Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Curtachalasans, immunosuppressive agents from endophytic fungus

Xylaria cf. curta

Wen-Xuan Wang,^a Gui-Guang Cheng,^b Zheng-Hui Li,^a Hong-Lian Ai,^a Juan He,^a Jing Li,^{*a} Tao Feng,^{*a} and

Ji-Kai Liu*ª

^aSchool of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei

430074, PR China

^bYunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500,

PR China.

Content

Table S1. ¹H NMR data of 1-11 (CDCl₃, 600 MHz, *J* in Hz). **Fig. S1.** ¹H NMR of **1** (CDCl₃, 600 MHz). **Fig. S2.** ¹³C NMR of **1** (CDCl₃, 150 MHz). Fig. S3. DEPT of 1. Fig. S4. HSQC of 1. Fig. S5. HMBC of 1. **Fig. S6.** ¹H-¹H COSY of **1**. Fig. S7. ROESY of 1. Fig. S8. Experimental ECD of 1. Fig. S9. IR spectrum of 1. Fig. S10. HRESIMS of 1. **Fig. S11.** ¹H NMR of **2** (CDCl₃, 600 MHz). Fig. S12. ¹³C NMR of 2 (CDCl3, 150 MHz). Fig. S13. DEPT of 2. Fig. S14. HSQC of 2. Fig. S15. HMBC of 2. **Fig. S16.** ¹H-¹H COSY of **2**. Fig. S17. ROESY of 2. Fig. S18. Experimental ECD of 2. Fig. S19. IR of 2. Fig. S20. HRESIMS of 2. **Fig. S21.** ¹H NMR of **3** (CDCl₃, 600 MHz). Fig. S22. ¹³C NMR of 3 (CDCl₃, 150 MHz). Fig. S23. DEPT of 3. Fig. S24. HSQC of 3. Fig. S25. HMBC of 3. Fig. S26. ¹H-¹H COSY of 3. Fig. S27. ROESY of 3. Fig. S28. Experimental ECD of 3. Fig. S29. IR of 3. Fig. S30. HRESIMS of 3. **Fig. S31.** ¹H NMR of **4** (CDCl₃, 600 MHz). Fig. S32. ¹³C NMR of 4 (CDCl₃, 150 MHz). Fig. S33. DEPT of 4. Fig. S34. HSQC of 4. Fig. S35. HMBC of 4. **Fig. S36.** ¹H-¹H COSY of **4**. Fig. S37. ROESY of 4. Fig. S38. Experimental ECD of 4. Fig. S39. IR of 4. Fig. S40. HRESIMS of 4. Fig. S41. ¹H NMR of 5 (CDCl₃, 600 MHz). Fig. S42. ¹³C NMR of 5 (CDCl₃, 150 MHz).

Fig. S43. DEPT of 5. Fig. S44. HSQC of 5. Fig. S45. HMBC of 5. Fig. S46. ¹H-¹H COSY of 5. Fig. 547. ROESY of 5. Fig. S48. Experimental ECD of 5. Fig. S49. IR of 5. Fig. S50. HRESIMS of 5. Fig. S51. ¹H NMR of 6 (CDCl₃, 600 MHz). Fig. S52. ¹³C NMR of 6 (CDCl₃, 150 MHz). Fig. S53. DEPT of 6. Fig. S54. HSQC of 6. Fig. S55. HMBC of 6. **Fig. S56.** ¹H-¹H COSY of **6**. Fig. S57. ROESY of 6. Fig. S58. Experimental ECD of 6. Fig. S59. IR of 6. Fig. S60. HRESIMS of 6. Fig. S61. ¹H NMR of 7. Fig. S62. ¹³C NMR of 7. Fig. S63. DEPT of 7. Fig. S64. HSQC of 7. Fig. S65. HMBC of 7. **Fig. S66.** ¹H-¹H COSY of **7**. Fig. 567. ROESY of 7. Fig. S68. Experimental ECD of 7. Fig. S69. IR of 7. Fig. S70. HRESIMS of 7. **Fig. S71.** ¹H NMR of **8** (CDCl₃, 600 MHz). Fig. S72. ¹³C NMR of 8 (CDCl₃, 150 MHz). Fig. S73. DEPT of 8. Fig. 574. HSQC of 8. Fig. S75. HMBC of 8. Fig. S76. ¹H-¹H COSY of 8. Fig. S77. ROESY of 8. Fig. S78. Experimental ECD of 8. Fig. S79. IR of 8. Fig. S80. HRESIMS of 8. Fig. S81. ¹H NMR of 9 (CDCl₃, 600 MHz). Fig. S82. ¹³C NMR of 9 (CDCl₃, 150 MHz). Fig. S83. DEPT of 9. Fig. S84. HSQC of 9. Fig. S85. HMBC of 9. Fig. S86. ¹H-¹H COSY of 9.

