Supporting Information

Phosphine-Catalyzed Michael Additions to α-Methylene-γ-Butyrolactones

Alexey V. Salin,^{a,*} and Daut R. Islamov^b

 ^aA.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street 18, Kazan, 420008, Russian Federation
^bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences Arbuzov Street 8, Kazan, 420088, Russian Federation

Table of Contents

1. Materials	S2
2. Kinetic Experiments	S2
2.1. Reaction of PPh ₃ with tulipalin A 1 in AcOH	S3
2.2. Reaction of PPh ₃ with itaconic anhydride (IA) 5 in AcOH	S9
3. Synthetic Experiments	S15
3.1. General procedure for the reaction of Ph_3P with tulipalin A 1 and	016
itaconic annyaride 5 in acetic acid.	516
3.2. General procedure for the reaction of tulipalin A I with P(O)–H compounds	S18
3.3. General procedure for the reaction of arglabin 2 with P(O)–H compounds	S22
3.4. General procedure for the reactions of tulipalin A 1 and arglabin 2 with	
diethyl malonate	S27
4. Crystallographic Data	S30
5. Copies of ${}^{31}P{}^{1}H$, ${}^{1}H$, ${}^{13}C{}^{1}H$ NMR spectra	S32

1. Materials

Tulipalin A (TCI) used for the kinetic experiments was redistilled under reduced pressure immediately before use; for the synthetic experiments, it was used without additional purification. Itaconic anhydride (Alfa Aesar) was sublimated at 1 mmHg immediately before use. Ph₃P (Acros Organics), *n*-Bu₃P (Acros Organics), (Me₂N)₃P (Acros Organics), Et₃N (Acros Organics), DABCO (Alfa Aesar), DBU (Alfa Aesar), dimethyl phosphite (Sigma Aldrich), diethyl phosphite (Acros Organics), dibenzyl phosphite (Acros Organics), bis(2-ethylhexyl) phosphite (Sigma Aldrich), diphenylphosphine oxide (TCI), diethyl malonate (Acros Organics) were used without additional purification. Arglabin isolated from *Artemisia glabella* was purchased from Phytochemistry International Research and Production Holding (Karaganda, Kazakhstan) and was used as received. MeCN (UV/HLPC grade) was purchased from Labscan, the other solvents were purchased from local suppliers and were of the highest quality available. THF was redistilled over benzophenone ketyl under argon prior to use, the other solvents were used as received.

2. Kinetic Experiments

The kinetic data were obtained spectrophotometrically at 20.0–50.0 °C with 10 mm quartz cells using a Perkin Elmer Lambda 35 instrument for the reaction of Ph₃P with tulipalin A or a Varian Cary 50 Bio instrument matched with Applied Photophysics RX2000 rapid kinetics spectrometer accessory for the reaction of Ph₃P with itaconic anhydride; both instruments were equipped with a constant temperature circulating bath (±0.1 °C). The reactions were followed by monitoring the disappearance of Ph₃P at λ =290 nm corresponding to the maximum of absorption decay under pseudo-first-order conditions, in which concentrations of the alkenes were at least 20 times greater than Ph_3P concentration; $[Ph_3P] = ca$. 6×10^{-5} M. Pseudo-first-order rate constants k' were calculated using least squares on the slope of the $\ln(A_x - A_\infty)$ versus time t plots, where A_x and A_∞ are the measured absorbances at time t, and completion of the reaction, respectively. The plots of $\ln(A_x - A_\infty)$ versus t were linear over 90% of the reaction completion. Second-order rate constants k_{II} for the reactions in AcOH were determined from the slope of a plot k' versus [alkene], and third-order rate constants k estimated by dividing k_{II} by the [AcOH]. The concentration of acetic acid in its solution was accepted constant, with [AcOH] of 17.3 M. Activation parameters were calculated from standard Evring plots; values of $\Delta^{\ddagger}H$ and $\Delta^{\ddagger}S$ are within $\pm 2 \text{ kJ mol}^{-1}$, and $\pm 7 \text{ J mol}^{-1} \text{ K}^{-1}$, respectively. Examples of the kinetic methodology are given below.

2.1. Reaction of PPh₃ with tulipalin A 1 in AcOH

Figure S1. Absorbance at 290 nm *vs*. time plots for the PPh₃/tulipalin A reaction in AcOH at 30.0±0.1°C.

Figure S2. $\ln(A_x - A_\infty)$ *vs*. time plots for data from Fig. S1.

					number of
entry	[Tulipalin A], M	A_{∞}	$k' \times 10^3$, s ⁻¹	R^2	points
					collected
1	0.009633	0.0370	0.505	0.999994	166
2	0.02408	0.0390	1.190	0.999998	165
3	0.04817	0.0891	2.324	0.999992	106
4	0.07225	0.1309	3.482	0.999989	105
5	0.09633	0.1739	4.601	0.999981	74
6	0.1204	0.2026	5.746	0.999967	73
7	0.1445	0.2554	6.876	0.999935	168

Table S1. Analysis of 30.0±0.1°C data of Fig. S2.

entry	[Tulipalin A], M	$k' \times 10^3$, s ⁻¹
1	0.009633	0.482
2	0.02408	1.121
3	0.04817	2.327
4	0.07225	3.457
5	0.09633	4.621
6	0.1204	5.742
7	0.1445	6.898

Table S2. Pseudo-first order rate constants k' for the PPh₃/tulipalin A reaction inAcOH at 30.0±0.1°C from the duplicate run

Figure S3. Plot of k' vs. [Tulipalin A] (R^2 =0.99993) to give $k_{II} = 0.0475 \pm 0.0003 \text{ M}^{-1} \text{ s}^{-1}$ (AcOH, 30.0±0.1°C) $k = k_{II}/[\text{AcOH}] = (0.0475 \pm 0.0003)/17.3 = (2.74 \pm 0.02) \times 10^{-3} \text{ M}^{-2} \text{ s}^{-1}$

Figure S4. Absorbance at 290 nm *vs*. time for the tulipalin A/PPh₃ system in AcOH at several temperatures; [Tulipalin A]=0.09775 M

						number of
entry	<i>T</i> , K	A_{∞}	$k' \times 10^3$, s ⁻¹	$k \times 10^3$, M ⁻² s ⁻¹	R^2	points
						collected
1	293.1	0.1690	2.579	1.525	0.999992	397
2	298.1	0.1637	3.458	2.045	0.999985	289
3	303.1	0.1640	4.640	2.744	0.999984	193
4	308.1	0.1642	6.043	3.573	0.999979	168
5	313.1	0.1700	7.936	4.693	0.999988	102
6	318.1	0.1657	10.23	6.048	0.999976	99
7	323.1	0.1755	13.01	7.693	0.999980	66

