Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Rhodium(III)-catalysed cascade [3 + 2] annulation of *N*-aryloxyacetamides with 3-(hetero)arylpropiolic acids: synthesis of benzofuran-2(3*H*)-ones

Jin-Long Pan,^a Tuan-Qing Liu, ^a Chao Chen,^a Quan-Zhe Li,^a Wei Jiang,^{ac} Tong-Mei Ding,^{*a} Zhi-Qiang Yan,^{*b} and Guo-Dong Zhu^{*ab}

^aShanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. E-mail: dtm@sjtu.edu.cn; zhuguodong1206@sjtu.edu.cn

^b6th People's Hospital South Campus, Shanghai Jiao Tong University, 6600 Nanfeng Road, Shanghai 201499, P. R. China. E-mail: zqyanshanghai@gmail.com;

^cSchool of Chemistry and Environmental Engineering & International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, P. R. China.

Contents

1. Preparation of the Substrates	S2
2. Optimization of the Reaction Conditions	S5
3. Experimental Mechanistic Studies	S9
4. Spectral Behavior Investigations of 3aa	S17
5. X-Ray Crystallography Analysis of 3aa	S19
6. References	S21
7. Copies of ¹ H and ¹³ C Spectra	S22

1. Preparation of the Substrates

1.1 Preparation of N-aryloxyacetamides

N-Aryloxyacetamides **1** were prepared according to the following procedures^[1]:

Step 1: To a round-bottom flask equipped with a magnetic stir bar was added *N*-hydroxyphthalimide (1.0 equiv), CuCl (1.0 equiv), freshly activated 4 Å molecular sieves (250 mg/mmol), arylboronic acid (2.0 equiv), pydrine (1.1 equiv) and 1,2-dichloroethane (0.2 M). The reaction flask was open to the atmosphere. The reaction mixture was stirred at ambient temperature until the reaction mixture became green. The reaction mixture was filtered off under reduced pressure, and the filter cake was washed with CH_2Cl_2 . The obtained filtrate was concentrated under vacuum, and the residue was purified by flash column chromatograph on silica gel (PE/EtOAc 4:1) to afford the desired *N*-aryloxyphthalimide which was used directly in the next step. This step was typically carried out on a ~5 gram scale (arylboronic acid).

Step 2: To a solution of *N*-aryloxyphthalimide (1.0 equiv) in a mixture of MeOH and CHCl₃ (v/v 1:7, 0.2 M) was added hydrazinr monohydrate (3.0 equiv, 80%). The reaction mixture was allowed to stir at room temperature under air. Upon completion (TLC monitoring), the precipitate was filtered off under reduced pressure, and the filter cake was washed with CH_2Cl_2 . The obtained filtrate was concentrated under vacuum, and the residue was purified by flash column chromatograph on silica gel (PE/EtOAc 10:1) to afford the desired *N*-aryloxyamide which was directly used in the next step.

Step 3: A solution of *N*-aryloxyamide (1.0 equiv) in EtOAc was added to an aqueous solution of Na_2CO_3 (2.2 equiv) (H₂O/EtOAc 1:2, 0.3 M). The reaction mixture was cooled to 0 °C followed by dropwise addition of acyl ahloride (2.0 equiv). After stirring at 0 °C for 3 h, the reaction was quenched with saturated NaHCO₃ aqueous solution. The organic phase was separated and the aqueous phase was

extracted with EtOAc. The combined organic phase was washed with brine, separated, dried over anhydrous Na_2SO_4 , filtered, concentrated. The crude product was purified by recrystallization from EtOAc/PE to afford the desired *N*-aryloxyacetamide **1** as a white solid. Except **1r**, all the *N*-aryloxyacetamides used in this manuscript are known.

Scheme S1. List of N-aryloxyacetamides used in this manuscript

N-(3,4-dichlorophenoxy)acetamide (1r)

39% yield for 3 steps, white crystal. **mp** 157 – 158 °C. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.84 (brs, 1H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.31 (d, *J* = 2.6 Hz, 1H), 7.05 (dd, *J* = 8.9, 2.6 Hz, 1H), 1.93 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 167.7, 159.0, 131.7, 131.1, 124.1, 115.0, 113.8, 19.4. **HRMS** (ESI) *m/z* calculated for C₈H₈Cl₂NO₂⁺ [M+H⁺] 219.9927, found 219.9927.

