"Bio-Inspired Enantioselective Total Syntheses of (–)-Viminalins A, B, H, I, N, and Structural Reassignment of (–)-Viminalin M"

Dattatraya H. Dethe,* and Appasaheb K. Nirpal

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.

Table of Contents

1. NMR Spectras:	S-3
2. NMR comparison Table:	
2.1) (–)-Viminalin A (1):	S-20
2.2) (–)-Viminalin B (2):	S-21
2.3) (–)-Viminalin H (3):	S-22
2.4) (–)-Viminalin I (4):	S-23
2.5) (–)-Viminalin M (6):	S-24
2.6) (–)-Viminalin N (7):	S-25
3. References:	S-26

1. NMR Spectras:

2. NMR comparison Table:

¹H and ¹³C NMR comparison between natural and synthetic Viminalin A (1)

¹ H-NM	R in CDCl ₃	¹³ C-NMI	R in CDCl ₃
Natural Viminalin A	Synthetic Viminalin A	Natural	Synthetic
500 MHz	400 MHz	Viminalin A	Viminalin A
		125 MHz	100 MHz
0.99, (d, <i>J</i> = 7.0 Hz)	0.98, (d, J = 7.0 Hz)	204.8	204.8
1.00, (d, <i>J</i> = 7.0 Hz)	0.99, (d, J = 7.0 Hz)	166.4	166.3
1.06, (d, <i>J</i> = 7.0 Hz)	1.05, (d, <i>J</i> = 7.0 Hz)	162.1	162.1
1.11, (d, <i>J</i> = 7.0 Hz)	1.09, (d, <i>J</i> = 7.0 Hz)	160.3	160.3
1.48, (s)	1.47, (s)	108.7	108.7
1.57, (m)	1.56, (m)	102.5	102.4
1.64, (m)	1.63, (m)	92.4	92.4
1.81, (m)	1.83-1.77 (m)	87.5	87.4
1.96, (ddd, <i>J</i> = 14.0, 5.5, 3.0 Hz)	1.95, (ddd, J = 13.7, 5.5, 2.7 Hz)	55.9	55.9
2.20, (m)	2.18, (m)	55.7	55.7
2.82, (dd, <i>J</i> = 14.0, 6.5 Hz)	2.83 (dd, <i>J</i> = 14.0, 6.5 Hz)	55.0	55.0
2.87, (dd, <i>J</i> = 12.5, 5.5 Hz)	2.86 (dd, <i>J</i> = 12.5, 5.5 Hz)	51.7	51.7
2.92, (dd, <i>J</i> = 14.0, 6.5 Hz)	2.93 (dd, <i>J</i> = 14.0, 6.5 Hz)	39.7	39.6
3.28, (d, <i>J</i> = 4.0 Hz)	3.28 (d, J = 4.0 Hz)	39.3	39.2
3.45, (t, <i>J</i> = 4.0 Hz)	3.45 (t, <i>J</i> = 4.0 Hz)	28.4	28.3
3.80, (s)	3.79, (s)	26.2	26.2
5.97, (s)	5.96, (s)	26.1	26.1
13.55, (br. s)	13.55, (s)	24.0	23.9
		22.9	23.0
		22.8	22.8
		21.9	21.9
		21.4	21.4

¹H and ¹³C NMR comparison between natural and synthetic Viminalin B (2)

¹ H-NM	R in CDCl₃	¹³ C-NMI	R in CDCl₃
Natural Viminalin B	Synthetic Viminalin B	Natural	Synthetic
500 MHz	400 MHz	Viminalin B	Viminalin B
		125 10112	100 10112
1.06, (d, <i>J</i> = 7.0 Hz)	1.05, (d, <i>J</i> = 6.9 Hz)	209.0	209.1
1.10, (d, <i>J</i> = 7.0 Hz)	1.09, (d, <i>J</i> = 6.9 Hz)	166.7	166.6
1.17, (d, <i>J</i> = 7.0 Hz)	1.15, (d, <i>J</i> = 7.0 Hz)	162.0	162.0
1.19, (d, <i>J</i> = 7.0 Hz)	1.18, (d, <i>J</i> = 7.0 Hz)	160.0	159.9
1.48, (s)	1.47, (s)	108.7	108.7
1.58, (m)	1.58, (m)	101.5	101.4
1.65, (m)	1.64, (m)	92.6	92.5
1.82, (m)	1.84 – 1.75, (m)	87.4	87.3
1.96, (ddd, <i>J</i> = 14.0, 5.5, 3.0 Hz)	1.95, (ddd, <i>J</i> = 14.0, 5.5, 3.0 Hz)	55.9	55.9
2.87, (dd, <i>J</i> = 12.5, 5.5 Hz)	2.86, (dd, <i>J</i> = 12.5, 5.8 Hz)	55.7	55.7
3.29, (d, <i>J</i> = 4.0 Hz)	3.28, (d, <i>J</i> = 4.0 Hz)	55.0	54.9
3.46, (t, <i>J</i> = 4.0 Hz)	3.45, (t, <i>J</i> = 4.0 Hz)	39.7	39.5
3.79 <i>,</i> (m)	3.80, (m)	39.4	39.2
3.80, (s)	3.81, (s)	38.6	38.6
5.98, (s)	5.97, (s)	28.5	28.3
13.55, (br. s)	13.60, (s)	26.0	26.1
		24.0	23.9
		21.9	21.9
		21.4	21.4
		19.4	19.5
		18.6	18.5