Table S3. Analysis of data from Fig. S5

Table S4. Third order rate constants *k* for the PPh₃/tulipalin A reaction in AcOH at several temperatures from the duplicate run; [Tulipalin A]=0.09775 M

entry	Т, К	$k \times 10^3$, M ⁻² s ⁻¹
1	293.1	1.522
2	298.1	2.039
3	303.1	2.747
4	308.1	3.560
5	313.1	4.682
6	318.1	5.951
7	323.1	7.661

Figure S6. Eyring plot for the PPh₃/tulipalin A reaction in AcOH

 $\Delta^{\ddagger}H = -\text{Slope} \times R = 4798.1 \times 8.31451 = 398934 \text{ J mol}^{-1} \approx 39.9 \text{ kJ mol}^{-1}$ $\Delta^{\ddagger}S = R[\text{Intercept} - \ln(k_{\text{B}}/h)] = R[\text{Intercept} - 23.759] = 8.31451[4.2078 - 23.759] = -163 \text{ J mol}^{-1} \text{ K}^{-1}$

 $R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1} \text{ (gas constant)}$ $k_{\text{B}} = 1.38 \times 10^{-23} \text{ J K}^{-1} \text{ (Boltzmann constant)}$ $h = 6.63 \times 10^{-34} \text{ J s (Planck constant)}$

2.2. Reaction of PPh₃ with itaconic anhydride (IA) 5 in AcOH

Figure S7. Absorbance at 290 nm *vs*. time plots for the PPh₃/itaconic anhydride reaction in AcOH at 30.0±0.1°C.

Figure S8. $\ln(A_x - A_{\infty})$ *vs.* time plots for the data of Fig. S7.

					number of
entry	[IA], M	A_{∞}	<i>k</i> ′, s ⁻¹	R^2	points
					collected
1	0.01671	0.2280	0.209	0.99948	771
2	0.03342	0.2380	0.444	0.99969	450
3	0.05013	0.2520	0.664	0.99951	429
4	0.06683	0.2809	0.912	0.99954	276
5	0.08354	0.3100	1.153	0.99954	211
6	0.1003	0.3400	1.423	0.99946	166

Table S5. Analysis of 30.0±0.1°C data of Fig. S8.

Table S6. Pseudo-first order rate constants k' for the PPh₃/itaconic anhydridereaction in AcOH at 30.0±0.1°C from the duplicate runs.

ent-						<i>k</i> ′, s ⁻¹				
ry	[IA], WI	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10
1	0.01671	0.205	0.205	0.208	0.212	0.207	0.209	0.213	0.214	0.211
2	0.03342	0.440	0.442	0.451	0.445	0.451	0.451	0.444	0.456	0.445
3	0.05013	0.653	0.652	0.659	0.670	0.679	0.676	0.660	0.659	0.658
4	0.06683	0.913	0.931	0.918	0.926	0.895	0.919	0.921	0.917	0.918
5	0.08354	1.163	1.141	1.165	1.150	1.162	1.156	1.148	1.153	1.155
6	0.1003	1.417	1.413	1.399	1.427	1.413	1.442	1.412	1.417	1.409

Figure S9. Plot of k' vs. [IA] ($R^2=0.9989$) to give $k_{II} = 14.4\pm0.2 \text{ M}^{-1} \text{ s}^{-1}$ (AcOH, 30.0±0.1°C) $k = k_{II}/[\text{AcOH}] = (14.4\pm0.2)/17.3 = (830\pm12)\times10^{-3} \text{ M}^{-2} \text{ s}^{-1}$

Figure S10. Absorbance at 290 nm *vs*. time for the itaconic anhydride/PPh₃ system in AcOH at several temperatures; [IA]=0.0533 M

Figure S11. $\ln(A_x - A_\infty)$ *vs.* time plots for the data of Fig. S10.

						number of
entry	<i>T</i> , K	A_{∞}	<i>k</i> ′, s ⁻¹	$k \times 10^3$, M ⁻² s ⁻¹	R^2	points
						collected
1	293.1	0.2450	0.4491	487	0.99974	499
2	298.1	0.2550	0.5631	611	0.99972	408
3	303.1	0.2580	0.7087	769	0.99938	421
4	308.1	0.2640	0.8752	949	0.99945	289
5	313.1	0.2680	1.137	1233	0.99947	224
6	318.1	0.2650	1.387	1504	0.99956	196
7	323.1	0.2692	1.580	1713	0.99948	137

|--|

Table S8. Third order rate constants *k* for the PPh₃/itaconic anhydride reaction in AcOH at several temperatures from the duplicate runs; [IA]=0.0533 M

ent-			$k \times 10^3$, M ⁻² s ⁻¹								
ry	<i>1</i> , K	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	
1	293.1	482	483	486	484	493	489	497	491	487	
2	298.1	598	597	614	619	628	628	612	615	612	
3	303.1	745	764	758	764	755	770	762	781	781	
4	308.1	917	947	916	936	940	964	956	953	967	
5	313.1	1167	1180	1235	1259	1196	1224	1248	1256	1258	
6	318.1	1425	1463	1468	1526	1428	1496	1507	1526	1522	
7	323.1	1634	1619	1669	1702	1539	1621	1595	1683	1706	

Figure S12. Eyring plot for the PPh₃/itaconic anhydride reaction in AcOH.

 $\Delta^{\ddagger}H = -\text{Slope} \times R = 3683.8 \times 8.31451 = 30629 \text{ J mol}^{-1} \approx 30.6 \text{ kJ mol}^{-1}$ $\Delta^{\ddagger}S = R[\text{Intercept} - \ln(k_{\text{B}}/h)] = R[\text{Intercept} - 23.759] = 8.31451[6.1771 - 23.759] = -146 \text{ J mol}^{-1} \text{ K}^{-1}$

3. Synthetic Experiments

Thin-layer chromatography (TLC) was carried out on commercial silica gel plates (Sorbfil, F254) and visualized using UV light (254 nm) and/or iodine. Column chromatography was performed on silica gel (Acros Organics, 0.060-0.200 mm, 60 Å).

NMR spectra were recorded at room temperature in CDCl₃ solution containing tetramethylsilane as internal standard (0.00 ppm) or CD₃CN solution using solvent signals as references ($\delta_{\rm H}$ 1.96; $\delta_{\rm C}$ 1.8, 118.3) on a Brucker Avance III 400 spectrometer (400 MHz for ¹H, 100.6 MHz for ¹³C{¹H}, 161.9 MHz for ³¹P{¹H}). 85% H₃PO₄ was used as external reference (0.0 ppm) for ³¹P{¹H} NMR spectra. IR spectra were recorded on a Perkin Elmer Spectrum 400 spectrometer using an ATR sampling surface. Mass spectrometry was performed on an AB Sciex Triple TOF 5600 spectrometer with samples dissolved in MeCN, with positive ion polarity.