1.2 Preparation of 3-arylpropiolic acids

3-Phenylpropiolic acid **2a** (98%) was purchased from TCI, and other 3-arylpropiolic acid were prepared according to the following procedure^[2].

A 25-mL round bottom flask equipped with a magnetic stir bar was sequentially charged with aryl iodide (5.0 mmol), DBU (1.80 mL, 12 mmol), Pd(PPh₃)₄ (144.4 mg, 2.5 mol %) and DMSO (6 mL). A solution of propiolic acid (420 mg, 6.0 mmol) in DMSO (6 mL) was added into the flask. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (20 mL) was poured into the reaction mixture. The reaction mixture was extracted with saturated aqueous NaHCO₃ solution. The aqueous layer was separated, acidified to pH 2.0 by addition of cold HCl aqueous solution (1 N), and extracted with DCM. The combined organic layers were dried with anhydrous Na₂SO₄ and filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4:1, with 1% v/v HOAc) to afford 3-arylpropiolic acids **2**.

Scheme S2. List of 3-arylpropiolic acids used in this manuscript

2. Optimization of the Reaction Conditions

General procedure for optimization of the reaction conditions:

An oven-dried 15-mL test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with *N*-phenoxyacetamide **1a** (30.2 mg, 0.2 mmol), 3-phenylpropiolic acid **2a** (29.2 mg, 0.2 mmol, 1.0 equiv), catalyst, base (0.2 mmol, 1.0 equiv) and solvent (2.0 mL) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 12 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH_2Cl_2 (2 mL × 3). The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent (PE/EA 8:1→5:1) to provide the desired product **3**.

	O OH OH Solvent (0.1 M), 80	mol %) equiv)) °C, 12 h
1a	2a	Заа
Entry	Solvent	$\mathrm{Yield}^{b}(\%)$
1	MeOH	9
2	DCM	<2
3	DCE	<2
4	toluene	<2
5	MeCN	<2
6	1,4-dioxane	<2
7	DMF	<2
8	DMSO	<2
9	EtOH	11
10	<i>i</i> -PrOH	<2
11	TFE	53
12	HFIP	<2

Table S1. Screening of solvent^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), $[Cp*RhCl_2]_2$ (2.5 mol %), and Cs_2CO_3 (0.2 mmol) in solvent (2.0 mL) at 80 °C under argon for 12 h. Cp* = pentamethylcyclopentadienyl; DCM = dichloromethane; DCE = 1,2-dichloroethane; DMF = *N*,*N*-dimethylformamide; DMSO = dimethyl sulfoxide; TFE = 2,2,2-trifluoroethanol; HFIP = hexafluoroisopropanol. ^{*b*}Isolated yield.

Table S2. Screening of Cp*TM-type catalyst^a

ON +	ОН	[M] (5.0 mol %) Cs ₂ CO ₃ (1.0 equiv) ────────────────────────────────────	
1a	2a		3aa
Entry	Ca	ıtalyst	Yield ^b (%)
1	[Cp*	RhCl ₂] ₂	53
2	[Cp*R	$h(OAc)_2]_2$	48
3	[Cp*Rh(M	$eCN_3](SbF_6)_2$	48
4	[Cp ³	*IrCl ₂] ₂	0
5	[Cp*	RuCl ₂] _n	0
6	[Cp*C	$oI_2(CO)]_2$	0
7	[Cp*Co(M	$eCN_3](SbF_6)_2$	0

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), [Cp*TM] (5 mol %), and Cs₂CO₃ (0.2 mmol) in TFE (2.0 mL) at 80 °C under argon for 12 h. ^bIsolated yield.

Table S3. Screening of atmosphere and moisture^a

	OH OH (Cp*RhCl ₂] ₂ (2.5 r Cs ₂ CO ₃ (1.0 eq TFE (0.1 M), 80 °C	nol %) uiv) C, 12 h
1a	2a	
Entry	Atmosphere	Yield ^{b} (%)
1	Ar	53
2	air	39
3	O_2 (1 atm)	35
4^c	Ar	46

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), [Cp*RhCl₂]₂ (2.5 mol %), and Cs₂CO₃ (0.2 mmol) in TFE (2.0 mL) at 80 °C under indicated atmosphere for 12 h. ^{*b*}Isolated yield. ^cH₂O (5.0 equiv) was added.

