 (dd, J = 8.3, 7.3 Hz, 2H), 7.27 (d, J = 7.2 Hz, 3H), 6.82 (s, 1H), 2.85 – 2.81 (m, 2H), 2.80 – 2.76 (m, 2H), 2.07 – 1.99 (m, 2H), 1.73 – 1.66 (m, 2H) ;

¹³C NMR (125 MHz, CDCl₃) δ 136.7, 136.2, 128.8 (2C), 128.1 (2C), 126.4, 117.8, 30.6, 29.8, 26.5, 26.3. ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₂H₁₅S, 191.0889, found: 191.0888.

(Z)-2-((dihydrothiophen-2(3H)-ylidene)methyl)pyridine (3r): yellow solid (69 mg, 78% yield); $R_f = 0.57$ (petroleum ether / ethyl acetate = 10:1); mp 57.4-61.4°C; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 4.8 Hz, 1H), 7.63 – 7.52 (m, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.98 (dd, J = 7.2, 6.0 Hz, 1H), 6.57 (s, 1H), 3.09 (t, J = 6.4 Hz, 2H), 2.87 (t, J = 6.8 Hz, 2H), 2.04 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 150.1, 148.4, 135.8, 122.5, 119.4, 115.3, 39.8, 35.2, 28.2; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₂NS, 178.0685, found: 178.0679.

(Z)-3-((dihydrothiophen-2(3H)-ylidene)methyl)pyridine (3s): yellow brown liquid (73 mg, 82% yield); $R_f = 0.42$ (petroleum ether / ethyl acetate =5:1); ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, *J* = 1.8 Hz, 1H), 8.35 (dd, *J* = 4.8, 1.4 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.26 (dd, *J* = 8.4, 4.8 Hz, 1H), 6.42 (s, 1H), 3.21 (t, *J* = 6.4 Hz, 2H), 2.84 (td, *J* = 6.9, 1.5 Hz, 2H), 2.04 (p, *J* = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 149.2, 146.5, 145.9, 133.5, 133.5, 123.0, 112.9, 40.2, 35.8, 28.2; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₂NS, 178.0685, found: 178.0681.

(Z)-4-((dihydrothiophen-2(3H)-ylidene)methyl)pyridine (3t): dark brown liquid (79 mg, 89% yield); $R_f = 0.41$ (petroleum ether / ethyl acetate =5:1); ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 4.4 Hz, 2H), 7.33 – 7.25 (m, 2H), 6.40 (s, 1H), 3.25 (t, *J* = 6.4 Hz, 2H), 2.87 (t, *J* = 6.9 Hz, 2H), 2.07 (p, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 149.5, 144.9, 121.9, 114.6, 40.7, 36.2, 28.2; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₂NS, 178.0685, found: 178.0679.

(Z)-5-((dihydrothiophen-2(3H)-ylidene)methyl)-2-methoxypyridine (3u): yellow liquid (86 mg, 83% yield); $R_f = 0.47$ (petroleum ether / ethyl acetate =5:1); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 1.7 Hz, 1H), 7.73 (dd, J = 8.6, 2.3 Hz, 1H), 6.73 (d, J = 8.6 Hz, 1H), 6.36 (s, 1H), 3.93 (s, 3H), 3.19 (t, J = 6.4 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.07 – 1.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 146.1, 142.7, 137.2, 127.2, 113.0, 110.1, 53.4, 40.0, 35.6, 28.4; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₄NOS, 208.0791, found: 208.0781.

4-((*Z*)-(dihydrothiophen-2(3H)-ylidene)methyl)-2-methoxypyridine (3v): yellow solid (97 mg, 94% yield); $R_f = 0.51$ (petroleum ether / ethyl acetate =5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 4.8 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 6.90 (dd, *J* = 7.2, 5.6 Hz, 1H), 6.66 (s, 1H), 3.95 (s, 3H), 3.17 (t, *J* = 6.4 Hz, 2H), 2.85 (t, *J* = 7.0 Hz, 2H), 2.02 (p, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 145.5, 143.3, 134.9, 121.2, 116.5, 109.6, 53.3, 40.2, 35.4, 28.2; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₄NOS, 208.0791, found: 208.0782.

