Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Cu-Mediated Arylselenylation of Aryl Halides with Trifluoromethyl Aryl Selenonium Ylides

Shuai Wu, Jin Shi, Cheng-Pan Zhang*

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China. E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com.

Table of contents

1. General information	S2
2. Screening the optimal reaction conditions for 1b and 2a	S2
3. Typical procedures for the synthesis of trifluoromethyl aryl selenium ylide 1	S6
4. General procedure for the synthesis of diaryl selenides 3	.S10
5. Control experiments	S21
6. The NMR spectra of 1 , 3 , 4 , 5 , 6 and 7	S32

1. General information

All reactions were carried out under a nitrogen atmosphere unless otherwise stated. The NMR spectra were recorded in CDCl₃ or CD₃COCD₃ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), and 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (0 ppm for ¹H NMR) and PhOCF₃ (58.0 ppm for ¹⁹F NMR) as an internal or external standard, respectively. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s =singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. The HPLC experiments were carried out on a Wufeng LC-100 II instrument (column: Shodex, C18, 5 µm, 4.6 \times 250 mm), and the HPLC yields of the products were determined by using the corresponding pure compounds as the external standards. Melting points were measured and uncorrected. MS experiments were performed on a TOF-Q ESI or EI instrument. Trifluoromethyl aryl selenium ylides (1a-b¹ and 1f-j¹), dimethyl 2-(phenylselanyl)malonate (4)² and aryl trifluoromethyl selenoethers³ (starting materials for the synthesis of 1) were synthesized according to the literatures. Solvents were purified according to the literature.⁴ Other reagents used in the reactions were all purchased from the commercial sources and used without further purification.

2. Screening the optimal reaction conditions for 1b and 2a

Ph 2a O	$\begin{array}{c} \begin{array}{c} & & \\ $	(1 equiv) 00 °C, 24 h Ph 3b	NO ₂ Ph 3a'
Entry	Catalyst	Yield (3b , %) ^b	Yield (3a' , %) ^b
1	CuI	8	4
2	CuCl	27	10
3	CuBr	16	7
4	CuOAc	54	6
5	CuSCN	5	0
6	CuCN	18	3
7	CuOTf	40	6

Table S1. Reaction of 2a with 1b in the presence of different Cu-catalysts.^a

8	Cu(OAc) ₂	45	0
9	CuSO ₄	36	0
10	Cu(acac) ₂	44	2
11	Cu	48	3

^a Reaction conditions: a mixture of **2a** (0.2 mmol), **1b** (0.2 mmol), and catalysts (0.2 mmol) in DMF (2 mL) was reacted at 100 °C for 24 h. ^b Yields were determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane (**3b**, t_R = 15.24 min) and 4-(trifluoromethyl)-1,1'-biphenyl (**3a**', t_R = 8.54 min) as external standards, respectively.

Table S2. CuOAc-Catalyzed reaction of 2a with 1b at different temperature.^a

Ph 2a	$\begin{array}{c} & & \\$	(1.2 equiv) mp., 24 h Ph 3b	+ NO ₂ Ph 3a'
Entry	Temp. (°C)	Yield (3b , %) ^b	Yield (3a' , %) ^b
1	r.t.	0	1
2	60	trace	8
3	80	38	6
4	100	56	6

^a Reaction condition: a mixture of **2a** (0.2 mmol), **1b** (0.24 mmol), and CuOAc (0.24 mmol) in DMF (2 mL) was reacted at different temperature for 24 h. ^b Yields were determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane (**3b**, t_R = 15.24 min) and 4-(trifluoromethyl)-1,1'-biphenyl (**3a**', t_R = 8.54 min) as external standards, respectively.

Table S3. CuOAc-Catalyzed reaction of 2a with 1b in different solvents.^a

1	DMSO	64	2
2	1,4-dioxane	trace	2
3	toluene	11	0
4	CH ₃ CN	60	2
5	DCE	16	0
6	DMF	56	6
7	NMP	52	8

^a Reaction condition: a mixture of **2a** (0.2 mmol), **1b** (0.24 mmol), and CuOAc (0.24 mmol) in solvent (2 mL) was stirred at 100 °C for 24 h. ^b Yields were determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane (**3b**, t_R = 15.24 min) and 4-(trifluoromethyl)-1,1'-biphenyl (**3a**', t_R = 8.54 min) as external standards, respectively.

Ph 2a	$M = O_2C + CF_3 - CO_2Me$ $M = O_2C + CO_2Me$ (1 equiv)	Cu (1 equiv) 100 °C, 3 h Ph 3b	NO ₂ ⁺ Ph Gr ₃ 3a'
Entry	Solvent	Yield (3b , %) ^b	Yield (3a' , %) ^b
1	DMSO	42	3
2	CH ₃ CN	15	6
3	DMF	54	3

Table S4. The Cu-catalyzed reaction of 2a with 1b in different solvent.^a

^a Reaction condition: a mixture of **2a** (0.2 mmol), **1b** (0.2 mmol), and Cu (0.2 mmol) in solvent (2 mL) was reacted at 100 °C for 3 h. ^b Yields were determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(4nitrophenyl)selane (**3b**, t_R = 15.24 min) and 4-(trifluoromethyl)-1,1'-biphenyl (**3a**', t_R = 8.54 min) as external standards, respectively.

Table S5. The effects of molar ratios of 2a, 1a and Cu on the reaction.^a

. (D ₂ N	0-	
+	+ CF ₃ <u>Cu (v</u>	v equiv) °C, 3 h	CF ₃
2a		3b	3a'
	(x equiv)		
Entry	[2a] :[1b]:[Cu]	Yield (3b , %) ^b	Yield (3a' , %) ^b
1	1:1.2:1.2	49	3
2	1:1.2:2	56	3
3	1:1.5:1.5	60	12
4	1:2:2	84, 81°	6
5 ^d	1:2:2	84	7
6	1:2:3	62	9
7	1:2:2.5	59	7
8	1:2:1.5	56	7
9	2:1:2	48	7
10 ^e	1:2:2	14	9
11 ^f	1:2:2	68	10
12 ^g	1:2:2	0	trace
13 ^h	1:2:2	92	4
14	1:2.5:2.5	72	7
15	1:3.5:2	58	10

^a Reaction condition: a mixture of **2a** (0.2 mmol), **1b** (x equiv), and Cu (y equiv) in DMF (2 mL) was reacted at 100 °C for 3 h. ^b Yields were determined by HPLC (λ = 253 nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane (**3b**, t_R = 15.24 min) and 4-(trifluoromethyl)-1,1'-biphenyl (**3a**', t_R = 8.54 min) as external standards, respectively. ^c Isolated yield. ^d 6 h. ^eCuOAc. ^fCuOAc, 24 h. ^gCuSCN. ^hCuOAc, DMSO, 24 h.