Table S4. Screening of reaction temperature^a

	OH OH OH TFE (0.1 M), <i>T</i> , 12	$\begin{array}{c} I & \% \\ v \\ 2 h \end{array} \qquad \qquad$
Entry	Temperature (°C)	Yield ^b (%)
1	100	49
2	80	53
3	60	48
4	40	11
5	25	<2

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), [Cp*RhCl₂]₂ (2.5 mol %), and Cs₂CO₃ (0.2 mmol) in TFE (2.0 mL) at indicated temperature under argon for 12 h. ^{*b*}Isolated yield.

Table S5. Screening of base^a

0 N H 1a	OH OH TFE (0.1 M), 2a	$\frac{15 \text{ mol }\%)}{T, 12 \text{ h}} \qquad \qquad$
Entry	Base	$\operatorname{Yield}^{b}(\%)$
1	-	<2
2	Na ₂ CO ₃	30
3	K_2CO_3	44
4	Cs ₂ CO ₃	53
5	NaHCO ₃	<2
6	KHCO ₃	32
7	CsHCO ₃	46
8	NaOH	37
9	КОН	46
10	Na ₃ PO ₄	11
11	K_3PO_4	45
12	NaOAc	<2
13	KOAc	<2
14	CsOAc	<2
15	Et ₃ N	52
16	DIPEA	50
17	DBU	51
18	DBN	52

19	TMG	51
20	DABCO	<2
21	DMAP	<2

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), $[Cp*RhCl_2]_2$ (2.5 mol %), and base (0.2 mmol) in TFE (2.0 mL) at 80 °C under argon for 12 h. DBU = 1,8-diazabicyclo(5.4.0)undec-7-ene; DBN = 1,5-diazabicyclo[4.3.0]non-5-ene; TMG = 1,1,3,3-tetramethylguanidine; DABCO = 1,4-diazabicyclo[2.2.2]octane; DMAP = 4-dimethylguanidyridine. ^{*b*}Isolated yield.

Table S6. Screening of loading of Catalyst^a

ON +	$\begin{array}{c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} C \\ C \\ S_2 \\ C \\ $	RhCl ₂] ₂ (x mol %) CO ₃ (1.0 equiv) .1 M), 80 °C, 12 h
1a	2a	3aa
Entry	Loading (mol %	b) Yield ^b (%)
1	2.5	53
2	1.5	53
3	1.0	53
4	0.5	47

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), [Cp*RhCl₂]₂, and Cs₂CO₃ (0.2 mmol) in TFE (2.0 mL) at 80 °C under argon for 12 h. ^{*b*}Isolated yield.

3. Experimental Mechanistic Studies

a) Radical trapping experiments

An oven-dried 15-mL test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with *N*-phenoxyacetamide **1a** (30.2 mg, 0.2 mmol, 1.0 equiv), 3-phenylpropiolic acid **2a** (29.2 mg, 0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (1.2 mg, 2 μ mol, 1.0 mol %), Cs₂CO₃ (65.2 mg, 0.2 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidine-*N*-oxyl (TEMPO; 31.2 mg, 0.2 mmol, 1.0 equiv) or butylated hydroxytoluene (BHT; 44.1 mg, 0.2 mmol, 1.0 equiv) and 2,2,2-trifluoroethanol (2.0 mL) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 12 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH₂Cl₂ (2 mL × 3). The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the desired product **3** (54% yield with TEMPO, or 52% yield with BHT, respectively).

b) The essential role of N-H bond

An oven-dried 15-mL test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with *N*-methyl-*N*-phenoxyacetamide **5** (33.0 mg, 0.2 mmol, 1.0 equiv), 3-phenylpropiolic acid **2a** (29.2 mg, 0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (1.2 mg, 2 µmol, 1.0 mol %), Cs_2CO_3 (65.2 mg, 0.2 mmol, 1.0 equiv) and 2,2,2-trifluoroethanol (2.0 mL) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 12 h. No desired product was detected.

