Supporting information

Proton-induced fluorescence in modified quino[7,8-*h*]quinolines: dual sensing for protons and π -donors

Alexander F. Pozharskii,^a Valery A. Ozeryanskii,^{*a} Vladimir Y. Mikshiev,^{a§} Anatoly V. Chernyshev,^b Anatoly V. Metelitsa,^b and Alexander S. Antonov ^{a§}

 ^a Department of Organic Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation. E-mail: vv_ozer2@sfedu.ru
 ^b Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave. 194/2, 344090 Rostov-on-Don, Russian Federation
 [§] Current address: Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russian Federation

Table of contents

¹ H and ¹³ C NMR spectra of new compounds (Figures S1–S28)	S2
Gas-phase proton affinities	S16
Selected absorption and emission parameters of the studied compounds (Table S1)	.S17
Absorption and fluorescence spectra with selected additives (Figures S29–S45)	.S18
Crystal data and structure refinement for the studied compounds (Table S2)	.S28

¹H and ¹³C NMR spectra of new compounds

Figure S2. ¹³C NMR spectrum of 5 (CDCl₃, 63 MHz).

Figure S3. ¹H NMR spectrum of 5 (CD₃CN, 250 MHz).

Figure S4. ¹H NMR spectrum of $5 \cdot \text{HClO}_4$ (CD₃CN, 250 MHz).

S3

Figure S5. ¹³C NMR spectrum of 5·HClO₄ (CD₃CN, 63 MHz).

Figure S6. ¹H NMR spectrum of 5·HClO₄ (DMSO-d₆, 250 MHz).

Figure S7. ¹H NMR spectrum of 5·CF₃CO₂H (DMSO-d₆, 250 MHz).

Figure S8. ¹H NMR spectrum of **5**•PhOH (DMSO-d₆, 250 MHz).

Figure S9. ¹H NMR spectrum of salt $5H^+BF4^-$ (CD₃CN, 250 MHz).

Figure S10. ¹H NMR spectrum of equimolar mixture of base 5 and its tetrafuoroborate 5H⁺BF4⁻ (CD₃CN, 250 MHz).

Figure S11. ¹H NMR spectrum of equimolar mixture of tetrafuoroborate $5H^+BF_4^-$ and proton sponge 1 with indication of key components (DMSO-d₆, 250 MHz).

Figure S12. ¹H NMR spectrum of 6a·HBF₄ (CD₃CN, 250 MHz).

Figure S13. 13 C NMR spectrum of **6a**·HBF₄ (CD₃CN, 63 MHz).

Figure S14. ¹H NMR spectrum of **6b** (CDCl₃, 250 MHz).

Figure S16. ¹H NMR spectrum of **6b**·HBF₄ (CD₃CN, 250 MHz).

S9

Figure S17. ¹³C NMR spectrum of **6b·HBF**₄ (CD₃CN, 63 MHz).

Figure S18. ¹H NMR spectrum of 6c (CDCl₃, 250 MHz).

Figure S19. ¹³C NMR spectrum of **6c** (CDCl₃, 63 MHz).

Figure S20. ¹H NMR spectrum of $6c \cdot HBF_4$ (CD₃CN, 250 MHz).

Figure S21. ¹H NMR spectrum of 6d (CDCl₃, 250 MHz).

Figure S22. ¹³C NMR spectrum of 6d (CDCl₃, 63 MHz).

Figure S23. ¹H NMR spectrum of 6d·HBF₄ (CD₃CN, 250 MHz).

Figure S24. ¹³C NMR spectrum of $6d \cdot HBF_4$ (CD₃CN, 63 MHz).

Figure S25. ¹H NMR spectrum of **12** (CDCl₃, 250 MHz).

Figure S26. ¹³C NMR spectrum of **12** (CDCl₃, 63 MHz).

Figure S27. ¹H NMR spectrum of **13** (CDCl₃, 250 MHz).

Figure S28. ¹³C NMR spectrum of 13 (CDCl₃, 63 MHz).

They are equal to 261.65 and 256.62 kcal/mol, respectively (252.93 and 248.16 kcal/mol with ZPE correction). At first glance, these values may seem improbable, since they mean a greater basicity of **6** than the proton sponge **1** (253.40 and 244.79 kcal/mol with ZPE correction). However, one should not forget that in vacuum, i.e. in the absence of solvation, the acid-base properties are strongly influenced by the size of the cation or anion: larger ions, such as **6H**⁺ in comparison with **1H**⁺, are better stabilized due to more efficient charge dispersion.