Specific rotations were measured with an ADP440+ digital polarimeter.

Melting points were determined with an IA 9000 digital melting point apparatus and are uncorrected.

Data sets for single crystals 8e and 9e were collected on a Rigaku XtaLab Synergy S instrument with a HyPix detector and a PhotonJet microfocus X-ray tube using Cu Kα (1.54184 Å) radiation at low temperature. Images were indexed and integrated using the CrysAlisPro data reduction package. Data were corrected for systematic errors and absorption using the ABSPACK module: numerical absorption correction based on Gaussian integration over a multifaceted crystal model and empirical absorption correction based on spherical harmonics according to the point group symmetry using equivalent reflections. The GRAL module was used for analysis of systematic absences and space group determination. The structures were solved by direct methods using SHELXT [1] and refined by the full-matrix least-squares on F² using SHELXL [2]. Non-hydrogen atoms were refined anisotropically. The hydrogen atoms were inserted at the calculated positions and refined as riding atoms. The positions of the hydrogen atoms of methyl groups were found using rotating group refinement with idealized tetrahedral angles. The figures were generated using Mercury 4.1 [3] program. Crystals of 8e were grown by slow evaporation of an acetone solution at room temperature. Crystals of 9e were grown by slow evaporation of an acetonitrile solution at room temperature. Absolute configuration of 9e was established by anomalous-dispersion effects in diffraction measurements on the crystal.

Data sets for single crystals **10** and **12** were collected on a Bruker AXS Kappa APEX II diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Programs used: data collection APEX2, data reduction SAINT, absorption correction SADABS version 2.10, structure solution SHELXT [1], structure refinement by full-matrix least-squares against F² using SHELXL [2]. The hydrogen atoms were inserted at the calculated positions and refined as riding atoms. The positions of the hydrogen atoms of methyl groups were found using rotating group refinement with idealized tetrahedral angles. The figures were generated using Mercury 4.1 [3] program. Crystals of **10** were grown by slow evaporation of *n*-hexane/EtOAc (1:1) solution at room temperature. Crystals of **12** were grown by slow evaporation of an acetonitrile solution at room temperature. Absolute configuration of **12** has not been established by anomalous-dispersion effects in diffraction measurements on the crystal. The enantiomer has been assigned by reference to unchanging chiral centers in the synthetic procedure.

References

[1] Sheldrick, G. M. SHELXT: Integrating space group determination and structure solution. *Acta Crystallogr.* **2015**, *71*, 3-8.

[2] Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2007, 64, 112-122.

[3] Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; Van De Streek J. Visualization and analysis of crystal structures. *J. Appl. Crystallogr.* **2006**, *39*, 453-457.

3.1. General procedure for the reaction of Ph₃P with tulipalin A 1 and itaconic anhydride 5 in acetic acid

To a magnetically stirring solution of Ph_3P (1.048 g, 4 mmol) in AcOH (15 mL) at room temperature was added dropwise a solution of **1** or **5** (4 mmol) in AcOH (10 mL) over a period of 10 min. Analysis of the reaction mixture after 0.5 h by ³¹P NMR spectroscopy showed the presence of sole signal at phosphonium region (+ 23 ppm). The products **6**, **7** are stable only in AcOH solution.

((2-Oxotetrahydrofuran-3-yl)methyl)triphenylphosphonium acetate 6

Obtained as a colorless viscous oil by careful evaporation of acetic acid from the reaction mixture under reduced pressure. Attempts to remove acetic acid from 6 to dryness led to decomposition of 6 to triphenylphosphine and unidentified phosphorus-free gum.

¹H NMR (400 MHz, CDCl₃, δ ppm): 2.01 (s, 16H), 2.32-2.42 (m, 2H), 2.90-3.06 (m, 1H), 3.77 (ddd, *J*=16.2 Hz, *J*=12.4 Hz, *J*=7.4 Hz, 1H), 4.11-4.22 (m, 2H), 4.38-4.46 (m, 1H), 7.66-7.73 (m, 6H), 7.76-7.86 (m, 9H), 11.8 (br s, 5H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 21.7 (s), 23.4 (d, *J*=54.5 Hz), 29.8 (d, *J*=8.8 Hz), 35.1 (d, *J*=4.4 Hz), 67.6 (s), 118.5 (d, *J*=87.1 Hz), 130.4 (d, *J*=12.7 Hz), 133.8 (d, *J*=10.1 Hz), 135.0 (d, *J*=2.8 Hz), 176.2 (s), 177.5 (d, *J*=8.2 Hz).

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 23.9.

IR v (cm⁻¹): 2913, 2581, 1760, 1713, 1588, 1548, 1486, 1439, 1378, 1239, 1155, 1112, 1048, 1019, 997, 954, 876, 833, 805, 748, 725, 690, 661, 610, 543, 503, 487. HRMS (ESI): m/z calcd. for C₂₃H₂₂O₂P⁺ [M⁺]: 361.1352, found: 361.1357.

((2,5-Dioxotetrahydrofuran-3-yl)methyl)triphenylphosphonium acetate 7

Obtained as a colorless viscous oil by careful evaporation of acetic acid from the reaction mixture under reduced pressure. Attempts to remove acetic acid from 7 to dryness led to decomposition of 7 to triphenylphosphine and unidentified phosphorus-free gum of red color. Compound 7 spontaneously decomposes upon standing to triphenylphosphine and unidentified phosphorus-free gum of red color.

Compound 7 is unstable in CDCl₃ solution, and rapidly decomposes in CD₃CN solution to triphenylphosphine (δ_P -6.0 ppm) and unidentified organic mass.

¹H NMR (400 MHz, CD₃CN, δ ppm): 1.80 (s, 13H), 2.18-2.26 (m, 1H), 2.53-2.64 (m, 1H), 2.76-2.88 (m, 1H), 2.95 (ddd, *J*=16.0 Hz, *J*=11.4 Hz, *J*=4.8 Hz, 1H), 3.77 (ddd, *J*=15.5 Hz, *J*=14.0 Hz, *J*=9.0 Hz, 1H), 7.46-7.70 (m, 15H), 8.25 (br s, 4H).

¹³C{¹H} NMR (100 MHz, CD₃CN, δ ppm): 21.4 (s), 26.9 (d, *J*=56.6 Hz), 38.9 (d, *J*=4.8 Hz), 40.8 (d, *J*=12.1 Hz), 122.1 (d, *J*=88.8 Hz), 131.2 (d, *J*=12.6 Hz), 135.2 (d, *J*=9.9 Hz), 135.7 (d, *J*=2.9 Hz), 173.7 (s).