Fig. 587. ROESY of 9. Fig. S88. Experimental ECD of 9. Fig. S89. IR of 9. Fig. S90. HRESIMS of 9. **Fig. S91.** ¹H NMR of **10** (CDCl₃, 600 MHz). Fig. S92. ¹³C NMR of **10** (CDCl₃, 150 MHz). Fig. S93. DEPT of 10. Fig. S94. HSQC of 10. Fig. S95. HMBC of 10. **Fig. S96.** ¹H-¹H COSY of **10**. Fig. S97. ROESY of 10. Fig. S98. Experimental ECD of 10. Fig. S99. IR of 10. Fig. S100. HRESIMS of 10. **Fig. S101.** ¹H NMR of **11** (CDCl₃, 600 MHz). Fig. S102. ¹³C NMR of **11** (CDCl₃, 150 MHz). Fig. S103. DEPT of 11. Fig. S104. HSQC of 11. Fig. S105. HMBC of 11. **Fig. S106.** ¹H-¹H COSY of **11**. Fig. S107. ROESY of 11. Fig. S108. Experimental ECD of 11. Fig. S109. IR of 11. Fig. S110. HRESIMS of 11.

No	1	2	3	4	5
3	3.66 (dd, 7.5, 7.5)	3.38 m	3.32 (br dd, 8.2, 6.9)	4.97 m	3.33 overlapped
4	2.29 overlapped	2.10 br s	2.44 br s	2.28 overlapped	2.34 br s
5		2.50 m			
7	4.00 (d, 10.1)	4.46 br s	3.92 br s	4.20 (d, 3.0)	4.24 (d, 9.6)
8	2.46 (dd, 10.1, 10.1)				1.88 (dd, 9.6, 9.6)
10	2.93 m	2.62 (dd, 13.8, 9.0); 2.91 (dd, 13.8, 3.8)	3.00 (dd, 13.2, 8.2); 3.06 (dd, 13.2, 6.9)	3.08 (dd, 12.9, 4.7); 2.49 (dd, 12.9, 10.5)	2.94 (dd, 13.6, 6.7); 2.86 (dd, 13.6, 7.9)
11	1.09 s	1.04 (d, 6.3)	1.26 s	0.80 s	1.20 s
12	1.34 s	5.07 br s; 5.48 br s	1.64 s	1.47 s	1.61 s
13	4.76 (dd, 10.1, 10.1)	5.96 br s	5.86 br s	2.09 (dd, 15.4, 3.6); 1.59 (dd, 15.4, 12.6)	4.70 (dd, 9.6, 9.6)
14	1.58 (dddd, 12.3, 10.1, 10.1, 3.4)	2.07 overlapped		1.81 (ddddd, 12.0, 12.0, 12.0, 3.9, 3.9)	1.61 overlapped
15	1.92 m; 1.29 (ddd, 12.3, 12.3, 12.3)	1.59 (ddd, 12.9, 4.0, 4.0); 1.35 (ddd, 12.9,	2.0 (br dd, 13.4, 4.0); 2.29 br dd, 13.4, 13.4	1.30 m; 1.49 overlapped	1.93 (br dd, 11.0, 4.0); 1.27 (ddd, 11.0,
		12.9, 12.9)			11.0, 11.0)
16	1.84 m	1.93 m	1.89 m	1.87 m	1.85 m
19	3.40 (d, 10.1)	3.46 (d, 10.0)	3.64 (dd, 9.6, 8.6)	3.47 (dd, 10.4, 10.4)	3.41 (dd, 10.5, 8.1)
20	2.31 (ddd, 10.1, 10.1, 2.0)	2.74 (dd, 10.0, 10.0)	2.84 (dd, 9.6, 3.8)	2.29 overlapped	2.36 overlapped
21	5.35 (d, 2.0)	5.30 br s	5.69 (d, 3.8)	5.56 (d, 1.8)	5.50 br s
22	2.25 s	2.26 s	2.25 s	2.27 s	2.24 s
23	0.74 (d, 6.7)	0.75 (d, 6.6)	0.71 (d, 6.6)	0.74 (d, 6.6)	0.72 (d, 6.5)
25/29	7.15 (d, 7.6)	7.13 (d, 7.5)	7.20 (d, 7.5)	7.17 (d, 7.4)	7.13 (d, 7.0)
26/28	7.30 (dd, 7.6, 7.6)	7.27 (dd, 7.5, 7.5)	7.29 (dd, 7.5, 7.5)	7.31 (dd, 7.4, 7.4)	7.26 (dd, 7.0, 7.0)
27	7.23 (t, 7.6)	7.20 (t, 7.5)	7.22 overlapped	7.22 (dd, 7.4)	7.18 (t, 7.0)
OAc	2.30 s	2.11 s	2.20 s	2.19 s	2.24 s

Table S1. ¹H NMR data of 1–11 (CDCl₃, 600 MHz, *J* in Hz).