(Z)-2-bromo-5-((dihydrothiophen-2(3H)-ylidene)methyl)pyridine (3w): yellow solid (107 mg, 84% yield); $R_f = 0.48$ (petroleum ether / ethyl acetate =5:1); mp 58.9-62.0°C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 2.0 Hz, 1H), 7.66 (dd, J = 8.4, 2.4 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 6.35 (s, 1H), 3.23 (t, J = 6.4 Hz, 2H), 2.83 (t, J = 6.8 Hz, 2H), 2.06 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 147.9, 137.8, 136.1, 132.9, 127.3, 111.8, 40.4, 36.0, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₁NSBr, 255.9790, found: 255.9782.

(Z)-3-bromo-5-((dihydrothiophen-2(3H)-ylidene)methyl)pyridine (3x): dark brown liquid (102 mg, 80% yield); $R_f = 0.47$ (petroleum ether / ethyl acetate =5:1); ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.41 (d, J = 1.6 Hz, 1H), 7.94 (s, 1H), 6.35 (s, 1H), 3.24 (t, J = 6.4 Hz, 2H), 2.86 (t, J = 6.8 Hz, 2H), 2.07 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 147.3, 146.8, 135.9, 135.3, 120.5, 111.7, 40.5, 36.0, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₁NSBr, 255.9790, found: 255.9783.

(Z)-2-chloro-5-((dihydrothiophen-2(3H)-ylidene)methyl)pyridine (3y): yellow liquid (98 mg, 93% yield); $R_f = 0.46$ (petroleum ether / ethyl acetate =5:1); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 2.4 Hz, 1H), 7.76 (dd, J = 8.4, 2.4 Hz, 1H), 7.26 (t, J = 8.4 Hz, 1H), 6.37 (s, 1H), 3.22 (t, J = 6.4 Hz, 2H), 2.84 (t, J = 6.8 Hz, 2H), 2.06 (p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 147.6, 147.4, 136.3, 132.6, 123.5, 111.8, 40.3, 35.9, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₁NSCl, 212.0295, found: 212.0289.

7-((*Z*)-(dihydrothiophen-2(3H)-ylidene) methyl) quinoline (3*z*): brown liquid (98 mg, 86% yield); $R_f = 0.58$ (petroleum ether/ ethyl acetate = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 2.0 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.8 Hz, 1H), 7.89 (d, *J* = 1.2 Hz, 1H), 7.77 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.37 (dd, *J* = 8.4, 4.4 Hz, 1H), 6.64 (s, 1H), 3.26 (t, *J* = 6.4 Hz, 2H), 2.91 (t, *J* = 6.8 Hz, 2H), 2.10

(p, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 146.7, 145.5, 136.1, 135.9, 130.5, 129.0, 128.4, 125.1, 121.2, 116.3, 40.4, 35.7, 28.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₄H₁₄NS, 228.0841, found: 228.0828.

2-((Z)-(dihydrothiophen-2(3H)-ylidene) methyl) thiophene (3aa): yellow brown liquid (80 mg, 88% yield); $R_f = 0.45$ (petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.21 (d, *J*=4.8 Hz, 1H), 7.00 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.98 (d, *J* = 3.1 Hz, 1H), 6.69 (s, 1H), 3.22 (t, *J* = 6.4 Hz, 2H), 2.81 – 2.78 (m, 2H), 2.06 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 142.1, 142.1, 127.0, 124.4, 123.4, 110.4, 39.2, 36.1, 29.1; ESI-HRMS (m/z): [M+H]⁺ calcd for C₉H₁₁S₂, 183.0297, found: 183.0289.

4-((*Z*)-(dihydrothiophen-2(3H)-ylidene) methyl)-1-methyl-1H-pyrazole (3ab): yelow liquid (81 mg, 90% yield); $R_f = 0.62$ (petroleum ether/ ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 6.48 (s, 1H), 6.33 (s, 1H), 3.81 (s, 3H), 3.18 (t, *J* = 6.4 Hz, 2H), 2.83 (t, *J* = 6.8 Hz, 2H), 2.09 (p, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 139.7, 138.0, 104.3, 103.1, 39.3, 36.2, 35.3, 28.9; ESI-HRMS (m/z): [M+H]⁺ calcd for C₉H₁₃N₂S, 181.0794, found: 181.0787.