It should be noted that two carbonyl atoms of anhydride cycle coudn't be identified.

³¹P{¹H} NMR (162 MHz, CD₃CN, δ ppm): 23.5.

IR v (cm⁻¹): 2919, 2581, 1855, 1784, 1712, 1557, 1486, 1438, 1376, 1235, 1110, 1057, 997, 938, 877, 813, 745, 722, 689, 608, 567, 540, 517, 505, 489.

HRMS (ESI): *m/z* calcd. for C₂₃H₂₂O₄P⁺ [M+H₂O]: 393.1251, found: 393.1256.

3.2. General procedure for the reaction of tulipalin A 1 with P(O)–H compounds

To a magnetically stirring mixture of P(O)–H compound (4 mmol) and *n*-Bu₃P (0.081 g, 0.4 mmol) in MeCN (5 mL) placed in a water bath of room temperature was added dropwise a solution of tulipalin A (0.392 g, 4 mmol) in MeCN (10 mL) over a period of 10 min; more or less noticeable heat evolution was observed. Then the stirring was continued for additional 50 min with the reaction mixture kept in the water bath. The reaction was monitored by ³¹P NMR spectroscopy. After the completion (1 h), the crude product was purified as described below.

Diethyl ((2-oxotetrahydrofuran-3-yl)methyl)phosphonate 8a

Purified by fractional distillation *in vacuo* of an oil pump under argon and was obtained as a colorless oil (0.755 g, 80%), bp 120-124°C (0.3 mmHg).

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.34 (t, *J*=7.0 Hz, 6H), 1.77 (ddd, *J*=16.3 Hz, *J*=16.3 Hz, *J*=11.4 Hz, 1H), 2.05-2.19 (m, 1H), 2.47 (ddd, *J*=18.5 Hz, *J*=15.5 Hz, *J*=2.8 Hz, 1H), 2.58-2.68 (m, 1H), 2.78-2.92 (m, 1H), 4.07-4.17 (m, 4H), 4.21 (ddd, *J*=10.5 Hz, *J*=10.5 Hz, *J*=6.2 Hz, 1H), 4.39 (t, *J*=8.8 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 16.1 (d, *J*=5.9 Hz), 26.2 (d, *J*=145.8 Hz), 29.2 (s), 34.4 (d, *J*=3.9 Hz), 61.5 (d, *J*=6.5 Hz), 61.7 (d, *J*=6.4 Hz), 66.3 (s), 177.7 (d, *J*=22.1 Hz).

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 28.4.

IR v (cm⁻¹): 2984, 2910, 1768, 1455, 1378, 1249, 1199, 1147, 1098, 1016, 948, 809, 697, 661, 556, 500.

HRMS (ESI): *m/z* calcd. for C₉H₁₈O₅P [M+H]⁺: 237.0887, found: 237.0885.

Dimethyl ((2-oxotetrahydrofuran-3-yl)methyl)phosphonate 8b

Purified by fractional distillation *in vacuo* of an oil pump under argon and was obtained as a colorless oil (0.724 g, 87%), bp 124-126°C (0.3 mmHg).

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.78 (ddd, *J*=15.8 Hz, *J*=15.8 Hz, *J*=11.2 Hz, 1H), 2.04-2.18 (m, 1H), 2.49 (ddd, *J*=18.6 Hz, *J*=15.6 Hz, *J*=2.9 Hz, 1H), 2.58-2.67 (m, 1H), 2.78-2.92 (m, 1H), 3.77 (d, *J*=10.9 Hz, 3H), 3.78 (d, *J*=10.9 Hz, 3H), 4.21 (ddd, *J*=10.0 Hz, *J*=10.0 Hz, *J*=6.2 Hz, 1H), 4.39 (t, *J*=8.8 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 25.4 (d, *J*=146.0 Hz), 29.5 (d, *J*=1.4 Hz), 34.6 (d, *J*=3.9 Hz), 52.4 (d, *J*=6.6 Hz), 52.6 (d, *J*=6.5 Hz), 66.6 (s), 177.8 (d, *J*=21.9 Hz).

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 31.2.

IR v (cm⁻¹): 2957, 1762, 1456, 1378, 1251, 1185, 1147, 1015, 979, 951, 893, 817, 731, 696, 661, 555, 501.

HRMS (ESI): *m/z* calcd. for C₇H₁₄O₅P [M+H]⁺: 209.0574, found: 209.0573.

Dibenzyl ((2-oxotetrahydrofuran-3-yl)methyl)phosphonate 8c

The reaction mixture was washed with *n*-pentane ($3 \times 10 \text{ mL}$) to remove *n*-Bu₃P and then evaporated under reduced pressure to give viscous oil, which was triturated with Et₂O (15 mL) to give **8c** as a white powder (1.41 g, 98%), mp 62-63°C.

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.76 (ddd, *J*=17.1 Hz, *J*=15.7 Hz, *J*=11.4 Hz, 1H), 1.92-2.06 (m, 1H), 2.43-2.55 (m, 2H), 2.66-2.81 (m, 1H), 4.09 (ddd, *J*=10.8 Hz, *J*=9.3 Hz, *J*=6.2 Hz, 1H), 4.30 (ddd, *J*=9.0 Hz, *J*=9.0 Hz, *J*=1.3 Hz, 1H), 4.96 (ddd, *J*=11.5 Hz, *J*=8.8 Hz, *J*=2.3 Hz, 2H), 5.07 (dd, *J*=11.6 Hz, *J*=9.2 Hz, 2H), 7.31-7.40 (m, 10H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 27.0 (d, *J*=146.0 Hz), 29.5 (s), 34.6 (d, *J*=3.8 Hz), 66.6 (s), 67.4 (d, *J*=6.4 Hz), 67.6 (d, *J*=6.4 Hz), 128.1 (d, *J*=2.1 Hz), 128.6 (s), 128.7 (s), 135.9 (s), 177.8 (d, *J*=22.7 Hz).

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 29.7.

IR v (cm⁻¹): 3091, 3064, 3034, 2963, 2920, 2901, 2324, 2115, 1759, 1604, 1497, 1455, 1416, 1377, 1313, 1251, 1232, 1201, 1188, 1152, 1116, 1081, 1043, 1016, 1005, 992, 951, 922, 896, 868, 855, 831, 821, 781, 728, 699, 666, 603, 586, 571, 548, 508, 470, 458.

HRMS (ESI): *m/z* calcd. for C₁₉H₂₂O₅P [M+H]⁺: 361.1200, found: 361.1193.