Table S6. Reaction of 2a, 1b and CuOAc with different times.^a

Ph 2a	$\begin{array}{c} O_2 N \\ + \\ MeO_2 C \\ 1b \\ (2 equiv) \end{array}$	CuOAc (2 equiv) 100 °C, DMSO time	Se CF_3 NO_2 Ph $3a'$
Entry	Time (h)	Yield (3b , %) ^b	Yield (3a' , %) ^b
1	3	29	4
2	6	46	4
3	12	51	4
4	16	69	4
5	20	94, 94°	5
6	24	92	4
7	36	93	5

^a Reaction condition: a mixture of **2a** (0.2 mmol), **1b** (0.4 mmol), and CuOAc (0.4 mmol) in DMSO (2 mL) was reacted at 100 °C for 3-36 h. ^b Yields were determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane (**3b**, t_R = 15.24 min) and 4-(trifluoromethyl)-1,1'-biphenyl (**3a**', t_R = 8.54 min) as external standards, respectively. ^c Isolated yield.

3. Typical procedures for the synthesis of trifluoromethyl aryl selenium ylide 1

Procedure A: In a nitrogen-filled glovebox, an oven-dried flask was charged with *p*-tolyl(trifluoromethyl)selane (1.20 g, 5.0 mmol), Rh₂(esp)₂ (3.8 mg, 0.005 mmol), and CH₂Cl₂ (40 mL) with stirring. A solution of diazomalonate (0.948 g, 6.0 mmol) in CH₂Cl₂ (10 mL) was added slowly at room temperature during a period of 30 min. The mixture was heated at 40 °C for 1 h, cooled to room temperature, and concentrated to dryness under the reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate (1:1 (v/v)) as eluents to give 0.846 g of 1c as a white solid (91%). Dimethyl 2-(p-tolyl(trifluoromethyl)- λ^4 -selanylidene)malonate (1c)

M.p.: 102-103 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 3.70 (s, 6H), 2.43 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -45.3 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 143.5, 131.3, 128.7, 123.6, 120.5 (q, J = 357.3 Hz), 64.9, 51.4, 21.4. IR (KBr): 3077, 3023, 2959, 2851, 1744, 1690, 1649, 1587, 1488, 1440, 1322, 1231, 1210, 1170, 1075, 1056, 1040, 940, 808, 758, 741 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₁₄F₃O₄Se ([M + H]⁺): 371.0004; Found: 370.9998.

Dimethyl 2-(phenyl(trifluoromethyl)- λ^4 -selanylidene)malonate (1a)

Light yellow solid (0.801 g, 90%), a mixture of petroleum ether and ethyl acetate (1:1 (v/v)) as eluents for column chromatography. M.p.: 78-80 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.58 (m, 5H), 3.73 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -44.9 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 132.5, 130.6, 128.7, 127.0, 120.5 (q, *J* = 357.6 Hz), 64.8, 51.5. IR (KBr): 3090, 3074, 3018, 2960, 2850, 1748, 1697, 1648, 1479, 1440, 1325, 1233, 1205, 1169, 1074, 1055, 999, 941, 759, 741, 685 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₂H₁₂F₃O₄Se ([M + H]⁺): 356.9847; Found: 356.9857.

Dimethyl 2-((4-methoxyphenyl)(trifluoromethyl)- λ^4 -selanylidene)malonate (1d)¹

Light yellow oil (0.924 g, 96%), a mixture of petroleum ether and ethyl acetate (1:1 (v/v)) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 8.9 Hz, 2H), 7.05 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H), 3.70 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -45.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 163.1, 131.0, 120.5 (q, J = 357.7 Hz), 117.1, 116.1, 65.4, 55.7, 51.4.

Dimethyl 2-((4-chlorophenyl)(trifluoromethyl)- λ^4 -selanylidene)malonate (1e)

White solid (0.317 g, 68%), a mixture of petroleum ether and ethyl acetate (1:1 (v/v)) as eluents for column chromatography. M.p.: 113-115 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.55 (m, 4H), 3.71 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -44.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 139.5, 130.9, 130.2, 125.1, 120.5 (q, *J* = 357.6 Hz), 65.1, 51.6. IR (KBr): 3098, 3083, 3013, 2994, 2950, 2911, 2843, 1684, 1630, 1439, 1394, 1336, 1239, 1197, 1186, 1161, 1100, 1076, 1005, 813, 764, 737 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₂H₁₁ClF₃O₄Se ([M + H]⁺): 390.9458; Found: 390.9452.

Dimethyl 2-((4-cyanophenyl)(trifluoromethyl)- λ^4 -selanylidene)malonate (**1g**)

White solid (0.537 g, 94%), a mixture of petroleum ether and ethyl acetate (1:1 (v/v)) as eluents for column chromatography. M.p.: 125-127 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 3.72 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -43.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 133.8, 130.2, 127.7, 125.7, 121.8, 120.5 (q, *J* = 357.5 Hz), 65.0, 51.6. IR (KBr): 3093, 3071, 2949, 2849, 2236, 1678, 1633, 1440, 1326, 1244, 1196, 1187, 1163, 1083, 1053, 1009, 957, 825, 761, 738 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₁₁F₃O₄Se ([M + H]⁺): 381.9800; Found: 381.9802.