5-((Z)-(tetrahydrothiopyran-2-ylidene) methyl)-1-methyl-1H-pyrazole (33ac): yelow liquid (85 mg, 88% yield); $R_f = 0.47$ (petroleum ether/ ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 6.62 (s, 1H), 6.23 (s, 1H), 3.82 (s, 3H), 2.80 – 2.73 (m, 2H), 2.65 – 2.58 (m, 2H), 1.97 (dt, J = 11.9, 6.1 Hz, 2H), 1.83 – 1.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 138.0, 137.7, 111.7, 106.7, 36.4, 36.1, 28.8, 25.4, 25.3; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₅N₂S, 195.0950, found: 195.0944.

3-((*Z*)-(tetrahydrothiopyran-2-ylidene) methyl) pyridine (3ad): yelow liquid (83 mg, 87% yield); $R_f = 0.55$ (petroleum ether/ ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.40 (d, *J* = 3.6 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.23 (dd, *J* = 7.7, 4.9 Hz, 1H), 6.39 (s, 1H), 2.75 – 2.70 (m, 2H), 2.65 – 2.58 (m, 2H), 2.01 – 1.94 (m, 2H), 1.77 (dt, *J* = 12.0, 6.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 147.0, 138.3, 135.7, 132.6, 122.6, 122.5, 36.9, 29.4, 25.9, 25.9; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₄NS, 192.0841, found: 192.0835.

O-ethyl S-(5-phenylpent-4-yn-1-yl) carbonodithioate (5): yellow liquid (57 mg, 64% yield); $R_f = 0.41$ (petroleum ethe); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 6.5, 2.8 Hz, 2H), 7.34 – 7.27 (m, 3H), 4.69 (q, J = 7.1 Hz, 2H), 3.33 (t, J = 7.3 Hz, 2H), 2.58 (t, J = 6.9 Hz, 2H), 2.04 (p, J = 7.0 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 214.6, 131.5, 128.2, 127.7, 123.6, 88.5, 81.6, 69.9, 34.7, 27.5, 18.6, 13.8; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₄H₁₇S₂O, 265.0715, found: 265.0701.

(Z)-2-benzylidenetetrahydrothiophene (3a-d): white liquid (81 mg, 92% yield); $R_f = 0.62$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 6.49 (s, 0.1H), 3.20 (t, J = 6.4 Hz, 2H), 2.83 (t, J = 6.8 Hz, 2H), 2.06 – 2.02 (m, 2H). GC-MS (EI, 70 eV) m/z: 191, 162, 147, 115.

(Z)-2-benzylidenetetrahydrothiophene 2-oxide (4a): white solid (85 mg, 82% yield); $R_f = 0.41$ (petroleum ether/ ethyl acetate = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 8.4 Hz, 3H), 6.83 (s, 1H), 3.13 (t, *J* = 7.1 Hz, 2H), 2.90 (t, *J* = 6.8 Hz, 2H), 2.23 – 2.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 132.8, 132.5, 129.6, 129.3, 128.3, 53.0, 31.4, 19.6; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₁H₁₃SO₂, 209.0631, found: 209.0620.

(Z)-2-([1,1'-biphenyl]-4-ylmethylene)tetrahydrothiophene 1,1-dioxide (4b): white solid (125 mg, 88% yield); $R_f = 0.48$ (petroleum ether/ ethyl acetate = 2:1); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.63 – 7.58 (m, 4H), 7.43 (dd, *J* = 10.4, 4.8 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 6.85 (s, 1H), 3.17 (t, *J* = 7.1 Hz, 2H), 2.92 (td, *J* = 6.9, 2.0 Hz, 2H), 2.23 (dd, *J* = 14.0, 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 141.9, 140.1, 137.5, 132.4, 131.4, 130.3, 128.7, 127.6, 127.0, 126.9, 53.0, 31.5, 19.7; ESI-HRMS (m/z): [M+H]⁺ calcd for C₁₇H₁₇S₂O₂, 285.0944, found: 285.0938.