Bis(2-ethylhexyl) ((2-oxotetrahydrofuran-3-yl)methyl)phosphonate 8d

Purified by fractional distillation *in vacuo* of an oil pump under argon and was obtained as a colorless oil (1.16 g, 72%), bp 158-160°C (0.3 mmHg).

¹H NMR (400 MHz, CDCl₃, δ ppm): 0.85-0.95 (m, 12H), 1.25-1.44 (m, 16H), 1.49-1.60 (m, 2H), 1.76 (ddd, *J*=16.2 Hz, *J*=16.2 Hz, *J*=11.5 Hz, 1H), 2.04-2.18

(m, 1H), 2.49 (ddd, *J*=18.5 Hz, *J*=15.5 Hz, *J*=2.8 Hz, 1H), 2.57-2.67 (m, 1H), 2.77-2.91 (m, 1H), 3.88-4.02 (m, 4H), 4.21 (ddd, *J*=10.6 Hz, *J*=10.6 Hz, *J*=6.2 Hz, 1H), 4.40 (t, *J*=8.8 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 10.7 (s), 13.8 (s), 22.8 (s), 23.08 (br s), 23.12 (d, *J*=2.6 Hz), 26.0 (d, *J*=145.9 Hz), 28.6 (d, *J*=3.2 Hz), 29.5 (s), 29.71 (s), 29.73 (s), 34.6 (d, *J*=3.9 Hz), 39.94 (d, *J*=6.6 Hz), 39.97 (d, *J*=6.7 Hz), 66.4 (s), 67.62 (d, *J*=6.9 Hz), 67.64 (d, *J*=6.9 Hz), 67.8 (br d, *J*=6.8 Hz), 177.8 (d, *J*=22.4 Hz).

 ${}^{31}P{}^{1}H$ NMR (162 MHz, CDCl₃, δ ppm): 28.6.

IR v (cm⁻¹): 2958, 2929, 2874, 2861, 1775, 1461, 1378, 1251, 1198, 1145, 1012, 974, 894, 863, 699, 661, 561, 499.

HRMS (ESI): *m/z* calcd. for C₂₁H₄₂O₅P [M+H]⁺: 405.2765, found: 405.2770.

3-((Diphenylphosphoryl)methyl)dihydrofuran-2(3H)-one 8e

The reaction mixture was washed with *n*-pentane ($3 \times 10 \text{ mL}$) to remove *n*-Bu₃P and then evaporated under reduced pressure to give viscous oil, which was triturated with Et₂O (15 mL) to give **8e** as a white powder (1.14 g, 95%), mp 124-125°C.

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.95-2.09 (m, 1H), 2.25 (ddd, *J*=15.3 Hz, *J*=11.7 Hz, *J*=11.7 Hz, 1H), 2.48-2.58 (m, 1H), 2.75-2.88 (m, 1H), 3.10 (ddd, *J*=15.2 Hz, *J*=9.4 Hz, *J*=2.2 Hz, 1H), 4.12 (ddd, *J*=10.9 Hz, *J*=9.3 Hz, *J*=6.1 Hz, 1H), 4.34 (t, *J*=9.0 Hz, 1H), 7.46-7.59 (m, 6H), 7.73-7.83 (m, 4H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 30.1 (s), 30.7 (d, *J*=73.2 Hz), 34.5 (d, *J*=2.8 Hz), 67.0 (s), 128.8 (d, *J*=11.8 Hz), 129.0 (d, *J*=11.8 Hz), 130.6 (d, *J*=9.5 Hz), 130.9 (d, *J*=9.4 Hz), 132.1 (d, *J*=2.5 Hz), 132.2 (d, *J*=2.5 Hz), 178.6 (s).

It should be noted that *ipso*-carbon atoms couldn't be identified.

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 30.4.

IR v (cm⁻¹): 3053, 2894, 1755, 1592, 1484, 1453, 1438, 1408, 1384, 1295, 1215, 1178, 1157, 1119, 1102, 1073, 1020, 999, 983, 954, 886, 830, 799, 786, 744, 720, 693, 661, 617, 583, 553, 504, 453.

HRMS (ESI): *m/z* calcd. for C₁₇H₁₈O₃P [M+H]⁺: 301.0989, found: 301.0994.

3.3. General procedure for the reaction of arglabin 2 with P(O)–H compounds

To a magnetically stirring mixture of P(O)–H compound (4 mmol) and *n*-Bu₃P (0.081 g, 0.4 mmol) in MeCN (5 mL) placed in a water bath of room temperature was added dropwise a solution of arglabin (0.984 g, 4 mmol) in MeCN (10 mL) over a period of 10 min; more or less noticeable heat evolution was observed. Then the stirring was continued for additional 50 min with the reaction mixture kept in the water bath. The reaction was monitored by ³¹P NMR spectroscopy. After the completion (1 h), the crude product was purified as described below.

The reaction mixture was concentrated under reduced pressure (ca. 2/3 of MeCN was evaporated). The concentrate was washed with *n*-pentane (3×10 mL) to remove *n*-Bu₃P, during this operation white solid was precipitated. The precipitate was filtered off, washed with Et₂O and dried under vacuum to give analytically pure **9a**.

Yield 90% (1.23 g), white solid, mp 156-157°C, $[\alpha]_D^{27}$ = +105.5 (*c* 2.31; CHCl₃). Literature data: mp 156-158°C, $[\alpha]_{580}^{25}$ = +77.9 (*c* 2.31; CHCl₃) [*Russ. Chem. Bull., Int. Ed.* **2003**, *52*, 748-751].

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.32 (t, *J*=7.0 Hz, 3H), 1.33 (t, *J*=7.0 Hz, 3H), 1.34 (s, 3H), 1.39-1.51 (m, 1H), 1.64-1.75 (m, 1H), 1.93 (br s, 3H), 1.94-2.05 (m, overlapped 2H), 2.10-2.18 (m, overlapped 3H), 2.33 (ddd, *J*=19.0 Hz, *J*=15.9 Hz, *J*=5.2 Hz, 1H), 2.51 (dddd, *J*=23.7 Hz, *J*=12.5 Hz, *J*=5.5 Hz, *J*=5.5 Hz, 1H), 2.72-2.81 (m, 1H), 2.85 (br d, *J*=10.5 Hz, 1H), 4.03 (t, *J*=10.1 Hz, 1H), 4.07-4.18 (m, 4H), 5.57 (br s, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 16.3 (d, *J*=6.0 Hz), 18.2, 22.4, 22.6, 24.1 (d, *J*=144.8 Hz), 33.3, 39.4, 41.2 (d, *J*=4.4 Hz), 52.2, 52.7 (d, *J*=4.4 Hz), 61.8

(d, *J*=6.4 Hz), 61.9 (d, *J*=6.5 Hz), 62.5, 72.2, 82.7, 124.8, 140.4, 176.9 (d, *J*=10.1 Hz).

