Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Three-State Switching in a Double-Pole Change-Over Nanoswitch Controlled by Redox-Dependent Self-Sorting

Sudhakar Gaikwad, Merve Sinem Özer, Susnata Pramanik, Michael Schmittel*

Center of Micro and Nanochemistry and Engineering, Organische Chemie I,

Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany

E-mail: schmittel@chemie.uni-siegen.de

Table of Contents

1.	NMR spectra	S02
2.	UV-vis spectra	S17
3.	ESI-MS spectra	S22
4.	Cyclic voltammetry	S26
5.	Binding constants	S29
6.	References	S31

1. NMR spectra

Figure S1. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound **3**.

Figure S2. ¹H-¹H COSY NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound **3**.

Figure S3. ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K) of compound 3.

Figure S4. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound 4.

Figure S5. ¹H-¹H COSY NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound **4**.

Figure S6. ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K) of compound 4.

Figure S7. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound 5.

Figure S8. ¹H-¹H COSY NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound 5.

Figure S9. ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K) of compound 5.

Figure S10. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound 6.

Figure S11. ¹H-¹H COSY NMR spectrum (CDCl₃, 400 MHz, 298 K) of compound 6.

Figure S12. ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K) of compound 6.

Figure S13. ¹H NMR spectrum (CD₂Cl₂, 600 MHz, 298 K) of compound 1.

Figure S14. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, 600 MHz, 298 K) of compound 1.

Figure S16. Comparison of partial ¹H NMR spectra of A) the bromo-azaterpyridine (CDCl₃, 400 MHz, 298 K) and B) nanoswitch **1** (CD₂Cl₂, 400 MHz, 298 K).

Figure S17. Comparison of partial ¹H NMR spectra (CD₂Cl₂, 400 MHz, 298 K) of nanoswitch **1** at two different concentrations: (A) 0.55 mM, and (B) 2.90 mM.

Figure S18. ¹H NMR spectrum (CD₂Cl₂, 600 MHz, 298 K) of $[Cu(1)]^+$ complex.

Figure S19. 1 H- 1 H COSY NMR spectrum (CD₂Cl₂, 600 MHz, 298 K) of [Cu(1)]⁺ complex.

Figure S20. Comparison of partial ¹H NMR spectra (CD_2Cl_2 , 400 MHz, 298 K) demonstrating the reversibility of switching between states I and II of nanoswitch **1** as realized by successive addition of equimolar amounts of Cu^+ (**B** and **D**, State II) and 2.0 equiv. of 2-ferrocenyl-9-mesityl-[1,10]-phenanthroline (**A**, **C** and **E**, State I). Peaks of the homoleptic copper(I) complex of 2-ferrocenyl-9-mesityl-[1,10]-phenanthroline are indicated by the asterisk.¹

Figure S21. Comparison of partial ¹H NMR spectra (CD₂Cl₂, 400 MHz, 298 K) of A) complex $[Cu(1)]^+ =$ State II and B) after addition of 1.0 equiv. of TBA⁺⁺BF₄⁻⁻ to the solution of nanoswitch **1**, the reaction mixture was heated at 40 °C for 5 min to ensure the formation of State III, a color change occurred from a greenish purple to orange red confirming detachment of azaterpyridine arm from the ZnPor unit of **1**. Subsequently, the putative solution was reduced by BFD and ¹H NMR was measured. The NMR spectrum showed regeneration of State II.

Figure S22. Comparision of partial ¹H NMR spectra (CD_2Cl_2 , 400 MHz, 298 K) of A) State I (1, 960 µg, 0.367 µmol); B) after addition of 1.0 equiv. of ($[Cu(CH_3CN)_4][B(C_6F_5)_4]$ (332 µg, 0.367 µmol) to give $[Cu(1)]^+$ = State II; C) after addition of 1.0 equiv. of TBA⁺⁺BF4⁻ (209 µg, 0.367 µmol) the reaction mixture was sonicated at 40 °C for 5 min to ensure the formation of State III, a color change occurred from a greenish purple to orange red confirming detachment of the azaterpyridine arm from the ZnPor unit. Subsequently, the putative solution was reduced by 3-(11-bromoundecyl)-1,10-biferrocenylene² (BFD, 231 µg, 0.367 µmol) and the ¹H NMR was measured. The NMR spectrum showed regeneration of State II; D) 2.0 equiv. of 2-ferrocenyl-9-mesityl-[1,10]-phenanthroline (354 µg, 0.734 µmol) was added and the reaction mixture was heated at 40 °C to reset to State I. Peaks of the homoleptic copper(I) complex of 2-ferrocenyl-9-mesityl-[1,10]-phenanthroline are indicated by the asterisk.

2. UV-vis spectra

Figure S23. UV-vis spectra of uncoordinated ZnTPP compound 10 (10^{-6} M) and nanoswitch 1 (10^{-6} M) in dichloromethane at 298 K.

Figure S24. UV-vis spectra of nanoswitch 1 at 10^{-4} M and 10^{-6} M in dichloromethane at 298 K.

Figure S25. UV-vis spectra of State II = $[Cu(1)]^+$ (2 × 10⁻⁴ M) and State III = $[Cu(1)]^{2+}$ (2 × 10⁻⁴ M) in dichloromethane at 298 K.

After addition of 1.0 equiv. of TBA⁺⁺ to solution of State II (= $[Cu(1)]^+$) in dichloromethane, the Q-band at 561 nm shifted to 553 nm within 12 min at room temperature confirming a swing of the azaterpyridine rotary arm from the ZnPor to the copper(I)-loaded phenanthroline station.