c) The rhodacycle A

An oven-dried 15-mL test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with *N*-phenoxyacetamide **1a** (30.2 mg, 0.2 mmol, 1.0 equiv), 3-phenylpropiolic acid **2a** (29.2 mg, 0.2 mmol, 1.0 equiv), rhodacycle $A^{[3]}$ (1.5 mg, 4 µmol, 2.0 mol %), Cs₂CO₃ (0.2 mmol, 1.0 equiv) and 2,2,2-trifluoroethanol (2.0 mL) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 12 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH₂Cl₂ (2 mL × 3). The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the desired product **3** (52%).

d) Intermolecular competition experiment for the KIE studies

An oven-dried 15-mL test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with **1a** (15.1 mg, 0.1 mmol, 0.5 equiv), $[D_5]$ -**1a** (15.6 mg, 0.1 mmol, 0.5 equiv), **2a** (29.2 mg, 0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (1.2 mg, 2 µmol, 1.0 mol %), Cs_2CO_3 (0.2 mmol, 1.0 equiv) and 2,2,2-trifluoroethanol (2.0 mL) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 1.0 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH_2Cl_2 (2 mL × 3). The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the mixed products **3aa**/[D₄]-**3aa** (24%). According to the ¹H NMR spectrum of the mixed products (Figure S1), $P_H/P_D = 1.0$.

Figure S1. ¹H NMR spectrum of the mixed products of the intermolecular competition experiment

e) Parallel experiments for KIE studies

An oven-dried 15-mL test tubes equipped with a Teflon-coated magnetic stir bar was sequentially charged with **1a** (30.2 mg, 0.2 mmol, 1.0 equiv), **2a** (29.2 mg, 0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (1.2 mg, 2 µmol, 1.0 mol %), Cs₂CO₃ (0.2 mmol, 1.0 equiv) and 2,2,2-trifluoroethanol (2.0 mL) under a positive pressure of argon. Simultaneously, another parallel experiment was carried out with $[D_5]$ -**1a** (31.2 mg, 0.2 mmol, 1.0 equiv). After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 1.0 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH₂Cl₂ (2 mL × 3). The solvent was

evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the products **3aa** (24%) and $[D_4]$ -**3aa** (24%), respectively. Thus, $k_{\rm H}/k_{\rm D} = 1.0$.

(Z)-3-(Amino(phenyl)methylene)-d₄-benzofuran-2(3H)-one ([D₄]-3aa)

¹**H NMR** (400 MHz, CDCl₃) δ 8.87 (brs, 1H), 7.64 – 7.54 (m, 5H), 7.08 (s, 0.3H), 5.53 (brs, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.2, 161.1, 149.9 (d, *J* = 4.8 Hz), 135.0, 131.2, 129.5, 127.7, 125.2, 123.9 (t, *J* = 24.4 Hz), 122.3 (t, *J* = 24.2 Hz), 118.1 (t, *J* = 24.1 Hz), 109.8 (major) (t, *J* = 24.5 Hz), 110.1 (minor), 90.9. **HRMS** (ESI) *m/z* calculated for C₁₅H₈D₄NO₂⁺ [M+H⁺] 242.1114, found 242.1124.

f) Cesium 3-phenylpropiolate

A solution of 2a (29.2 mg, 0.2 mmol, 1.0 equiv) and Cs_2CO_3 (65.2 mg, 0.2 mmol, 1.0 equiv) in TFE (2.0 equiv) was heated at 80 °C for 2 h. The reaction was allowed to cool to room temperature, and the solvent was removed under reduced pressure. The residue 2a' was characterized by NMR in CD₃OD.

Figure S2. ¹H NMR spectrum of 2a

Figure S3. ¹H NMR spectrum of 2a'

Figure S4. ¹³C NMR spectrum of 2a

Figure S5. ¹³C NMR spectrum of 2a'

To the above reaction solution was added with **1a** (30.2 mg, 0.2 mmol, 1.0 equiv) and $[Cp*RhCl_2]_2$ (1.2 mg, 2 µmol, 1.0 mol %) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 12 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH_2Cl_2 (2 mL × 3). The solvent

was evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the products **3aa** (49%).

g) Synthesis of **3aa-Ac** and further transformations

An oven-dried 15-mL test tubes equipped with a Teflon-coated magnetic stir bar was sequentially charged with **1a** (30.2 mg, 0.2 mmol, 1.0 equiv), **2a** (29.2 mg, 0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (1.2 mg, 2 µmol, 1.0 mol %), Et₃N (28 µL, 0.2 mmol, 1.0 equiv) and absolute ethanol (2.0 mL) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 12 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH₂Cl₂ (2 mL × 3). The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the products **3aa-Ac** (34%).