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 28.1.

IR v (cm⁻¹): 2935, 1764, 1448, 1374, 1321, 1245, 1227, 1189, 1172, 1119, 1058, 1029, 996, 959, 865, 853, 835, 814, 788, 733, 712, 675, 663, 644, 602, 540, 530, 508, 498, 484.

HRMS (ESI): *m/z* calcd. for C₁₉H₃₀O₆P [M+H]⁺: 385.1775, found: 385.1780.

Dimethyl (1*R*,5*R*,6*S*,7*S*,10*S*,11*S*)-1,10-epoxyguaia-3-ene-6,12-olid-13ylphosphonate 9b

The reaction mixture was concentrated under reduced pressure (ca. 2/3 of MeCN was evaporated). The concentrate was washed with *n*-pentane (3×10 mL) to remove *n*-Bu₃P, during this operation white solid was precipitated. The precipitate was filtered off, washed with Et₂O and dried under vacuum to give analytically pure **9b**.

Yield 88% (1.25 g), white solid, mp 153-154°C, $[\alpha]_D^{27}$ = +66.2 (*c* 1.31; CHCl₃). Literature data: mp 154-157°C, $[\alpha]_{580}^{27}$ = +53.4 (*c* 1.31; CHCl₃) [*Russ. Chem. Bull., Int. Ed.* **2003**, *52*, 748-751].

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.33 (s, 3H), 1.46 (dddd, *J*=14.0 Hz, *J*=14.0 Hz, *J*=14.0 Hz, *J*=2.7 Hz, 1H), 1.61-1.72 (m, 1H), 1.86-1.95 (m, 1H), 1.93 (br s, 3H), 1.99 (ddd, *J*=18.6 Hz, *J*=16.0 Hz, *J*=5.6 Hz, 1H), 2.10-2.19 (m, overlapped 3H), 2.33 (ddd, *J*=19.1 Hz, *J*=16.0 Hz, *J*=5.4 Hz, 1H), 2.52 (dddd, *J*=23.7 Hz, *J*=12.5 Hz, *J*=5.5 Hz, *J*=5.5 Hz, 1H), 2.72-2.81 (m, 1H), 2.85 (br d, *J*=10.6 Hz, 1H), 3.76 (d, *J*=11.0 Hz, 3H), 3.77 (d, *J*=11.0 Hz, 3H), 4.04 (t, *J*=10.2 Hz, 1H), 5.57 (br s, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 18.3, 22.5, 22.7, 23.2 (d, *J*=144.8 Hz), 33.4, 39.5, 41.2 (d, *J*=4.4 Hz), 52.3, 52.5 (d, *J*=6.5 Hz), 52.7 (d, *J*=6.6 Hz), 52.9 (d, *J*=4.9 Hz), 62.6, 72.4, 82.9, 124.9, 140.4, 176.9 (d, *J*=9.8 Hz).

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 30.9.

IR v (cm⁻¹): 2940, 2848, 1771, 1449, 1405, 1377, 1352, 1321, 1274, 1247, 1228, 1191, 1180, 1172, 1118, 1095, 1061, 1031, 1014, 996, 959, 910, 866, 853, 843, 816, 787, 737, 711, 675, 663, 644, 608, 538, 531, 508, 497, 466. HRMS (ESI): *m/z* calcd. for C₁₇H₂₆O₆P [M+H]⁺: 357.1462, found: 357.1467.

Dibenzyl (1*R*,5*R*,6*S*,7*S*,10*S*,11*S*)-1,10-epoxyguaia-3-ene-6,12-olid-13ylphosphonate 9c

The reaction mixture was concentrated under reduced pressure (ca. 2/3 of MeCN was evaporated), washed with *n*-pentane (3×10 mL) to remove *n*-Bu₃P and then evaporated to dryness. The viscous oil was triturated with Et₂O to give white powder, which was filtered off and dried in vacuum.

Yield 98% (1.99 g), white powder, mp 106-107°C, $[\alpha]_D^{27}$ = +67.4 (*c* 2.00; CHCl₃).

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.27 (s, 3H), 1.27-1.37 (m, 1H), 1.56-1.70 (m, 1H), 1.74-1.82 (m, 1H), 1.89 (br s, 3H), 1.90-1.97 (m, 1H), 2.02-2.14 (m, overlapped 3H), 2.35 (ddd, *J*=19.0 Hz, *J*=16.0 Hz, *J*=5.4 Hz, 1H), 2.45 (dddd, *J*=23.7 Hz, *J*=12.4 Hz, *J*=5.4 Hz, *J*=5.4 Hz, 1H), 2.64-2.79 (m, overlapped 2H), 3.95 (t, *J*=10.1 Hz, 1H), 4.90-5.08 (m, 4H), 5.54 (br s, 1H), 7.31-7.39 (m, 10H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 18.3, 22.5, 22.6, 24.4 (d, *J*=144.4 Hz), 33.1, 39.5, 41.2 (d, *J*=4.4 Hz), 52.2, 52.3 (d, *J*=4.5 Hz), 62.6, 67.4 (d, *J*=6.3 Hz), 67.7 (d, *J*=6.3 Hz), 72.3, 82.8, 124.8, 128.3 (d, *J*=4.3 Hz), 128.6 (d, *J*=6.9 Hz), 136.0, 140.5, 176.9 (d, *J*=9.5 Hz).

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 29.2.

IR v (cm⁻¹): 3032, 2932, 1772, 1497, 1451, 1432, 1407, 1384, 1318, 1246, 1231, 1190, 1177, 1119, 1081, 1047, 1025, 991, 970, 919, 866, 856, 807, 784, 735, 717, 696, 674, 663, 646, 614, 597, 576, 538, 520, 494, 464.

HRMS (ESI): *m/z* calcd. for C₂₉H₃₄O₆P [M+H]⁺: 509.2088, found: 509.2093.

Bis(2-ethylhexyl) (1*R*,5*R*,6*S*,7*S*,10*S*,11*S*)-1,10-epoxyguaia-3-ene-6,12-olid-13-ylphosphonate 9d

The crude product was purified by column chromatography (SiO₂, eluent *n*-hexane/EtOAc=4:1, $R_f = 0.29$).

Yield 79% (1.74 g), colorless oil, $[\alpha]_D^{28}$ =+69.1 (*c* 2.22; CHCl₃).