Figure S26. UV-vis spectra of State III = $[Cu(1)]^{2+}$ (2 × 10⁻⁴ M) and reset of State II = $[Cu(1)]^{+}$ (2 × 10⁻⁴ M) in dichloromethane at 298 K.

After addition of 1.0 equiv. of dmfc to solution of State III (= $[Cu(1)]^{2+}$) in dichloromethane, the Q-band at 553 nm shifted to 561 nm within 1 min at room temperature attesting relocation of the azaterpyridine arm from the copper(I)-loaded phenanthroline to the ZnPor station.

Figure S27. UV-vis spectra showing reversible switching between State II and State III of the nanoswitch 1.

A mixture of nanoswitch 1 (262 µg, 0.100 µmol) and 1.0 equiv. of $[Cu(CH_3CN)_4][B(C_6F_5)_4]$ (91 µg, 0.100 µmol) was dissolved in dichloromethane (500 µl, $c = 2 \times 10^{-4}$ M) to afford State II (= $[Cu(1)]^+$, red trace). The UV-vis spectrum displays an absorption at 561 nm (Q-band). After treatment with 1.0 equiv. of TBA⁺⁺ (82 µg, 0.100 µmol), the Q-band shifted to 553 nm within 12 min (blue trace) at room temperature. After reduction of State III with 1.0 equiv. of dmfc (33 µg, 0.100 µmol), the Q-band shifted back to 561 nm within 1 min at room temperature (black trace) suggesting formation of State II.

3. ESI-MS spectra

Figure S28. ESI-MS spectrum of compound 3 in dichloromethane after protonation.

Figure S29. ESI-MS spectrum of compound 4 in dichloromethane after protonation.

Figure S30. ESI-MS spectrum of compound 5 in dichloromethane after protonation.

Figure S31. ESI-MS spectrum of compound 6 in dichloromethane after protonation.

Figure S32. ESI-MS spectrum of compound 1 in dichloromethane after protonation.

Figure S33. ESI-MS spectrum of complex 1 (State II = $[Cu(1)]^+$) in dichloromethane.

Figure S34. ESI-MS spectrum obtained after oxidation of State II = $[Cu(1)]^+$ by TBA^{+•} in dichloromethane.

Figure S35. ESI-MS spectrum obtained after reduction of State III = $[Cu(1)]^{2+}$ (solution from Figure S34) by dmfc in dichloromethane.

4. Cyclic voltammetry

Figure S36. CV of nanoswitch **1** (scan rate of 100 mVs⁻¹) in dry dichloromethane: $Fc^{0/+}$ at $E_{1/2} = 0.45 V_{SCE}$ and ZnPor^{0/+} at $E_{1/2} = 0.66 V_{SCE}$.

Figure S37. DPV study of nanoswitch 1 in dry dichloromethane (scan rate of 20 mVs⁻¹ and a pulse height of 2 mV).

Figure S38. CV of complex $[Cu(1)]^+$ in dry dichloromethane (scan rate of 100 mV s⁻¹).

Figure S39. DPV study of complex $[Cu(1)]^+$ in dry dichloromethane (scan rate = 20 mVs⁻¹ and pulse height = 2 mV). Fc^{0/+} at $E_{1/2} = 0.74$ V_{SCE}, ZnPor^{0/+} at $E_{1/2} = 0.78$ V_{SCE} and Cu^{+/2+} at $E_{1/2} = 1.22$ V_{SCE}.

Figure S40. CV of complex $[Cu(1)]^+$ in dry dichloromethane (scan rate of 100 mV s⁻¹) after chemical oxidation with 1.0 equiv. of TBA⁺⁺: Cu^{+/2+} shows up in two coordination scenarios at $E_{1/2} = 0.69$ and at 1.10 V_{SCE}. The scan was started 5 min after mixing.

Figure S41. CV of the mixture of 1, Cu^+ and TBA^{+} (solution from Figure S40) after reduction with one equiv. of dmfc.

5. Binding Constants

Figure S42. UV-vis spectra of switch 1 (2.5×10^{-5} M) in CHCl₃ (0.5 mL) upon addition of $[Cu(CH_3CN)_4]B(C_6F_5)_4$ (1.2×10^{-4} M) at 298 K to afford $[Cu(1)]^+$. Only the wavelength region 250-400 nm was analyzed affording log $K = 9.39 \pm 1.03$ (SPECFIT software).

Figure S43. Hess cycle to predict the reduction of binding at the $[Cu(fcbipy^{+\bullet})(phenAr_2)]$ site in $[Cu(1)]^{2+}$. The change of binding strength by $\Delta \log K = 4.9 = 9.4 - 4.5$ implies detachment of the fcbipy arm from the $[Cu(phenAr_2)]^+$ unit.

Figure S44. In $[Cu(1)]^{2+}$ (disfavored constitutional isomer) the $[Cu(fcbipy^{+\bullet})(phenAr_2)]$ complex is stabilized by log K = 4.5, whereas the $[Cu(azatpy)(phenAr_2)]$ complex in $[Cu(1)]^{2+}$ = State III has a binding strength of log K = 7.4 (approximated from that in $[Cu(7)]^{+}$).³ From $\Delta \log K = 2.9$ one can derive that the equilibrium is 99.9% on the side of State III.

6. References

- 1 S. De, S. Pramanik and M. Schmittel, *Angew. Chem. Int. Ed.* 2014, **53**, 14255–14259.
- (a) R. Breuer and M. Schmittel, *Organomet.*, 2012, **31**, 6642–6651; (b) R. Breuer and M. Schmittel, *Organomet.*, 2013, **32**, 5980–5987.
- 3 S. Gaikwad, A. Goswami, S. De and M. Schmittel, *Angew. Chem., Int. Ed.*, 2016, **55**, 10512–10517.