Procedure B: In a nitrogen-filled glovebox, an oven-dried flask was charged with aryl trifluoromethylselenoether (1 equiv), $Rh_2(esp)_2$ (0.1 mol%), and CH_2Cl_2 with stirring. A solution of diazomalonate (1.2 equiv) in CH_2Cl_2 was added slowly at room temperature during a period of 30 min. The mixture was heated at 40 °C for 1 h, cooled to room temperature, and concentrated to dryness under the reduced pressure. The residue was purified by crystallization from layering a solution of the crude product in dichloromethane with diethyl ether to afford the desired product (1b, 1f, and 1h-j).

Dimethyl 2-((4-nitrophenyl)(trifluoromethyl)- λ^4 -selanylidene)malonate (1b)¹

Yellow solid (3.2 g, 80%). M.p.: 113-115 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, J = 8.7 Hz, 2H), 7.85 (d, J = 8.7 Hz, 2H), 3.74 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ - 43.5 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 150.3, 133.7, 130.0, 125.3, 120.5 (q, J = 358.5 Hz), 65.4, 51.8.

Dimethyl 2-([1,1'-biphenyl]-4-yl(trifluoromethyl)- λ^4 -selanylidene)malonate (1f)¹

White solid (0.450 g, 52%). M.p.: 122-124 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 3.73 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -44.9 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 145.7, 138.9, 129.3, 129.2, 129.1, 128.7, 127.3, 125.4, 120.5 (q, J = 357.0 Hz), 64.9, 51.5.

Dimethyl 2-((3-nitrophenyl)(trifluoromethyl)- λ^4 -selanylidene)malonate (1h)¹

Grey solid (0.442 g, 73%). M.p.: 127-129 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.50-8.47 (m, 2H), 7.99 (d, J = 8.1 Hz, 1H), 7.82 (t, J = 8.1 Hz, 1H), 3.74 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -43.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 149.1, 134.4, 131.5, 128.9, 127.2, 124.2, 120.5 (q, J = 358.8 Hz), 65.4, 51.8.

Dimethyl 2-((2-nitrophenyl)(trifluoromethyl)- λ^4 -selanylidene)malonate (1i)¹

Yellow solid (0.777 g, 53%). M.p.: 116-118 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.52

(dd, J = 7.8, 1.3 Hz, 1H), 7.97 (dd, J = 7.9, 1.3 Hz, 1H), 7.91 (td, J = 7.8, 1.5 Hz, 1H), 7.86 (td, J = 7.9, 1.5 Hz, 1H), 3.70 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -42.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 146.3, 135.7, 133.8, 132.3, 126.7, 122.9, 120.5 (q, J = 357.2 Hz), 65.2, 51.6.

Diethyl 2-((4-nitrophenyl)(trifluoromethyl)- λ^4 -selanylidene)malonate (1j)

Yellow solid (0.483 g, 23%). M.p.: 123-125 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, *J* = 8.6 Hz, 2H), 7.86 (d, *J* = 8.6 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 4H), 1.23 (t, *J* = 7.1 Hz, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -43.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 150.2, 134.0, 130.0, 125.2, 120.5 (q, *J* = 358.9 Hz), 65.6, 60.7, 14.4. IR (KBr): 3098, 2982, 2953, 1677, 1638, 1601, 1526, 1478, 1398, 1373, 1347, 1320, 1233, 1203, 1182, 1088, 1070, 1050, 1007, 849, 764, 739, 708 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₂H₁₁F₃NO₆Se ([M + H]⁺): 430.0011; Found: 430.0007.

4. General procedure for the synthesis of diaryl selenides 3

In a nitrogen-filled glovebox, a sealed tube was charged with aryl halides (2, 0.2 mmol), trifluoromethyl aryl selenium ylide (1, 0.4 mmol), CuOAc (48.8 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100, 120 or 140 °C for 20 h, cooled to room temperature, and diluted with ethyl acetate (60 mL). The organic solution was washed by water (20×3 mL), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether or a mixture of petroleum ether and ethyl acetate as eluents to give the title compound (3).

[1,1'-Biphenyl]-4-yl(phenyl)selane (**3a**)⁵

White solid (41.5 mg from 100 °C, 67%; 44.6 mg from 120 °C, 72%), petroleum ether as eluent for column chromatography. M.p.: 64-66 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 7.8 H, 2H), 7.56-7.51 (m, 6H), 7.45 (t, *J* = 7.4 Hz, 2H), 7.37 (m, 1H), 7.33-7.30 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.4, 140.3, 133.3, 133.1, 131.1,

[1, 1'-Biphenyl]-4-yl(4-nitrophenyl)selane (**3b**)

Yellow solid (67.0 mg from **1b**, 94%; 39.1 mg from 4-PhC₆H₄Br (140 °C), 55%; 59.7 mg from **1j**, 84%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 95-97 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 9.0 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.64-7.61 (m, 4H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.43-7.39 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 143.8, 142.4, 139.9, 136.2, 129.9, 129.0, 128.7, 128.0, 127.1, 126.1, 124.0. IR (KBr): 3059, 2924, 1574, 1512, 1474, 1343, 1176, 1107, 1060, 1003, 850, 762, 734, 692 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₈H₁₄NO₂Se ([M + H]⁺): 356.0184; Found: 356.0178.

(4-Nitrophenyl)(phenyl)selane (3c)⁶

Yellow solid (54.2 mg from C₆H₅I, 97%; 39.0 mg from C₆H₅Br (140 °C), 70%), a mixture of petroleum ether and ethyl acetate (80:1 (v/v)) as eluents for column chromatography. M.p.: 56-58 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 6.8 Hz, 2H), 7.47-7.40 (m, 3H), 7.36 (d, *J* = 9.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.2, 144.0, 135.9, 130.1, 129.7, 129.4, 127.2, 124.0.

(4-Nitrophenyl)(p-tolyl)selane $(3d)^7$

Yellow solid (49.9 mg from 4-CH₃C₆H₄I, 85%; 34.0 mg from 4-CH₃C₆H₄Br (140 °C), 58%), a mixture of petroleum ether and ethyl acetate (80:1 (v/v)) as eluents for column chromatography. M.p.: 82-84 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.9 Hz, 2H), 7.53 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 8.9 Hz, 2H), 7.23 (d, *J* = 7.9, 2H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 144.8, 139.8, 136.2, 130.9, 129.2, 123.9, 123.3, 21.3.