¹H NMR (400 MHz, CDCl₃, δ ppm): 0.86-0.93 (m, 12H), 1.23-1.49 (m, 17H) overlapped with 1.33 (s, 3H), 1.51-1.60 (m, 2H), 1.64-1.75 (m, 1H), 1.93 (br s, 3H), 1.94-2.06 (m, 2H), 2.08-2.20 (m, 3H), 2.30-2.43 (m, 1H), 2.49 (dddd, *J*=23.5 Hz, *J*=12.2 Hz, *J*=5.5 Hz, *J*=5.5 Hz, 1H), 2.77 (br d, *J*=17.6 Hz, 1H), 2.84 (br d, *J*=10.5 Hz, 1H), 3.89-4.00 (m, 4H), 4.03 (t, *J*=10.1 Hz, 1H), 5.57 (br s, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 10.9, 14.1, 18.3, 22.6, 22.7, 23.0, 23.2, 23.3, 24.1 (d, *J*=145.0 Hz), 28.87, 28.91, 29.87, 29.91, 33.5, 39.5, 40.2 (d, *J*=6.6 Hz), 41.3 (d, *J*=4.4 Hz), 52.3, 52.9 (d, *J*=3.7 Hz), 62.6, 67.88 (d, *J*=6.7 Hz), 67.94 (d, *J*=6.4 Hz), 68.01 (d, *J*=6.6 Hz), 72.5, 82.8, 124.9, 140.5, 177.0 (d, *J*=10.5 Hz). ³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 28.3.

IR v (cm⁻¹): 2957, 2927, 2859, 1777, 1462, 1379, 1322, 1239, 1189, 1171, 1114, 998, 912, 866, 854, 809, 785, 724, 676, 665, 646, 623, 526, 508.

HRMS (ESI): *m*/*z* calcd. for C₃₁H₅₄O₆P [M+H]⁺: 553.3653, found: 553.3658.

(1*R*,5*R*,6*S*,7*S*,10*S*,11*S*)-11-((diphenylphosphoryl)methyl)-1,10-epoxyguaia-3ene-6,12-olid 9e

The crude product was purified by column chromatography (SiO₂, eluent EtOAc, $R_f = 0.57$).

Yield 96% (1.72 g), white powder, mp 152-153°C, $[\alpha]_D^{28}$ = +68.2 (*c* 2.00; CHCl₃).

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.30 (s, 3H), 1.30-1.40 (m, 1H), 1.54-1.65 (m, 1H), 1.83 (ddd, *J*=15.2 Hz, *J*=12.6 Hz, *J*=2.5 Hz, 1H), 1.89 (br s, 3H), 2.04-2.16 (m, 2H), 2.18-2.34 (m, 2H), 2.47 (dddd, *J*=17.0 Hz, *J*=12.1 Hz, *J*=8.0 Hz, *J*=3.1 Hz, 1H), 2.69-2.79 (m, 1H), 2.79 (br d, *J*=10.6 Hz, 1H), 3.15 (ddd, *J*=15.8 Hz, *J*=8.5 Hz, *J*=3.1 Hz, 1H), 3.97 (t, *J*=10.1 Hz, 1H), 5.54 (br s, 1H), 7.43-7.62 (m, 6H), 7.74-7.88 (m, 4H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 18.3, 22.3, 22.7, 30.0 (d, *J*=72.9 Hz), 33.4, 39.5, 41.1 (d, *J*=3.0 Hz), 52.3, 54.4, 62.7, 72.2, 83.0, 125.0, 128.7 (d, *J*=11.8 Hz), 128.9 (d, *J*=11.8 Hz), 130.6 (d, *J*=9.3 Hz), 131.1 (d, *J*=9.2 Hz), 131.3 (d, *J*=99.3 Hz), 131.9 (d, *J*=2.3 Hz), 132.1 (d, *J*=2.5 Hz), 132.9 (part from *ipso*-C_{Ar}), 140.4, 177.8 (d, *J*=12.5 Hz).

It should be noted that the second peak of the doublet of *ipso*- C_{Ar} at 132.9 ppm couldn't be identified.

³¹P{¹H} NMR (162 MHz, CDCl₃, δ ppm): 30.9.

IR v (cm⁻¹): 2925, 1765, 1435, 1399, 1376, 1318, 1270, 1239, 1225, 1188, 1171, 1161, 1117, 1104, 1058, 1030, 1004, 989, 961, 866, 852, 819, 805, 747, 716, 697, 670, 661, 638, 609, 593, 546, 526, 510, 483, 471.

HRMS (ESI): *m/z* calcd. for C₂₇H₃₀O₄P [M+H]⁺: 449.1877, found: 449.1882.

3.4. General procedure for the reactions of tulipalin A 1 and arglabin 2 with diethyl malonate

To a magnetically stirring mixture of diethyl malonate (0.32 g, 2 mmol) with 1 or 2 (4 mmol) in MeCN (5 mL) placed in a water bath of room temperature, n-Bu₃P (0.040 g, 0.2 mmol) was added using a syringe; heat evolution was observed. The stirring was continued for 1 h with the reaction mixture kept in the water bath. The reaction was monitored by TLC. After the completion (1 h), the crude product was purified as described below.

Diethyl 2-((2-oxotetrahydrofuran-3-yl)methyl)malonate 11

The crude product was purified by column chromatography (SiO₂, eluent *n*-hexane/EtOAc=4:1, $R_f = 0.15$).

Yield 20% (0.360 g), colorless oil.

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.28 (t, *J*=7.1 Hz, 3H), 1.29 (t, *J*=7.2 Hz, 3H), 1.98 (dddd, *J*=12.4 Hz, *J*=10.6 Hz, *J*=10.6 Hz, *J*=8.6 Hz, 1H), 2.09 (ddd, *J*=14.2 Hz, *J*=8.3 Hz, *J*=8.3 Hz, 1H), 2.36-2.48 (m, 2H), 2.58-2.68 (m, 1H), 3.72 (dd, *J*=8.1 Hz, *J*=8.0 Hz, 1H), 4.14-4.27 (m, 5H), 4.37 (dt, *J*=8.8 Hz, *J*=2.3 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 14.1, 29.1, 29.3, 37.0, 49.6, 61.7, 66.4, 168.8, 169.0, 178.3.

IR v (cm⁻¹): 2984, 2940, 2910, 1765, 1745, 1725, 1446, 1370, 1335, 1301, 1263, 1239, 1207, 1150, 1099, 1063, 1021, 934, 861, 705, 664, 580.

HRMS (ESI): *m/z* calcd. for C₁₂H₁₉O₆ [M+H]⁺: 259.1177, found: 259.1182.

Diethyl 2,2-bis((2-oxotetrahydrofuran-3-yl)methyl)malonate 10

After isolation of product **11**, compound **10** was isolated by column chromatography (SiO₂, eluent *n*-hexane/EtOAc=1:1, $R_f = 0.51$ (one diastereomer), $R_f = 0.38$ (another diastereomer)). Due to close R_f values, compound **10** was isolated as 1:1 mixture of diastereomers.