Tabl	le S1.	Continue	ed.
------	--------	----------	-----

No	6	7	8	9	10	11
3	3.40 (dd, 7.2, 7.2)	3.34 m	3.49 m	3.55 (dd, 7.3, 7.3)	3.64 overlapped	3.33 m
4	2.31 br s	2.78 br s	2.94 br s	3.68 br s	2.87 br s	3.00 br s
7	4.36 br s	5.82 br s	5.97 br s			3.78 overlapped
8	2.11 overlapped	2.59 overlapped				1.74 (ddd, 13.5, 9.8, 4.4)
10	2.97 (dd, 13.6, 6.7); 2.82 (dd, 13.6,	2.95 (dd, 13.3, 7.0); 2.82 (dd, 13.3,	2.92, overlapped; 2.84 overlapped	3.04 (dd, 13.3, 6.4); 2.91 (dd, 13.3,	3.16 (dd, 13.2, 5.9); 2.89 (dd, 13.2, 9.3)	2.80 m
	7.6)	8.3)		8.4)		
11	1.17 s	4.82 m; 4.26 m	4.83 br s; 4.22 br s	1.44 s	1.43 s	1.38 s
12	1.72 s	1.82 s	1.75 s	1.68 s	1.73 s	1.62 s
13	4.99 (dd, 11.0, 11.0)	4.81 (dd, 11.0, 11.0)	5.60 s	6.75 s	6.84 (d, 2.0)	3.05 (dd, 13.5, 13.5); 2.33
						(dd, 13.5, 4.4)
14	1.81 (dddd, 11.0, 11.0, 11.0, 3.3)	1.80 (dddd, 11.0, 11.0, 11.0, 3.0)	2.06 m	2.38 m	2.23 overlapped	
15	2.10 overlapped; 1.40 (ddd, 11.0,	2.09 (ddd, 11.0, 3.0, 3.0); 1.39 (ddd,	1.47 (ddd, 12.0, 12.0, 12.0); 1.53 m	1.66 m; 1.44 m	1.68 (ddd, 12.9, 3.7, 3.7); 1.52 (ddd,	5.20 br s
	11.0, 11.0)	11.0, 11.0, 11.0)			12.9, 12.9, 12.9)	
16	1.87 m	1.87 m	1.85 m	1.95 m	1.95 m	3.89 m
19	3.43 (dd, 11.0, 8.0)	3.46 (dd, 10.4, 8.0)	3.40 (dd, 10.7)	3.92 (d, 10.0)	3.48 (dd, 10.5, 6.7)	5.93 (d, 11.6)
20	2.69 (ddd, 11.0, 11.0, 2.0)	2.62 overlapped	2.79 (br dd, 10.7, 10.7)	2.40 m	2.75 (br dd, 12.9, 10.5)	3.44 (br d, 11.6)
21	5.46 (d, 2.0)	5.52 (d, 1.9)	5.36 br s	4.29 br s	5.59 br s	3.82 (br d, 6.9)
22	2.27 s	2.26 s	2.20 s	2.29 s	2.28 s	1.28 s
23	0.79 (d, 6.7)	0.78 (d, 6.6)	0.71 (d, 6.6)	0.69 (d, 6.5)	0.76 (d, 6.6)	1.22 (d, 6.7)
25/29	7.17 (d, 7.3)	7.16 (d, 7.2)	7.10 (d, 7.2)	7.28 (d, 7.2)	7.23 (d, 7.3)	7.14 (d, 7.5)
26/28	7.28 (dd, 7.3, 7.3)	7.31 (dd, 7.2)	7.24 (dd, 7.2)	7.33 (dd, 7.2, 7.2)	7.34 (dd, 7.3, 7.3)	7.33 (dd, 7.5, 7.5)
27	7.20 (t, 6.8)	7.23 (t, 7.2)	7.16 (t, 7.2)	7.22(t, 7.2)	7.25 (t, 7.3)	7.26 (t, 7.5)
OAc	2.22 s	2.24 s	2.10 s		2.23 s	2.26, s

Fig. S1. ¹H NMR of **1** (CDCl₃, 600 MHz).