(4-Methoxyphenyl)(4-nitrophenyl)selane (3e)⁶

Yellow solid (48.0 mg, 78%; 23.0 mg from 4-MeOC₆H₄Br (140 °C, 20 h), 37%; 32.2 mg from 4-MeOC₆H₄Br (140 °C, 48 h), 52%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 88-90 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 9.0 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 7.28 (d, *J* = 9.0 Hz, 2H), 6.95 (d, *J* = 8.9, 2H), 3.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.9, 145.9, 145.4, 138.2, 128.7, 123.9, 116.8, 115.8, 55.4.

(4-(Benzyloxy)phenyl)(4-nitrophenyl)selane (3f)

Yellow solid (48.4 mg, 63%; 47.7 mg from 4-BnOC₆H₄Br (140 °C), 62%), a mixture of petroleum ether and ethyl acetate (20:1 (v/v)) as eluents for column chromatography. M.p.: 107-109 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.9 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 2H), 7.46 (d, *J* = 7.1 Hz, 2H), 7.42 (d, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.0, 1H), 7.29 (d, *J* = 9.0 Hz, 2H), 7.03 (d, *J* = 8.5 Hz, 2H), 5.12 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.1, 146.0, 145.3, 138.2, 136.4, 128.8, 128.7, 128.2, 127.5, 123.9, 117.3, 116.7, 70.2. IR (KBr): 3084, 3063, 3028, 2929, 2876, 2848, 1588, 1573, 1510, 1492, 1359, 1345, 1281, 1242, 1176, 1108, 1079, 1059, 1012, 915, 840, 811, 751, 736, 700, 654 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₉H₁₉N₂O₃Se ([M + NH₄]⁺): 403.0555; Found: 403.0554.

(4-(Tert-butyl)phenyl)(4-nitrophenyl)selane (3g)

Yellow solid (63.5 mg, 95%; 40.5 mg from 4-*t*-BuC₆H₄Br (140 °C), 60%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 66-68 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.9 Hz,

2H), 7.56 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.8, 2H), 1.36 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 146.1, 144.4, 135.8, 129.5, 127.2, 123.9, 123.6, 34.8, 31.2. IR (KBr): 3100, 3061, 3027, 2952, 2901, 2867, 1595, 1575, 1509, 1474, 1398, 1341, 1323, 1176, 1113, 1075, 1061, 1009, 853, 838, 827, 739, 678 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₆H₁₈NO₂Se ([M + H]⁺): 336.0497; Found: 336.0483.

(4-Fluorophenyl)(4-nitrophenyl)selane (3h)⁸

Yellow solid (41.3 mg, 70%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 71-73 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 9.0 Hz, 2H), 7.64 (m, 2H), 7.32 (d, *J* = 8.9 Hz, 2H), 7.12 (t, *J* = 8.7 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -110.7 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 163.6 (d, *J* = 250.5 Hz), 146.3, 143.8, 138.3 (d, *J* = 8.3 Hz), 129.4, 124.0, 121.8 (d, *J* = 3.5), 117.4 (d, *J* = 21.8 Hz).

(4-Chlorophenyl)(4-nitrophenyl)selane (3i)⁹

Yellow solid (52.3 mg, 84%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 82-84 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.38-7.35(m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 146.4, 143.1, 137.1, 135.9, 130.3, 129.9, 125.5, 124.1.

(4-Bromophenyl)(4-nitrophenyl)selane (3j)

Yellow solid (39.6 mg, 56%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 97-99 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.14 (d, *J* = 8.7 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.57 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (126 MHz, acetone-d₆) δ 146.7, 142.4, 137.3, 133.2, 130.5, 126.7, 124.1, 123.4. IR (KBr): 3088, 3019, 2920, 2840, 1912, 1817,

1645, 1574, 1509, 1466, 1341, 1321, 1177, 1109, 1064, 1005, 851, 842, 808, 738, 709, 678 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₂H₉BrNO₂Se ([M + H]⁺): 357.8976; Found: 357.8973.

(4-Nitrophenyl)(4-(trifluoromethyl)phenyl)selane (3k)

Yellow solid (49.6 mg, 71%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 81-83 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 9.0 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.9 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -62.9 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 146.9, 141.2, 134.7, 133.2, 131.5, 131.0 (q, *J* = 32.8 Hz), 126.7 (q, *J* = 3.7 Hz), 124.3, 123.8 (q, *J* = 272.2 Hz). IR (KBr): 3097, 3068, 2962, 2920, 2850, 1595, 1577, 1508, 1475, 1398, 1341, 1324, 1168, 1123, 1100, 1081, 1065, 1056, 1016, 1009, 958, 852, 835, 817, 737, 690 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₉F₃NO₂Se ([M + H]⁺): 347.9745; Found: 347.9751.

Ethyl 4-((4-nitrophenyl)selanyl)benzoate (31)

Yellow solid (57.9 mg, 82%; 36.1 mg from 4-EtO₂CC₆H₅Br (140 °C), 60%), a mixture of petroleum ether and ethyl acetate (2:1 (v/v)) as eluents for column chromatography. M.p.: 111-113 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 8.9 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.9 Hz, 2H), 4.39 (q, *J* = 7.2 Hz, 2H), 1.40 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 146.8, 141.6, 134.3, 134.2, 131.4, 130.8, 130.8, 124.2, 61.3, 14.3. IR (KBr): 3090, 3059, 3038, 2979, 2925, 2909, 2850, 1945, 1817, 1702, 1589, 1575, 1517, 1488, 1474, 1400, 1369, 1349, 1287, 1274, 1184, 1106, 1058, 1011, 852, 760, 739, 688, 683 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₅H₁₄NO₄Se ([M + H]⁺): 352.0083; Found: 352.0078.

1-(4-((4-Nitrophenyl)selanyl)phenyl)ethan-1-one (3m)

Yellow solid (21.0 mg from CuOAc/DMF/20 h, 33%; 31.2 mg from Cu/DMF/3 h, 49%), a mixture of petroleum ether and ethyl acetate (10:1 (v/v)) as eluents for column chromatography. M.p.: 125-127 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 8.9 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 2.62 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.1, 147.0, 141.1, 137.1, 135.1, 134.1, 131.8, 129.5, 124.2, 26.6. IR (KBr): 3085, 3053, 3003, 2958, 2920, 2849, 1681, 1572, 1514, 1477, 1394, 1344, 1319, 1267, 1181, 1105, 1060, 1008, 957, 852, 827, 737, 682 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₄H₁₂NO₃Se ([M + H]⁺): 321.9977; Found: 321.9983.