(Z)-N-((2-Oxobenzofuran-3(2H)-ylidene)(phenyl)methyl)acetamide (3aa-Ac)^[4]

Yellow solid, **mp** 155 – 156 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 11.11 (brs, 1H), 7.59 – 7.51 (m, 3H), 7.42 – 7.37 (m, 2H), 7.16 – 7.12 (m, 1H), 7.09 – 7.07 (m, 1H), 6.78 (td, *J* = 7.6, 1.2 Hz, 1H), 5.97 (dd, *J* = 7.8, 0.7 Hz, 1H), 2.22 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.2, 168.1, 153.0, 151.5, 133.3, 130.0, 129.3, 127.8, 127.1, 123.8, 123.2, 121.2, 110.6, 102.1, 25.3. **HRMS** (ESI) *m/z* calculated for C₁₇H₁₄NO₃⁺ [M+H⁺] 280.0968, found 280.0963.

To a solution of **3aa-Ac** (27.9 mg, 0.1 mmol) in TFE (1 mL) was added Cs_2CO_3 (32.6 mg, 0.1 mmol) or CsHCO₃ (19.4 mg, 0.1 mmol) under a positive pressure of argon. After sealing the tube with PTFE-lined screw cap, the mixture was heated at 80 °C (oil bath) for 12 h. Then the reaction mixture was cooled to ambient temperature, transferred to 25-mL round bottom flask, and washed with CH_2Cl_2 (2 mL × 3). The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the products **3aa** (quantitative).

To a solution of **3aa** (47.5 mg, 0.2 mmol) in TFE (2 mL) was added diluted hydrochloric acid (10%, 1.0 mL), and the reaction was heated at 80 °C (oil bath) for 12 h. Then the reaction mixture was cooled to ambient temperature, quenched with saturated Na₂CO₃ aqueous solution (pH 8-9), extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure, the residue was purified by flash column chromatograph on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as the eluent to provide the products **6**^[5] (76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.36 – 7.32 (m, 1H), 7.30 – 7.21 (m, 2H), 7.02 (s, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 156.0, 155.0, 130.6, 129.3, 128.9, 128.7, 125.1, 124.4, 123.1, 121.0, 111.3, 101.4.

Scheme S3. Proposed catalytic pathway for the synthesis of 3aa

Based on the aforementioned experimental results, together with precedent literature^[4,6], we have proposed a plausible mechanism for the Cp*Rh(III)-catalyzed redox-neutral cascade [3 + 2] annulation, as depicted in Scheme S3. Initially, the reversible N–H deprotonation and C–H activation of **1a** generated rhodacycle **A**. The regioselective migratory insertion of **2a** into the C–Rh bond gave **B**. The formation of **D** was quite facile through oxidative addition of Rh into the O–N bond via Rh(V) nitrenoid **C** followed by reductive elimination. The protonation was involved to facilitate the generation of **E**. The isomerizaiton of C–C double bond was achieved through enamine-imine (path a)^[4] or phenol-semiquinone (path b) tautomerization with promotion of the N–H…O type intramolecular interaction. The consecutive C–C single bond rotation, lactonization and hydrolysis afforded benzofuran-2-one derivative **3aa**.

4. Spectral Behavior Investigations of 3aa

Figure S6. Variation of absorbance intensity of 3aa in MeOH at different concentrations ranging from

 $1.0\times10^{\text{-5}}$ to $1.0\times10^{\text{-4}}\,\text{M}$

Figure S7. The linearity of the absorbance intensity ($\lambda_{abs} = 250 \text{ nm}$) towards different concentrations of

3aa in MeOH

Figure S8. The linearity of the absorbance intensity ($\lambda_{abs} = 344$ nm) towards different concentrations of

3aa in MeOH

Figure S9. The fluorescence emission spectra of **3aa** in MeOH (1.0×10^{-4} M) upon excitation at 285 nm in the absence and presence of different metal cations

5. X-Ray Crystallography Analysis of 3aa

Figure S10. ORTEP diagram of 3aa with thermal ellipsoids shown at the 50% probability level

A yellow block shaped crystal of **3aa** ($C_{15}H_{11}NO_2$) was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 173(2) K, on a Bruker D8 VENTURE CMOS photon 100 diffractometer with helios mx multilayer monochrmator Cu-K α radiation ($\lambda = 1.54178$ Å). The X-ray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition numbers CCDC 1918362 for **3aa**. Copies of the data can be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk or www: http://www. ccdc.cam.ac.uk).