Compd.	Absorption	Emission. λ_{max}	Stokes shift.	Quantum vield
·	λ_{max} , nm	nm	nm (cm ⁻¹)	
	$(\epsilon \cdot 10^{-3} \mathrm{M}^{-1} \mathrm{cm}^{-1})^*$			
5	378 (14.96)	-	-	-
5	350 (0.68)			
	341 (4.15)			
	218 (4 50)			
	306 (8 42)			
	272(4620)			
	245 (25.08)			
	243(23.00)			
5.HClO4	205 (12 05)	426 (427)**	21 (1840)	0.711 (0.200)**
5110104	274 (0.28)	420 (42/)	31 (1040)	0./11(0.299)
	3/4 (9.30)			
	351(0.22)			
	209 (35.40)			
	243(20.13)			
	231(20.58)			
60	218 (26.71)			
oa	400, 380, 329,	-	-	-
	292, 258		-	
6D	415 (15.36)	-	-	-
	394 (12.32)			
	309 (38.80)			
	271 (32.43)			
	258 (36.32)			
6c	433, 409, 320	-	-	-
< 1	274,226			
6d	409, 389, 307	-	-	-
	291, 268, 253			
6a∙HBF4	430 (22.89)	486	56 (1744)	0.773
	407 (17.54)			
	304 (44.76)			
	255 (44.35)			
6b·HBF4	456 (21.40)	558	102 (2167)	0.018
	432 (15.86)			
	383 (19.99)			
	320 (24.40)			
	289 (22.70)			
	265 (29.39)			
	220 (28.30)			
6c·HBF4	475 (35.12)	555	80 (2042)	0.185
	448 (25.25)			
	382 (24.30)			
	351 (34.70)			
	326 (36.56)			
	273 (34.00)			
	222 (28.65)			
6d·HBF ₄	446 (33.37)	593	147 (2028)	0.007
~~	421 (25.80)			
	301 (24 62)			
	371(24.02) 302(24.74)			
	070 (04+/4/			1

Table S1. Selected Absorption and Emission Parameters of the Studied Compounds (in MeCN)

*Due to low solubility exact values of extinction for bases **6a**, **6c** and **6d** could not be measured.

** The values found in water are given in parentheses.

Figure S29. Absorption spectra of compounds 5 and 6a–c (blue) and their salts $5H^+ClO_4^-$ and $6H^+BF_4^-$ (red) in MeCN.

Figure S30. Absorption (blue), excitation (green) and emission (red) spectra for salts 6a–c·HBF₄ and 5·HClO₄ in MeCN.

Figure S31. Absorption spectrum of base **5** in acetonitrile in the absence and in the presence of phenol, $c(5) = 3.47 \cdot 10^{-5} \text{ M}, c(\text{PhOH}) = 2.4 \cdot 10^{-4} \text{ M}.$

Figure S32. Absorption spectrum of base **5** in acetonitrile in the absence and in the presence of 4-chlorophenol, $c(\mathbf{5}) = 3.47 \cdot 10^{-5} \text{ M}, c(4-\text{Cl-C}_6\text{H}_4\text{OH}) = 2.9 \cdot 10^{-4} \text{ M}.$

Figure S33. Absorption spectra of salt $6aH^+ClO_4^-$ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of naphthalene. The concentrations of naphthalene are presented on the panel.

Figure S34. Fluorescence emission spectra of salt **6a**H⁺ClO₄⁻ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of naphthalene. The concentrations of naphthalene: 1 - 0, $2 - 9.29 \cdot 10^{-4}$ M, $3 - 3.09 \cdot 10^{-3}$ M, $4 - 9.29 \cdot 10^{-3}$ M, $5 - 2.79 \cdot 10^{-2}$ M.

Figure S35. Fluorescence decay of salt $6aH^+ClO_4^-$ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of naphthalene. The concentrations of naphthalene are presented on the panel.

Figure S36. Fluorescence intensity (black squares) and lifetime (red circles) Stern-Volmer plots of **6aH**⁺**ClO**₄⁻ quenching by naphthalene in MeCN. All lifetime values were measured at 480 nm. Symbols correspond to experimental data, lines are fittings according eq. 1 (τ_0/τ) and eq. 2 (F_0/F).

Figure S37. Fluorescence emission spectra of salt **6a**H⁺ClO₄⁻ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of indole. The concentrations of indole: 1 - 0, $2 - 5.32 \cdot 10^{-4}$ M, $3 - 1.77 \cdot 10^{-3}$ M, $4 - 3.55 \cdot 10^{-3}$ M, $5 - 7.09 \cdot 10^{-3}$ M, $6 - 1.42 \cdot 10^{-2}$ M.