N,*N*-Dimethyl-4-((4-nitrophenyl)selanyl)benzamide (**3n**)

Yellow solid (42.3 mg, 61%), a mixture of petroleum ether and ethyl acetate (2:1 (v/v)) as eluents for column chromatography. M.p.: 97-99 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.9 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 2H), 7.43-7.39 (m, 4H), 3.12 (s, 3H), 3.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 146.5, 142.6, 137.1, 135.3, 135.2, 130.5, 129.4, 128.6, 39.5, 35.4. IR (KBr): 3077, 3043, 2921, 2850, 1790, 1630, 1593, 1574, 1517, 1472, 1404, 1343, 1264, 1085, 1068, 1009, 851, 828, 736 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₅H₁₅N₂O₃Se ([M + H]⁺): 351.0242; Found: 351.0250.

4-((4-Nitrophenyl)selanyl)benzonitrile (30)

Yellow solid (27.2 mg from 4-NCC₆H₄I, 45%; 32.0 mg from 4-NCC₆H₄Br (140 °C), 53%), a mixture of petroleum ether and ethyl acetate (10:1 (v/v)) as eluents for column chromatography. M.p.: 134-136 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.6 Hz, 2H), 7.62-7.55 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 139.4, 136.1, 133.7, 133.0, 132.8, 124.5, 118.1, 112.2. IR (KBr): 3091, 3052, 3023, 2922, 2850,

2230, 1921, 1798, 1729, 1655, 1596, 1585, 1574, 1510, 1481, 1346, 1177, 1104, 1059, 1011, 851, 826, 737, 681, 547 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₁₂N₃O₂Se ([M + NH₄]⁺): 322.0089; Found: 322.0082.

4-((4-Nitrophenyl)selanyl)benzaldehyde (3p)

Yellow solid (53.9 mg, 88%), a mixture of petroleum ether and ethyl acetate (10:1 (v/v)) as eluents for column chromatography. M.p.: 135-137 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.02 (s, 1H), 8.13 (d, *J* = 8.8 Hz, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 191.1, 147.2, 140.2, 137.5, 136.0, 133.8, 132.4, 130.6, 124.3. IR (KBr): 3090, 3054, 2832, 2736, 1696, 1587, 1564, 1508, 1474, 1384, 1346, 1208, 1168, 1104, 1058, 1010, 852, 836, 737, 680 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₁₀NO₃Se ([M + H]⁺): 307.9820; Found: 307.9822.

(4-Nitrophenyl)(o-tolyl)selane (3q)

Yellow solid (50.0 mg, 85%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 61-63 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.40-7.38 (m, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.21 (m, 1H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 143.8, 142.4, 137.4, 131.0, 130.2, 129.2, 127.9, 127.4, 124.0, 22.8. IR (KBr): 3087, 3064, 2999, 2957, 2924, 2854, 1594, 1571, 1506, 1475, 1359, 1341, 1317, 1184, 1109, 1064, 1033, 1101, 851, 836, 750, 737, 677 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₃H₁₂NO₂Se ([M + H]⁺): 294.0028; Found: 294.0032.

(3-Nitrophenyl)(4-nitrophenyl)selane (3r)

Yellow solid (49.7 mg, 77%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 120-122 °C. ¹H NMR (500 MHz, acetone-d₆) δ 8.44 (s, 1H), 8.31 (d, *J* = 8.2 Hz, 1H), 8.17 (d, *J* = 8.7 Hz, 2H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 7.9 Hz, 1H), 7.70 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (126 MHz, acetone-d₆) δ 148.9, 147.2, 140.7, 140.6, 131.8, 131.2, 130.2, 128.9, 124.3, 123.7. IR (KBr): 3093, 3019, 3075, 2919, 2850, 1648, 1596, 1576, 1525, 1476, 1345, 1184, 1109, 1058, 870, 852, 835, 802, 729, 670 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₂H₉N₂O₄Se ([M + H]⁺): 324.9722; Found: 324.9724.

Mesityl(4-nitrophenyl)selane (3s)¹⁰

Yellow solid (53.9 mg, 84%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 89-91 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.9 Hz, 2H), 7.14 (d, *J* = 8.9 Hz, 2H), 7.06 (s, 2H), 2.42 (s, 6 H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.7, 144.8, 143.7, 140.3, 129.4, 127.7, 125.1, 124.0, 24.1, 21.1.

Naphthalen-1-yl(4-nitrophenyl)selane (3t)¹¹

Yellow solid (51.7 mg, 79%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 82-84 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 2H), 7.96 (d, *J* = 8.7 Hz, 2H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.58-7.49 (m, 3H), 7.23 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 143.9, 136.8, 134.6, 134.5, 131.2, 129.1, 128.9, 127.7, 126.8, 126.2, 126.0, 123.9.

4-((4-Nitrophenyl)selanyl)dibenzo[b,d]furan (**3u**)

Yellow solid (57.6 mg, 78%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 143-145 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 7.6 Hz, 1H), 8.02-7.98 (m, 3H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.41-7.38 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 156.7, 156.0, 146.4, 142.2, 134.7, 129.9, 127.9, 125.2, 124.1, 124.0, 124.0, 123.3, 122.5, 121.1, 112.0, 109.5. IR (KBr): 3101, 3054, 3019, 2835, 1787, 1664, 1593, 1575, 1503, 1475, 1466, 1447, 1408, 1341, 1318, 1260, 1220, 1183, 1142, 1108, 1066, 1031, 1010, 850, 844, 750, 737 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₈H₁₂NO₃Se ([M + H]⁺): 369.9977; Found: 369.9977.