Table S7 . Crystal data and structure refinement	for 3	aa
---	-------	----

Empirical formula	$C_{15}H_{11}NO_2$	
Formula weight	237.25	
Temperature	173 K	
Wavelength	1.54178 Å	
Crystal habit	Yellow block	
Crystal system, space group,	Monoclinic, P 21/c	
Unit cell dimensions	a = 10.4160(16) Å	$\alpha = 90^{\circ}$
	b = 20.705(3) Å	$3 = 98.861(13)^{\circ}$
	c = 10.7592(19) Å	$\gamma = 90^{\circ}$
Volume	2292.6(6) Å ³	
Z, Calculated density	8, 1.375 g/cm ³	
Absorption coefficient	0.746 mm ⁻¹	
F(000)	992	
Crystal size	0.22 x 0.20 x 0.17 mm ³	
Theta range for data collection	4.270 to 68.298°	
Limiting indices	$\textbf{-}12 \leq h \leq 12, \textbf{-}24 \leq k \leq 24$, $-12 \le l \le 12$
Data/restraints/parameters	4198/0/326	

Goodness-of-fit on F ²	0.678
Final R indices $[I > 2 \text{ sigma}(I)]$	R1 = 0.0338, $wR2 = 0.0872$
R indices (all data)	R1 = 0.0309, wR2 = 0.0836
Extinction coefficient	0.0028(2)
Largest diff. peak and hole	0.231 and -0.161 e·Å ⁻³

6. Reference

- (1) (a) H. M. Petrassi, K. B. Sharpless and J. W. Kelly. Org. Lett., 2001, 3, 139; (b) G. Liu, Y. Shen, Z. Zhou, and X. Lu. Angew. Chem., Int. Ed., 2013, 52, 6033.
- (2) K. Park, Y. Heo and S. Lee. Org. Lett., 2013, 15, 3322.
- (3) (a) Q. Wu, Y. Chen, D. Yan, M. Zhang, Y. Lu, W.-Y. Sun and J. Zhao, Chem. Sci., 2017, 8, 169; (b)
- X. Wang, T. Gensch, A. Lerchen, C. G. Daniliuc and F. Glorius, J. Am. Chem. Soc., 2017, 139, 6506.
- (4) J.-L. Pan, P. Xie, C. Chen, Y. Hao, C. Liu, H.-Y. Bai, J. Ding, L.-R. Wang, Y. Xia and S.-Y. Zhang, *Org. Lett.*, 2018, **20**, 7131.
- (5) Z.-P. Chen, Y. Zhou, M.-Z. Shui and F. Liu, Tetrahedron Lett., 2019, 60, 133.
- (6) (a) Y.-F. Yang, K. N. Houk and Y.-D. Wu, J. Am. Chem. Soc., 2016, 138, 6861; (b) J.-L. Yu, S.-Q. Zhang and X. Hong, J. Am. Chem. Soc., 2017, 139, 7224.

7. Copies of NMR Spectra

(Z)-3-(Amino(phenyl)methylene)benzofuran-2(3H)-one (3aa)

(Z)-3-(Amino(phenyl)methylene)-7-methylbenzofuran-2(3*H*)-one (3ba) ¹H NMR (CDCl₃, 400 MHz)

(Z) - 3 - (Amino(phenyl)methylene) - 7 - ethylbenzofuran - 2(3H) - one (3ca)

(Z)-3-(Amino(phenyl)methylene)-7-isopropylbenzofuran-2(3H)-one (3da)

(Z) - 3 - (Amino(phenyl)methylene) - 7 - chlorobenzofuran - 2(3H) - one (3ea)

(Z)-3-(Amino(phenyl)methylene)-6-methylbenzofuran-2(3H)-one (3fa)

(Z)-3-(Amino(phenyl)methylene)-6-(trifluoromethyl)benzofuran-2(3*H*)-one (3ga) ¹H NMR (CDCl₃, 400 MHz)