¹ H-NMR in CDCl ₃		¹³ C-NMI	¹³ C-NMR in CDCl ₃	
Natural Viminalin H	Synthetic Viminalin H	Natural	Synthetic	
500 MHz	500 MHz	Viminalin H	Viminalin H	
		125 MHz	125 MHz	
0.90, (d, <i>J</i> = 7.0 Hz)	0.88, (d, <i>J</i> = 7.0 Hz)	204.8	204.8	
0.91, (d, <i>J</i> = 7.0 Hz)	0.91, (d, <i>J</i> = 7.0 Hz)	166.1	166.1	
0.97, (d, <i>J</i> = 7.0 Hz)	0.96, (d, <i>J</i> = 6.9 Hz)	162.6	162.6	
0.97, (d, <i>J</i> = 7.0 Hz)	0.97, (d, <i>J</i> = 6.9 Hz)	161.7	161.6	
1.56, (s)	1.56, (s)	135.3	135.3	
1.60, (m)	1.60, (m)	129.3	129.3	
1.60, (m)	1.60, (m)	107.9	107.8	
1.89, (m)	1.91–1.87, (m)	102.8	102.7	
2.14, (m)	2.16 – 2.11, (m)	92.2	92.1	
2.27, (dt, <i>J</i> = 14.0, 5.0 Hz)	2.27, (dt, J = 13.8, 5.0 Hz)	88.7	88.7	
2.78, (dd, J = 14.0, 6.5 Hz)	2.77, (dd, <i>J</i> = 14.0, 6.6 Hz)	55.6	55.5	
2.84, (dd, J = 14.0, 6.5 Hz)	2.84, (dd, <i>J</i> = 14.0, 6.6 Hz)	51.7	51.7	
3.40, (t, <i>J</i> = 5.0 Hz)	3.39, (t, <i>J</i> = 4.8 Hz)	44.3	44.2	
3.81, (s)	3.80, (s)	38.1	38.1	
5.61, (dd, <i>J</i> = 10.0, 2.0 Hz)	5.60, (dd, <i>J</i> = 10.2, 2.3 Hz)	31.5	31.5	
5.87, (dd, J = 10.0, 2.0 Hz)	5.87, (dd, <i>J</i> = 10.2, 1.9 Hz)	26.4	26.4	
5.96, (s)	5.96, (s)	26.3	26.2	
13.50, (br. s)	13.50, (s)	26.0	26.0	
		22.9	22.9	
		22.8	22.7	
		19.9	19.9	
		19.7	19.7	

¹H and ¹³C NMR comparison between natural and synthetic Viminalin H (3)

¹ H-NM	IR in CDCl₃	¹³ C-NM	R in CDCl₃
Natural Viminalin I	Synthetic Viminalin I	Natural	Synthetic
500 MHz	400 MHz	Viminalin I 125 MHz	Viminalin I 100 MHz
0.90, (d, <i>J</i> = 7.0 Hz)	0.88, (d, <i>J</i> = 7.0 Hz)	209.1	209.1
0.91, (d, <i>J</i> = 7.0 Hz)	0.90, (d, <i>J</i> = 7.0 Hz)	166.5	166.4
1.13, (d, <i>J</i> = 7.0 Hz)	1.12, (d, <i>J</i> = 7.0 Hz)	162.5	162.5
1.15, (d, <i>J</i> = 7.0 Hz)	1.14, (d, <i>J</i> = 7.0 Hz)	161.3	161.3
1.56, (s)	1.55, (s)	135.3	135.3
1.60, (m)	1.60, (m)	129.3	129.2
1.61, (m)	1.61, (m)	107.9	107.9
1.89, (m)	1.92 – 1.86, (m)	101.6	101.7
2.27, (dt, <i>J</i> = 14.0, 5.0 Hz)	2.28, (dt, J = 14.0, 5.0 Hz)	92.4	92.3
3.40, (t, <i>J</i> = 5.0)	3.39, (t, <i>J</i> = 4.9)	88.7	88.7
3.73, (m)	3.72, (m)	55.6	55.6
3.81, (s)	3.80, (s)	44.2	44.1
5.61, (dd, <i>J</i> = 10.0, 2.0 Hz)	5.60, (dd, <i>J</i> = 9.8, 2.4 Hz)	38.5	38.5
5.87, (dd, <i>J</i> = 10.0, 2.0 Hz)	5.86, (dd, <i>J</i> = 9.8, 2.4 Hz)	38.2	38.1
5.98, (s)	5.97, (s)	31.5	31.5
13.56, (br. s)	13.56, (s)	26.4	26.4
		26.3	26.2
		19.9	19.9
		19.7	19.7
		19.2	19.1
		18.9	18.8