4-((4-Nitrophenyl)selanyl)dibenzo[b,d]thiophene (3v)

Yellow solid (59.9 mg, 78%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 154-156 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, *J* = 7.9 Hz, 1H), 8.17 (m, 1H), 8.00 (d, *J* = 8.6 Hz, 2H), 7.83-7.81 (m, 2H), 7.54-7.48 (m, 3H) 7.33 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 146.4, 141.9, 139.3, 136.5, 136.0, 135.2, 129.5, 127.4, 125.7, 124.8, 124.1, 123.1, 122.9, 122.2, 120.3. IR (KBr): 3090, 3060, 2918, 2849, 1642, 1594, 1575, 1509, 1382, 1343, 1246, 1102, 1063, 1045, 1028, 1008, 851, 836, 797, 756, 738, 679 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₈H₁₂NO₂SSe ([M + H]⁺): 385.9748; Found: 385.9755.

[1,1'-Biphenyl]-4-yl(p-tolyl)selane $(3w)^9$

White solid (30.6 mg from 100 °C, 47%; 41.8 mg from 120 °C, 65%), petroleum ether as eluent for column chromatography. M.p.: 98-100 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 H, 2H), 7.49-7.43 (m, 8H), 7.36 (t, *J* = 6.9 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.5, 139.9, 137.8, 134.0, 132.4, 131.3, 130.3, 128.8, 127.9, 127.4, 127.0, 126.9, 21.2.

 $[1,1'-Biphenyl]-4-yl(4-methoxyphenyl)selane (3x)^9$

White solid (17.2 mg from 100 °C, 25%; 37.1 mg from 120 °C, 54%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 75-77 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.57-7.55 (m, 4H), 7.47-7.40 (m, 6H), 7.34 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.7 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 140.5, 139.5, 136.6, 132.4, 131.3, 128.8, 127.8, 127.3, 126.9, 112.0, 115.2, 55.3.

[1,1'-Biphenyl]-4-yl(4-chlorophenyl)selane (**3**y)⁹

White solid (55.7 mg, 81%), petroleum ether as eluent for column chromatography. M.p.: 119-121 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.8 Hz, 2H), 7.58-7.54 (m, 4H), 7.50-7.45 (m, 4H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 140.7, 140.3, 134.2, 133.6, 133.6, 129.7, 129.6, 128.9, 128.2, 127.6, 127.0.

 $Di([1,1'-biphenyl]-4-yl)selane (3z)^{12}$

White solid (47.4 mg from 100 °C, 61%; 51.3 mg from 120 °C, 66%), petroleum ether as eluent for column chromatography. M.p.: 177-179 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 8H), 7.55 (d, *J* = 7.8 Hz, 4H), 7.47 (t, *J* = 7.3 Hz, 4H), 7.38 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 140.4, 140.4, 133.4, 130.2, 128.9, 128.1, 127.5, 127.0.

4-([1,1'-Biphenyl]-4-ylselanyl)benzonitrile (3aa)

White solid (63.6 mg, 95%), a mixture of petroleum ether and ethyl acetate (20:1 (v/v)) as eluents for column chromatography. M.p.: 131-133 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 7.5 Hz, 4H), 7.49-7.46 (m, 4H). 7.41-7.39 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.1, 140.9, 139.9, 136.0, 132.4, 130.4, 129.0, 128.6, 127.9, 127.1, 126.4, 118.8, 109.8. IR (KBr): 3052, 3028, 2924, 2853, 2227, 1587, 1552, 1481, 1474, 1445, 1391, 1181, 1063, 1016, 1004, 833, 812, 763, 715, 695 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₉H₁₄NSe ([M + H]⁺): 336.0286; Found: 336.0285.

[1,1'-Biphenyl]-4-yl(3-nitrophenyl)selane (**3ab**)

Yellow solid (47.4 mg, 67%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 95-97 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (m, 1H), 8.07 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.61-7.58 (m, 4H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.43-7.37 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 148.7, 141.8, 140.0, 137.1, 135.1, 134.8, 129.9, 128.9, 128.6, 127.9, 127.4, 127.1, 125.9, 121.7. IR (KBr): 3098, 3049, 2919, 2855, 1522, 1477, 1346, 1004, 868, 836, 802, 763, 758, 729, 695 cm⁻¹. HRMS-ESI (m/z) calcd for

 $C_{18}H_{14}NO_2Se ([M + H]^+): 356.0184;$ Found: 356.0188.

[1,1'-Biphenyl]-4-yl(2-nitrophenyl)selane (**3ac**)

Yellow solid (27.7 mg, 39%), a mixture of petroleum ether and ethyl acetate (40:1 (v/v)) as eluents for column chromatography. M.p.: 121-123 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.34 (dd, J = 8.2, 0.9 Hz, 1H), 7.78 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.50 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.29 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.7, 142.8, 140.0, 137.8, 136.0, 133.7, 130.3, 129.0, 128.7, 128.0, 127.2, 127.0, 126.1, 125.8. IR (KBr): 3055, 3023, 2963, 2921, 2852, 1732, 1633, 1589, 1568, 1508, 1474, 1448, 1331, 1307, 1169, 1097, 1035, 1006, 875, 851, 830, 758, 724, 693 cm⁻¹. HRMS-ESI (m/z) calcd for C₁₈H₁₄NO₂Se ([M + H]⁺): 356.0184; Found: 356.0189.

5. Control experiments

5.1. Cu-Mediated reactions of 2a with trifluoromethyl aryl sulfonium ylide and trifluoromethyl aryl selenium ylides under the same conditions.

In a nitrogen-filled glovebox, a sealed tube was charged with 4-iodo-1,1'-biphenyl (**2a**, 56.0 mg, 0.2 mmol), **1a'** or **1a** or **1b** (0.4 mmol), Cu (25.6 mg, 0.4 mmol), and DMSO or DMF (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yields of **3a'** and 4-PhC₆H₄SPh or **3a** or **3b** were determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using 4-(trifluoromethyl)-1,1'-biphenyl (t_R = 8.54 min) and [1,1'-biphenyl]-4-yl(phenyl)sulfane (t_R = 17.04 min) or [1,1'-biphenyl]-4-yl(phenyl)selane (t_R = 18.78 min) or [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane (t_R = 15.24 min) as external standards, respectively.

5.2. CuOAc-Mediated reactions of 2a with trifluoromethyl aryl sulfonium ylide and trifluoromethyl aryl selenium ylides under the same conditions.