(Z) - 3 - (Amino(phenyl)methylene) - 6 - methoxybenzofuran - 2(3H) - one (3ha)

¹H NMR (CDCl₃, 400 MHz)

80 70 60 50 40 30 20 10 0

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90

(Z) - 3 - (Amino(phenyl)methylene) - 6 - chlorobenzofuran - 2(3H) - one (3ia)

(Z)-3-(Amino(phenyl)methylene)-5-methylbenzofuran-2(3H)-one (3ja)

(Z) - 3 - (Amino(phenyl)methylene) - 5 - phenylbenzofuran - 2(3H) - one (3ka)

(Z)-3-(Amino(phenyl)methylene)-5-(trifluoromethoxy)benzofuran-2(3*H*)-one (3la) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(phenyl)methylene)-5-fluorobenzofuran-2(3*H*)-one (3ma)

(Z) - 3 - (Amino(phenyl)methylene) - 5 - chlorobenzofuran - 2(3H) - one (3na)

(Z)-3-(Amino(phenyl)methylene)-5-bromobenzofuran-2(3*H*)-one (3oa) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(phenyl)methylene)naphtho[2,3-b]furan-2(3H)-one (3pa)

¹H NMR (CDCl₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

(Z)-3-(Amino(phenyl)methylene)-5-fluoro-7-methylbenzofuran-2(3*H*)-one (3qa) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(phenyl)methylene)-5,6-dichlorobenzofuran-2(3H)-one (3ra) ¹H NMR (DMSO-*d*₆, 400 MHz)

(Z)-3-(Amino(p-tolyl)methylene)benzofuran-2(3H)-one (3ab)

(Z)-3-([1,1'-Biphenyl]-4-yl(amino)methylene)benzofuran-2(3*H*)-one (3ac) ¹H NMR (CDCl₃, 400 MHz)

(Z) - 3 - (Amino(4-methoxyphenyl)methylene) benzofuran - 2(3H) - one (3ad)

(Z)-3-(Amino(4-(methylthio)phenyl)methylene)benzofuran-2(3H)-one (3ae) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(4-(trifluoromethoxy)phenyl)methylene)benzofuran-2(3*H*)-one (3af) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(4-fluorophenyl)methylene)benzofuran-2(3*H*)-one (3ag) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(3-fluorophenyl)methylene)benzofuran-2(3*H*)-one (3ah) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(2-fluorophenyl)methylene)benzofuran-2(3*H*)-one (3ai) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(4-chlorophenyl)methylene)benzofuran-2(3*H*)-one (3aj) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(4-bromophenyl)methylene)benzofuran-2(3*H*)-one (3ak)

(Z) - 3 - (Amino(4 - (hydroxymethyl)phenyl)methylene) benzofuran - 2(3H) - one (3al)

¹**H NMR** (acetone- d_6 , 400 MHz)

(Z)-4-(Amino(2-oxobenzofuran-3(2*H*)-ylidene)methyl)benzaldehyde (3am) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-((4-Acetylphenyl)(amino)methylene)benzofuran-2(3*H*)-one (3an) ¹H NMR (CDCl₃, 400 MHz)

(Z)-4-(Amino(2-oxobenzofuran-3(2H)-ylidene)methyl)benzonitrile (3ao) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(4-(trifluoromethyl)phenyl)methylene)benzofuran-2(3*H*)-one (3ap) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(4-nitrophenyl)methylene)benzofuran-2(3*H*)-one (3aq) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(3,5-dimethylphenyl)methylene)benzofuran-2(3H)-one (3ar)

(Z)-3-(Amino(3,4-dichlorophenyl)methylene)benzofuran-2(3*H*)-one (3as) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(naphthalen-2-yl)methylene)benzofuran-2(3H)-one (3at)

(Z)-3-(Amino(thiophen-2-yl)methylene)benzofuran-2(3*H*)-one (3au) ¹H NMR (CDCl₃, 400 MHz)

(Z)-3-(Amino(thiophen-3-yl)methylene)benzofuran-2(3*H*)-one (3av) ¹H NMR (CDCl₃, 400 MHz)

 $(Z)-3-(Amino(phenyl)methylene)-d_4-benzofuran-2(3H)-one\ ([D_4]-3aa)$