Figure S38. Fluorescence decay of salt $6aH^+ClO_4^-$ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of indole. The concentrations of indole are presented on the panel.

Figure S39. Fluorescence intensity (black squares) and lifetime (red circles) Stern-Volmer plots of $6aH^+ClO_4^-$ quenching by indole in MeCN. All lifetime values were measured at 480 nm. Symbols correspond to experimental data, lines are fittings according eq. 1 (τ_0/τ) and eq. 2 (I_0/I).

Figure S40. Absorption spectra of salt **6a**H⁺ClO₄⁻ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of PhOH. The concentrations of PhOH are presented on the panel.

Figure S41. Fluorescence emission spectra of salt **6a**H⁺ClO₄⁻ in acetonitrile in the presence of PhOH. The concentrations of PhOH: 1 - 0, $2 - 2.74 \cdot 10^{-4}$ M, $3 - 1.64 \cdot 10^{-3}$ M, $4 - 1.10 \cdot 10^{-2}$ M, $5 - 4.93 \cdot 10^{-2}$ M.

Figure S42. Fluorescence decay of salt $6aH^+ClO_4^-$ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of PhOH. The concentrations of PhOH are presented on the panel.

Figure S43. Fluorescence intensity (black squares) and lifetime (red circles) Stern-Volmer plots of **6aH**⁺**ClO**₄⁻ quenching by PhOH in MeCN. All lifetime values were measured at 480 nm. Symbols correspond to experimental data, lines are fittings according eq. 1 (τ_0/τ) and eq. 2 (F_0/F).

Figure S44. Absorption spectra of salt **6aH**⁺**ClO**₄⁻ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) in the presence of 100 eq. PhCF₃.

Figure S45. Fluorescence emission spectra of salt **6aH**⁺**ClO**₄⁻ in acetonitrile ($c = 2 \cdot 10^{-5}$ M) before and after addition of 100 eq. PhCF₃.

Compound	5 ∙HBr	5·PicOH	5·4/3 H ₂ O	13	6a·HClO₄	5·PhOH
Empirical formula	$C_{18}H_{13}BrN_2$	$C_{24}H_{15}N_5O_7$	$C_{54}H_{44}N_6O_4$	$C_{18}H_{16}N_2O_2$	C ₃₈ H ₂₅ CIN ₄ O ₄	C ₂₄ H ₁₈ N ₂ O
Formula weight	337.21	485.41	840.95	292.33	637.07	350.40
<i>T</i> [K]	120(2)	120(2)	100(2)	120(2)	100(1)	100(2)
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	P2 ₁ /n	C2/c	P 1	P2 ₁ /n	P2 ₁ 2 ₁ 2 ₁	P2 ₁ /n
a [Å]	7.0000(3)	20.993(7)	10.755(3)	4.6952(10)	7.50014(11)	21.179(4)
b [Å]	10.6452(5)	16.920(6)	14.1162(14)	20.135(4)	16.7058(2)	7.3790(15)
c [Å]	18.2521(8)	13.496(5)	15.1222(15)	14.864(3)	22.9329(3)	22.305(4)
α [°]	90	90	117.094(2)	90	90	90
β[°]	98.6140(10)	119.796(6)	99.240(2)	93.406(4)	90	96.923(4)
γ [°]	90	90	90.860(2)	90	90	90
V [Å ³]	1344.74(10)	4160(2)	2007.2(6)	1402.7(5)	2873.40(7)	3460.5(12)
Z	4	8	6	4	4	8
<i>D_c</i> [g cm ⁻³]	1.666	1.550	1.391	1.384	1.473	1.345
μ [mm ⁻¹]	3.050	0.117	0.089	0.092	1.612	0.083
Radiation	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	CuKα	ΜοΚα
	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)	(λ = 1.54184)	(λ = 0.71073)
No. of reflections						
collected/	16335/3581	34687/4071	19788/8644	2707/2707	39372/5985	30401/6683
unique						
No. of parameters	190	348	577	204	462	495
R indices (all data)	$R_1 = 0.0367$ $wR_2 = 0.0684$	$R_1 = 0.1716$ $wR_2 = 0.1758$	$R_1 = 0.1275$ $wR_2 = 0.0998$	$R_1 = 0.0991$ $wR_2 = 0.1877$	$R_1 = 0.0423$ $wR_2 = 0.1055$	$R_1 = 0.1047$ $wR_2 = 0.1296$
R-factor [%]	2.71	9.36	5.23	8.50	3.93	6.63
CCDC Dep. Nos.	1920000	1920001	1920002	1920003	1920004	1920005

 Table S2. Crystal data and structure refinement for the studied compounds.