In a nitrogen-filled glovebox, a sealed tube was charged with 4-iodo-1,1'-biphenyl (**2a**, 56.0 mg, 0.2 mmol), **1b** or **1a** or **1a'** (0.4 mmol), CuOAc (48.8 mg, 0.4 mmol), and DMSO or DMF (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yields of **3a'** and **3b** or **3a** or 4-PhC₆H₄SPh were determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using 4-

(trifluoromethyl)-1,1'-biphenyl ($t_R = 8.54$ min) and [1,1'-biphenyl]-4-yl(4nitrophenyl)selane ($t_R = 15.24$ min) or [1,1'-biphenyl]-4-yl(phenyl)selane ($t_R = 18.78$ min) or [1,1'-biphenyl]-4-yl(phenyl)sulfane ($t_R = 17.04$ min) as external standards, respectively.

The ¹⁹F NMR spectrum of the reaction mixture (equation 8)

29.9 mg of $PhOCF_3$ was added to the reaction mixture as an internal standard. The yield of 4-(trifluoromethyl)-1,1'-biphenyl was calculated to be 5% and that of (4-

nitrophenyl)(trifluoromethyl)selane was found to be 19% based on PhOCF₃ added.

5.3. CuOAc-Mediated decomposition of 1a in the absence of aryl halide.

In a nitrogen-filled glovebox, a sealed tube was charged with dimethyl 2-(phenyl(trifluoromethyl)- λ^4 -selanylidene)malonate (**1a**, 71.2 mg, 0.2 mmol), CuOAc (24.4 mg, 0.2 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. 13.2 mg of PhOCF₃ was added as an internal standard and the yield of PhSeCF₃ (**6**) was measured by ¹⁹F NMR spectroscopy (38%). The reaction mixture was then diluted by ethyl acetate (60 mL). The organic solution was washed with water (20 × 3 mL), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether and a mixture of petroleum ether and ethyl acetate (40:1 to 10:1 (v/v)) as eluents to give 12.3 mg of **5** (39%), 4.0 mg of **4** (7%), and 3.5 mg of **7** (13%), respectively.

The ¹⁹F NMR spectrum of the reaction mixture (after addition of 13.2 mg PhOCF₃ and before workup)

1,2-Diphenyldiselane $(5)^{13}$

Yellow solid, petroleum ether for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 7.6 Hz, 4H), 7.31-7.27 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 131.5, 130.9, 129.2, 127.7.

Dimethyl 2-(phenylselanyl)malonate $(4)^2$

Yellow oil, a mixture of petroleum ether and ethyl acetate (20:1 (v/v)) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 7.2 Hz, 2H), 7.36 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.1 Hz, 2H), 4.50 (s, 1H), 3.72 (s, 6H).¹³C NMR (126) MHz, CDCl₃) δ 167.6, 135.7, 129.3, 129.2, 127.4, 53.1, 45.8.

Tetramethyl ethene-1,1,2,2-tetracarboxylate $(7)^{14}$

MeO₂C CO₂Me MeO₂C CO₂Me

Light yellow solid, a mixture of petroleum ether and ethyl acetate (10:1 (v/v)) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 3.87 (s, 12 H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6, 135.4, 53.4.

5.4. CuOAc-Mediated decomposition of 4 in the absence of aryl halide.

~~ ...

$$\begin{array}{c|c} \mathsf{Ph} & \mathsf{CO}_2\mathsf{Me} & \mathsf{CuOAc} (1 \text{ equiv}) \\ & \mathsf{CO}_2\mathsf{Me} & \mathsf{DMSO}, 100 \ {}^{\circ}\mathsf{C}, 20 \ \mathsf{h} \\ & \mathbf{5}, 54\% \end{array}$$

In a nitrogen-filled glovebox, a sealed tube was charged with dimethyl 2-(phenylselanyl)malonate (4,² 57.6 mg, 0.2 mmol), CuOAc (24.4 mg, 0.2 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h, cooled to room temperature, and diluted with ethyl acetate (60 mL). The organic solution was washed with water (20×3 mL), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography

on silica gel using petroleum ether as eluent to give 17.1 mg of 5 (54%).

5.5. CuOAc-Mediated reactions of 4, 5 and 6 with 2a under the standard conditions.

In a nitrogen-filled glovebox, a sealed tube was charged with dimethyl 2-(phenylselanyl)malonate (4,² 115.2 mg, 0.4 mmol), 4-iodo-1,1'-biphenyl (**2a**, 55.6 mg, 0.2 mmol), CuOAc (48.8 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yield of **3a** was determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(phenyl)selane (t_R = 18.78 min) as an external standard (88%).

In a nitrogen-filled glovebox, a sealed tube was charged with 1,2-diphenyldiselane (5, 62.8 mg, 0.2 mmol), 4-iodo-1,1'-biphenyl (**2a**, 56.0 mg, 0.2 mmol), CuOAc (48.8 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yield of **3a** was determined by HPLC (λ = 253 nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(phenyl)selane (t_R = 18.78 min) as an external standard (92%).

In a nitrogen-filled glovebox, a sealed tube was charged with phenyl(trifluoromethyl)selane (6,³ 90.4 mg, 0.4 mmol), 4-iodo-1,1'-biphenyl (2a, 55.6 mg, 0.2 mmol), CuOAc (48.8 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yield of 3a was determined by HPLC ($\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) using [1,1'-biphenyl]-4-yl(phenyl)selane ($t_R = 18.78$ min) as an external standard (0%).

5.6. CuOAc-Mediated competitive aryl selenylation and trifluoromethylation.

In a nitrogen-filled glovebox, a sealed tube was charged with 4-iodo-1,1'-biphenyl (**2a**, 56.0 mg, 0.2 mmol), (phenylselanyl)malonate (**4**, 115.0 mg, 0.4 mmol) CuOAc (48.8 mg, 0.4 mmol), TMSCF₃ (56.8 mg, 0.4 mmol), CsF (60.8 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yields of **3a'** (5%) and **3a** (92%) were determined by HPLC ($\lambda = 253 \text{ nm}, \text{H}_2\text{O/CH}_3\text{OH} = 15:85$ (v/v)) using 4-(trifluoromethyl)-1,1'-biphenyl (t_R = 8.54 min) and [1,1'-biphenyl]-4-yl(phenyl)selane (t_R = 18.78 min) as external standards, respectively.