¹H and ¹³C NMR comparison between natural and synthetic Viminalin I (4)

¹H and ¹³C NMR comparison between natural and synthetic Viminalin M (6)

¹ H-NMR in CDCl₃		¹³ C-NM	¹³ C-NMR in CDCl ₃	
Natural Viminalin M	Synthetic Viminalin M	Natural	Synthetic	
500 MHz	500 MHz	Viminalin M 125 MHz	Viminalin M 125 MHz	
0.87, (d, J = 7.0 Hz)	0.87, (d, J = 7.0 Hz)	204.7	204.7	
0.90, (d, <i>J</i> = 7.0 Hz)	0.90, (d, <i>J</i> = 7.0 Hz)	166.0	166.0	
0.96, (d, J = 7.0 Hz)	0.95, (d, <i>J</i> = 7.0 Hz)	162.5	162.5	
0.98, (d, <i>J</i> = 7.0 Hz)	0.98, (d, <i>J</i> = 7.0 Hz)	162.4	162.3	
1.45, (tt, J = 11.0, 4.0 Hz)	1.45, (tt, J = 11.0, 4.0 Hz)	129.8	129.7	
1.78, (m)	1.76, (m)	128.7	128.7	
1.80, (m)	1.82, (m)	110.1	110.0	
1.92, (s)	1.92, (s)	102.9	102.8	
2.03, (dt, J = 17.0, 4.0 Hz)	2.03, (dt, J = 16.9, 4.0 Hz)	92.4	92.3	
2.20, (m)	2.23 – 2.17, (m)	86.7	86.7	
2.82, (dd, <i>J</i> = 15.0, 7.0 Hz)	2.82, (dd, <i>J</i> = 15.0, 7.0 Hz)	55.4	55.3	
2.93, (dd, <i>J</i> = 15.0, 7.0 Hz)	2.93, (dd, <i>J</i> = 15.0, 7.0 Hz)	51.7	51.7	
3.09, (dd, <i>J</i> = 11.0, 7.0 Hz)	3.09, (dd, <i>J</i> = 11.0, 7.0 Hz)	42.2	42.2	
3.80, (s)	3.80, (s)	41.2	41.2	
4.76, (d, <i>J</i> = 7.0 Hz)	4.76, (d, <i>J</i> = 7.0 Hz)	27.1	27.1	
5.87, (d, <i>J</i> = 5.5 Hz)	5.87, (d, <i>J</i> = 6.2 Hz)	25.5	25.5	
6.01, (s)	6.01, (s)	23.5	23.4	
13.53, (br. s)	13.52, (s)	22.9	22.9	
		22.8	22.8	
		22.0	22.0	
		20.8	20.7	
		16.3	16.3	

¹ H and ¹³ C NMR comparison betw	veen natural and synthetic Viminalin N (7)
--	--

¹ H-NM	R in CDCl ₃	¹³ C-NMI	R in CDCl₃
Natural viminalin N	Synthetic viminalin N	Natural	Synthetic
600 MHz	400 MHz	Viminalin N 150 MHz	viminalin N 100 MHz
0.87, (d, <i>J</i> = 7.0 Hz)	0.86, (d, J = 7.0 Hz)	209.1	209.0
0.91, (d, <i>J</i> = 7.0 Hz)	0.90, (d, <i>J</i> = 7.0 Hz)	166.3	166.3
1.15, (d, <i>J</i> = 7.0 Hz)	1.14, (d, <i>J</i> = 7.0 Hz)	162.5	162.4
1.18, (d, <i>J</i> = 7.0 Hz)	1.17, (d, <i>J</i> = 7.0 Hz)	162.0	161.9
1.46, (m)	1.45, (m)	129.8	129.8
1.80, (m)	1.82 – 1.73, (m)	128.6	128.5
1.90, (s)	1.89, (s)	110.1	110.1
2.02, (dt, J = 17.4, 4.1 Hz)	2.02, (dt, <i>J</i> = 17.4, 4.4 Hz)	101.8	101.8
3.10, (dd, <i>J</i> = 11.0, 7.0 Hz)	3.09, (dd, <i>J</i> = 11.0, 7.3 Hz)	92.5	92.4
3.72, (m)	3.71, (m)	86.8	86.7
3.81, (s)	3.80, (s)	55.4	55.4
4.76, (d, <i>J</i> = 7.0 Hz)	4.75, (d, <i>J</i> = 7.3 Hz)	42.3	42.2
5.87, (d, J = 5.5 Hz)	5.86, (d, <i>J</i> = 5.5 Hz)	41.2	41.1
6.02, (s)	6.01, (s)	38.7	38.7
13.54, (br. s)	13.54, (s)	27.1	27.0
		23.5	23.4
		22.0	22.0
		20.7	20.6
		19.2	19.1
		18.9	18.8
		16.3	16.2

3. References:

1. (a) A. J. Grenning, J. H. Boyce and J. A. Porco, *J. Am. Chem. Soc.,* 2014, **136**, 11799–11804; (b) I. B. Thomsen and K. B. G. Torssell, *Acta Chemica Scandinavica*, 1991, **45**, 539–542.