(Z)-2-(thiophen-2-ylmethylene)tetrahydrothiophene 1,1-dioxide (4c): white solid (92 mg, 86% yield); $R_f = 0.58$ (petroleum ether/ ethyl acetate = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 3.6 Hz, 1H), 7.43 (d, J = 5.0 Hz, 1H), 7.07 (dd, J = 5.0, 3.8 Hz, 1H), 6.87 (s, 1H), 3.21 (t, J = 7.2 Hz, 2H), 2.92 (td, J = 6.8, 2.0 Hz, 2H), 2.26 (dd, J = 14.0, 6.8 Hz, 2H) ; ¹³C NMR (125 MHz, CDCl₃) δ 134.8, 134.6, 131.8, 129.4, 128.2, 123.8, 53.1, 31.4, 19.9; ESI-HRMS (m/z): [M+H]⁺ calcd for C₉H₁₁S₂O₂, 215.0195, found: 215.0190. References:

- 1. A. Elhage, A. E. Lanterna, J. C. Scaiano, ACS Sustainable Chem. Eng., 2018, 6, 1717-1722.
- 2. W. Liu, L. Li, C.-J. Li, Nat. Commun., 2015, 6, 6526-6531.
- 3. A. Fuerstner, C. Mathes, C. W. Lehmann, Chem. Eur. J., 2001, 7, 5299-5317.
- 4. M. Corpet, C. Gosmini, Chem. Commun., 2012, 48, 11561-11563.
- 5. D. Gelman, S. L. Buchwald, Angew. Chem. Int. Ed., 2003, 42, 5993-5996.
- 6. J.-H. Li, Q. Huang, S.-Y. Wang and S.-J. Ji, Org. Lett., 2018, 20, 4704-4708.

G: Crystal Structure of 3e

The solid states structure of **3e** was confirmed by single crystal X-ray diffraction as shown in Figure 1. Suitable colorless plate crystals were obtained by slow concentration of a DCM/Petroleum ether solution of **3e**.

Figure 1. ORTEP Structure of 3e (CCDC 1881760)

Crystal Data for C₁₃H₁₆S (M=204.32 g/mol): monoclinic, space group P2₁/c (no. 14), a = 12.8311(9) Å, b = 7.0802(5) Å, c = 12.0660(8) Å, $\beta = 90.396(7)^\circ$, V = 1096.13(13) Å³, Z = 4, T = 100.00(10) K, $\mu(MoK\alpha) = 0.252$ mm⁻¹, Dcalc = 1.238 g/cm³, 7903 reflections measured ($6.35^\circ \le 2\Theta \le 59.262^\circ$), 2619 unique ($R_{int} = 0.0362$, $R_{sigma} = 0.0452$) which were used in all calculations. The final R_1 was 0.0432 (I > 2 σ (I)) and wR_2 was 0.1086 (all data).

Table 1 Crystal data and structure refinement for HLJ1027.

Identification code	HLJ1027
Empirical formula	$C_{13}H_{16}S$
Formula weight	204.32
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	12.8311(9)
b/Å	7.0802(5)
c/Å	12.0660(8)

$\alpha/^{\circ}$	90	
β/°	90.396(7)	
γ/°	90	
Volume/Å ³	1096.13(13)	
Z	4	
$\rho_{calc}g/cm^3$	1.238	
µ/mm ⁻¹	0.252	
F(000)	440.0	
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/° 6.35 to 59.262		
Index ranges	$-17 \le h \le 17, -8 \le k \le 8, -15 \le l \le 16$	
Reflections collected	7903	
Independent reflections	2619 [$R_{int} = 0.0362, R_{sigma} = 0.0452$]	
Data/restraints/parameters	2619/0/129	
Goodness-of-fit on F ²	1.051	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0432, wR_2 = 0.1006$	
Final R indexes [all data]	$R_1 = 0.0528$, $wR_2 = 0.1086$	
Largest diff. peak/hole / e Å ⁻³ 0.30/-0.37		

Crystallographic data for 3e (*CCDC* 1881760) are available as CIF files free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

H: ¹H NMR and ¹³C NMR spectra for products

3.706 3.681 3.681 2.646 2.646 2.085 2.019 7.2.085 7.2.095 2.032

< 8.392
< 8.387
< 8.387
< 7.634
< 7.612
< 7.266
< 7.266
< 7.266</pre>

-10 90 80 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

$\begin{array}{c} 3.19\\ 3.17\\ 3.17\\ 2.29\\ 2.29\\ 2.22\\$