Yield 63% (1.12 g), colorless crystals, mp 114-118°C.

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.28 (t, *J*=7.1 Hz, 3H), 1.29 (t, *J*=7.1 Hz, 3H), 1.80-1.99 (m, 2H), 2.03 (dd, *J*=14.8 Hz, *J*=9.0 Hz, 1H), 2.09 (dd, *J*=15.0 Hz, *J*=10.1 Hz, 1H), 2.31-2.41 (m, 1H), 2.42-2.53 (m, 2H), 2.54-2.64 (m, 1H), 2.70 (dd, *J*=15.0 Hz, *J*=2.6 Hz, 1H), 2.72 (dd, *J*=14.6 Hz, *J*=2.6 Hz, 1H), 4.09-4.29 (m, 6H), 4.34 (t, *J*=8.8 Hz, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 14.0, 29.7, 30.3, 33.6, 34.2, 35.5, 35.8, 55.2, 55.9, 61.8, 61.9, 62.0, 66.4, 170.6, 170.7, 170.8, 178.4, 178.5.

IR v (cm⁻¹): 2980, 2953, 2919, 2879, 1755, 1717, 1470, 1443, 1382, 1371, 1317, 1299, 1281, 1262, 1238, 1214, 1203, 1170, 1127, 1097, 1020, 997, 973, 960, 914, 862, 850, 822, 797, 749, 716, 661, 581, 548, 522, 497, 458.

HRMS (ESI): *m/z* calcd. for C₁₇H₂₅O₈ [M+H]⁺: 357.1544, found: 357.1547.

The reaction mixture was placed in refrigerator (10°C), and most of **12** precipitated as bright colorless crystals, which were filtered off and recrystallized from MeCN

to give 0.871 g of **12**. The residual amount of **12** (0.224 g) was isolated from the reaction mixture by column chromatography (SiO₂, eluent *n*-hexane/EtOAc=4:1, R_f = 0.39).

Yield 84% (1.09 g), colorless crystals, mp 195-197°C (decomp.), $[\alpha]_D^{26}$ = +86.7 (*c* 2.00; CHCl₃).

¹H NMR (400 MHz, CDCl₃, δ ppm): 1.24 (t, *J*=7.2 Hz, 6H), 1.33 (s, 6H), 1.37-1.49 (m, 4H), 1.83-1.93 (m, 4H), overlapped with 1.91 (br s, 6H), 2.09-2.18 (m, 8H), 2.30-2.37 (m, 2H), 2.71-2.84 (m, 4H), 3.99-4.08 (m, 3H) overlapped with 4.07 (q, *J*=7.2 Hz, 1H), 4.27 (q, *J*=7.2 Hz, 1H), 4.30 (q, *J*=7.1 Hz, 1H), 5.55 (br s, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, δ ppm): 13.9, 18.3, 22.3, 22.7, 33.5, 39.5, 42.5, 52.2, 53.6, 56.6, 62.0, 62.6, 72.4, 82.7, 124.8, 140.6, 170.5, 177.8.

IR v (cm⁻¹): 2991, 2968, 2951, 2926, 2897, 2859, 2833, 1772, 1756, 1720, 1437, 1372, 1343, 1313, 1284, 1268, 1255, 1209, 1193, 1163, 1147, 1134, 1116, 1100, 1070, 1042, 1029, 1013, 992, 961, 924, 882, 858, 821, 807, 788, 773, 721, 682, 671, 655, 640, 595, 579, 551, 508, 492.

HRMS (ESI): *m/z* calcd. for C₃₇H₄₉O₁₀ [M+H]⁺: 653.3321, found: 653.3326.

4. Crystallographic Data

	U 1		,	
Identification code	8e	9e	10	12
Empirical formula	C ₁₇ H ₁₇ O ₃ P	$C_{27}H_{29}O_4P$	C ₁₇ H ₂₄ O ₈	$C_{37}H_{48}O_{10}$
Formula weight	300.27	448.47	356.36	652.75
Temperature/K	100.01(10)	100.00(10)	296(2)	100(2)
Crystal system	orthorhombic	orthorhombic	monoclinic	orthorhombic
Space group	Pbca	P2 ₁ 2 ₁ 2 ₁	$P2_{1}/c$	P2 ₁ 2 ₁ 2 ₁
a/Å	8.88520(10)	6.0344(2)	10.1251(6)	9.7510(7)
b/Å	10.66490(10)	31.7014(10)	10.1582(7)	16.7972(13)
c/Å	31.4503(2)	12.0302(4)	17.4602(11)	20.8431(14)
β/°	90	90	95.237(4)	90
Volume/Å ³	2980.22(5)	2301.36(13)	1788.3(2)	3413.9(4)
Ζ	8	4	4	4
$\rho_{calc} g/cm^3$	1.338	1.294	1.324	1.270
μ/mm ⁻¹	1.700	1.311	0.105	0.091
2\Theta range for data collection/°	5.62 to 153.276	5.576 to 152.814	4.644 to 52.196	3.114 to 54.282
Reflections collected	48852	11464	20578	28331
Independent reflections	$3118 [R_{int} = 0.0658, R_{sigma} = 0.0238]$	$\frac{4629 [R_{int} = 0.0513,}{R_{sigma} = 0.0507]}$	$3531 [R_{int} = 0.0735, R_{sigma} = 0.0632]$	$7536 [R_{int} = 0.0840, R_{sigma} = 0.0972]$
Data/restraints/parameters	3118/0/190	4629/0/291	3531/0/229	7536/0/431
Goodness-of-fit on F ²	1.145	1.087	1.108	1.060
Final R indexes [I>=2 σ	$R_1 = 0.0546, WR_2 =$	$R_1 = 0.0576$, $wR_2 =$	$R_1 = 0.0709, WR_2 =$	$R_1 = 0.0616$, $wR_2 =$
(I)]	0.1295	0.1408	0.1693	0.1310
Largest diff. peak/hole / e Å ⁻³	0.43/-0.95	0.64/-0.36	0.41/-0.34	0.47/-0.46
Flack parameter	-	-0.01(2)	-	0.9(8)
CCDC Refcode	1914346	1914344	1914345	1914343

Table S9. Crystallographic data and structure refinement for 8e, 9e, 10, 12.

Figure S13. ORTEP of 8e at 50% probability level of non-hydrogen atoms.

Figure S14. ORTEP of 10 at 50% probability level of non-hydrogen atoms.

5. Copies of ³¹P{¹H}, ¹H, ¹³C{¹H} NMR spectra