Fig. S2. ¹³C NMR of **1** (CDCl₃, 150 MHz).

Fig. S6. ¹H-¹H COSY of 1.

Fig. S8. Experimental ECD of 1.

Fig. S9. IR spectrum of 1.

Fig. S10. HRESIMS of 1.

Fig. S11. ¹H NMR of **2** (CDCl₃, 600 MHz).

Fig. S12. ¹³C NMR of 2 (CDCl3, 150 MHz).

Fig. S15. HMBC of 2.

Fig. S16. ¹H-¹H COSY of **2**.

Fig. S17. ROESY of 2.

Fig. S18. Experimental ECD of 2.

Fig. S21. ¹H NMR of **3** (CDCl₃, 600 MHz).

Fig. S22. ¹³C NMR of 3 (CDCl₃, 150 MHz).

Fig. S23. DEPT of 3.

Fig. S24. HSQC of 3.

Fig. S25. HMBC of 3.

Fig. S26. ¹H-¹H COSY of **3**.

Fig. S27. ROESY of 3.

Fig. S28. Experimental ECD of 3.

Fig. S31. ¹H NMR of **4** (CDCl₃, 600 MHz).

Fig. S32. ¹³C NMR of 4 (CDCl₃, 150 MHz).

Fig. S34. HSQC of 4.

Fig. S35. HMBC of 4.

Fig. S36. ¹H-¹H COSY of 4.

Fig. S37. ROESY of 4.

Fig. S38. Experimental ECD of 4.

Fig. S40. HRESIMS of 4.

Fig. S41. ¹H NMR of **5** (CDCl₃, 600 MHz).

Fig. S42. ¹³C NMR of **5** (CDCl₃, 150 MHz).

Fig. S43. DEPT of 5.

Fig. S44. HSQC of 5.

Fig. S45. HMBC of 5.

Fig. S46. ¹H-¹H COSY of **5**.

Fig. 547. ROESY of 5.

Fig. S48. Experimental ECD of 5.

Fig. S50. HRESIMS of 5.

Fig. S51. ¹H NMR of **6** (CDCl₃, 600 MHz).

Fig. S52. ¹³C NMR of 6 (CDCl₃, 150 MHz).

Fig. S54. HSQC of 6.

Fig. S55. HMBC of 6.

Fig. S56. ¹H-¹H COSY of 6.

Fig. S58. Experimental ECD of 6.

Fig. S60. HRESIMS of 6.

Fig. S62. ¹³C NMR of 7.

Fig. S65. HMBC of 7.

Fig. S66. ¹H-¹H COSY of **7**.

Fig. S68. Experimental ECD of 7.

Fig. S70. HRESIMS of 7.

Fig. S71. ¹H NMR of 8 (CDCl₃, 600 MHz).

Fig. S72. ¹³C NMR of **8** (CDCl₃, 150 MHz).

Fig. 574. HSQC of 8.

Fig. S76. ¹H-¹H COSY of **8**.

Fig. 577. ROESY of 8.

Fig. S78. Experimental ECD of 8.

Fig. S80. HRESIMS of 8.

Fig. S81. ¹H NMR of **9** (CDCl₃, 600 MHz).

Fig. S82. ¹³C NMR of 9 (CDCl₃, 150 MHz).

Fig. S83. DEPT of 9.

Fig. S85. HMBC of 9.

Fig. S86. ¹H-¹H COSY of 9.

Fig. 587. ROESY of 9.

Fig. S88. Experimental ECD of 9.

Fig. S90. HRESIMS of 9.

Fig. S91. ¹H NMR of **10** (CDCl₃, 600 MHz).

Fig. S92. ¹³C NMR of **10** (CDCl₃, 150 MHz).

Fig. S94. HSQC of 10.

Fig. S95. HMBC of 10.

Fig. S96. ¹H-¹H COSY of **10**.

Fig. S97. ROESY of 10.

Fig. S98. Experimental ECD of 10.

Fig. S100. HRESIMS of 10.

Fig. S101. ¹H NMR of 11 (CDCl₃, 600 MHz).

Fig. S102. ¹³C NMR of **11** (CDCl₃, 150 MHz).

Fig. S103. DEPT of 11.

Fig. S104. HSQC of 11.

Fig. S105. HMBC of 11.

Fig. S106. ¹H-¹H COSY of **11**.

Fig. S107. ROESY of 11.

Fig. S108. Experimental ECD of 11.

Fig. S110. HRESIMS of 11.