In a nitrogen-filled glovebox, a sealed tube was charged with 4-iodo-1,1'-biphenyl (**2a**, 56.0 mg, 0.2 mmol), 1,2-diphenyldiselane (**5**, 62.8 mg, 0.2 mmol), CuOAc (48.8 mg, 0.4 mmol), TMSCF₃ (56.8 mg, 0.4 mmol), CsF (60.8 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yields of **3a'** (2%) and **3a** (97%) were determined by HPLC ($\lambda = 253 \text{ nm}, \text{H}_2\text{O/CH}_3\text{OH} = 15:85$ (v/v)) using 4-(trifluoromethyl)-1,1'-biphenyl (t_R = 8.54 min) and [1,1'-biphenyl]-4-yl(phenyl)selane (t_R = 18.78 min) as external standards, respectively.

5.7. Cu-Mediated arylselenylation of 2a by 1b in the presence of radical traps.

In a nitrogen-filled glovebox, a sealed tube was charged with 4-iodo-1,1'-biphenyl (2a,

56.0 mg, 0.2 mmol), **1b** (160.4 mg, 0.4 mmol), CuOAc (48.8 mg, 0.4 mmol), 2,2,6,6tetramethylpiperidine 1-oxyl (TEMPO, 62.5 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yield of **3b** (97%) was determined by HPLC using [1,1'-biphenyl]-4-yl(4nitrophenyl)selane ($t_R = 15.24$ min, $\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) as an external standard.

The ¹⁹F NMR spectrum of the reaction mixture (after addition of 21.3 mg CF₃CH₂OH as an internal standard)

In a nitrogen-filled glovebox, a sealed tube was charged with 4-iodo-1,1'-biphenyl (**2a**, 56.0 mg, 0.2 mmol), **1b** (160.4 mg, 0.4 mmol), CuOAc (48.8 mg, 0.4 mmol), 1,1-diphenylethylene (72.1 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yield of **3b** (99%) was determined by HPLC using [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane ($t_R = 15.24$

min, $\lambda = 253$ nm, H₂O/CH₃OH = 15:85 (v/v)) as an external standard.

The ¹⁹F NMR spectrum of the reaction mixture (after addition of 29.3 mg PhOCF₃ as an internal standard)

In a nitrogen-filled glovebox, a sealed tube was charged with 4-iodo-1,1'-biphenyl (**2a**, 56.0 mg, 0.2 mmol), **1b** (160.4 mg, 0.4 mmol), CuOAc (48.8 mg, 0.4 mmol), N,N-diallyl-4-methylbenzenesulfonamide (diallyl-PAST, 100.5 mg, 0.4 mmol), and DMSO (2 mL) with stirring. The mixture was reacted at 100 °C for 20 h and cooled to room temperature. The yield of **3b** (>99%) was determined by HPLC using [1,1'-biphenyl]-4-yl(4-nitrophenyl)selane ($t_R = 15.24 \text{ min}$, $\lambda = 253 \text{ nm}$, H₂O/CH₃OH = 15:85 (v/v)) as an external standard.

The ¹⁹F NMR spectrum of the reaction mixture (after addition of 32.0 mg PhOCF₃ as an internal standard)

Reference

1. H. Ge, Q. Shen, Org. Chem. Front. 2019, DOI: 10.1039/C8QO01249K.

2. J. H. Byers, G. C. Lane, J. Org. Chem. 1993, 58, 3355-3360.

3. P. Nikolaienko, M. Rueping, Chem. Eur. J. 2016, 22, 2620-2623.

4. W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 5th ed., Butterworth Heinemann: Oxford, **2003**.

5. R. An, L. Liao, X. Liu, S. Song, X. Zhao, Org. Chem. Front. 2018, 5, 3557-3561.

6. Y. Guan, S. D. Townsend, Org. Lett. 2017, 19, 5252-5255.

7. S. Zhang, A. Koe, C. Heintz, A. Senior, J. Jin, Tetrahedron Lett. 2016, 57, 260-263.

8. I. P. Beletskaya1, A. S. Sigeev1, A. S. Peregudov, P. V. Petrovskii, *Russ. J. Org. Chem.* 2001, *37*, 1463-1475.

9. B. Greenberg, E. S. Gould, W. Burlant, Chem. Lett. 2010, 39, 720-722.

10. N. Stuhr-Hansena, T. I. Sølling, L. Henriksen, Tetrahedron 2011, 67, 2633-2643.

11. W. Nakanishi, S. Hayashi, T. Uehara, Eur. J. Org. Chem. 2001, 3933-3943.

12. Y. Li, C. Nie, H. Wang, X. Li, F. Verpoort, C. Duan, *Eur. J. Org. Chem.* 2011, 7331-7338.

13. T. Leng, G. Wu, Y.-B. Zhou, W. Gao, J. Ding, X. Huang, M. Liu, H. Wu, *Adv. Synth. Catal.* **2018**, *360*, 4336-4340.

14. T. Angelini, F. Fringuelli, D. Lanari, F. Pizzo, L. Vaccaro, *Tetrahedron Lett.* 2010, *51*, 1566-1569.

6. The NMR spectra of 1, 3, 4, 5, 6 and 7

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S35

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-160.885 (145.917 (145.446 (145.446 (145.446 (145.313 (116.313 (116.313 (116.313) (116.313) (116.313)

-55.411

-160.084145.999 145.999 145.999 145.999 136.383 136.383 136.383 128.743 128.743 128.743 117.259 117.259 116.666

¹⁹F NMR (471 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

√164.609 ~162.616 146.307 143.307 143.307 138.311 138.346 138.346 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 138.3413 138.246 137.4025 137.4025 117.405

-191.146 -191.146 -191.146 -147.222 -137.455 -133.818 -133.418 -124.348

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S72

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

148.693 141.825 141.825 134.000 134.752 134.752 123.455 123.945 123.869 123.869 127.308 127.308 127.308 127.308 127.308

S76

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

S83