Supporting Information

Regioselective Radical Arylation: Silver-Mediated Synthesis of 3-Phosphorylated-Coumarins, Quinolin-2(1*H*)-one and Benzophosphole Oxides

Hong Hou,* Yue Xu, Haibo Yang, Chaoguo Yan, Yaocheng Shi, and Shaoqun Zhu^{,*}

School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China

General information	S2
General procedure the phosphinylative cyclization of phenyl propiolate	S2
General procedure the phosphinylative cyclization of propynoic acid amide and propynoic alkyl ester	S6
Procedure the hydrophosphinylative cyclization of <i>N</i> ,3-diphenylpropiolamide with dibutylphosphine oxide	S10
The reaction of 1,3-diphenylprop-2-yn-1-one 6 with 2a	S11
References	S12
¹ H NMR, ¹³ C NMR, ³² P, and ¹⁹ F NMR spectra of products	S13
X-ray Structure of 3i	S58
X-ray Structure of 5g	S59
X-ray Structure of 5 j	S60

1. General information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents used in reactions were p.A. grade and dried only if indicated. Solvents for chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with F-254 indicator, visualized by irradiation with UV light. Column chromatography was performed using silica gel Merck 60 (particle size 0.063–0.2 mm). Melting points were measured on a Yanaco Micro Melting Point Apparatus. ¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR were recorded on a Variance VNMR 400 or Bruker AV-600 spectrometer in CDCl₃. For ¹H NMR spectra, data are quoted in the following order: chemical shift (δ) in parts per million (ppm) downfield of tetramethylsilane, using residual protonated solvent as internal standard (CDCl₃ at 7.26 ppm). Multiplicities are indicated s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets); coupling constants (J) are in Hertz (Hz). For proton-decoupled ¹³C NMR spectra, chemical shifts (δ) are also quoted in parts per million (ppm) downfield of tetramethylsilane, using deuterated solvent as internal standard (CDCl₃ at 77.0 ppm). IR spectra were recorded on a Perkin Elmer Spectrum 100 FTIR (KBr disc) and are reported in terms of frequency of absorption (cm⁻¹). High resolution mass spectra (HRMS) were obtained on AB 5800 MALDI-TOF/TOF and are recorded using electrospray ionization (ESI). X-ray crystallographic data were collected using SMART APEX II X-ray diffractometer. Compounds 1a-1g, 4a-4f, were prepared according to the previous reported procedures.^[1] 2a-2h were prepared according to the previous reported procedures.^[2] $\mathbf{6}$ was prepared according to the previous reported procedures.^[3]

2. General procedure the hydrophosphinylative cyclization of phenyl propiolate

Aryl alkynoates **1a-1i** (0.40 mmol, 1.0 equiv), arylphosphine oxide **2** (0.48 mmol, 1.2 equiv), AgNO₃ (0.80 mmol, 2.0 equiv) and a stir bar were added to a sealed tube under a nitrogen atmosphere, MeCN (2 mL) as solvent was then added. The mixture was stirred for 24-48h at 60 $^{\circ}$ C. After the aryl alkynoates **1** was completely consumed (monitored by TLC), the crude mixture was directly purified by flash column chromatography on silica gel (EtOAc/petroleum ether 1:1) to give the desired products **3a-3l**.

3-(diphenylphosphoryl)-4-(3-methoxyphenyl)-2H-chromen-2-one (3a)^[4]

Yellow oil (123 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.81–7.68 (m, 4H), 7.55 (s, 1H), 7.47–7.23 (m, 8H), 7.16 (s, 2H), 6.91 (d, *J* = 8.3 Hz, 1H), 6.83 (d, *J* = 7.4 Hz, 1H), 6.70 (s, 1H), 3.71 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ 165.3 (d, J = 5.2 Hz), 159.5 (d, J = 13.1 Hz), 158.7, 154.2, 134.6 (d, J = 4.4 Hz), 133.7, 133.5 (d, J = 10.8 Hz), 132.4 (d, J = 10.8 Hz), 131.5, 131.4 (d, J = 3.0 Hz), 131.3 (d, J = 10.1 Hz), 128.9 (d, J = 22.3 Hz), 128.2 (d, J = 4.0 Hz), 128.0 (d, J = 4.0 Hz), 124.3, 121.0, 120.5 (d, J = 9.3 Hz), 118.8 (d, J = 1.4 Hz), 116.7, 114.7, 114.0, 55.0; ³¹P NMR (243 MHz, CDCl₃): δ 23.8; IR (neat): v =

 $3062, 2929, 1720, 1594, 1535, 1481, 1437, 1335, 1241, 1194, 756 \text{ cm}^{-1}$; HRMS (ESI) Exact mass calculated for $[C_{28}H_{22}O_3P]^+$ [M+H]⁺: 453.1250, found: 453.1256.

3-(diphenylphosphoryl)-4-phenyl-2*H*-chromen-2-one (3b)^[4]

White solid (143.5 mg, 85% yield); m.p. 81-82 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (t, J = 10.0 Hz, 4H), 7.59 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.42 (d, J = 7.3 Hz, 7H), 7.35 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 6.4 Hz, 2H), 7.21 – 7.10 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 165.9 (d, J = 5.2 Hz), 159.6 (d, J = 13.4 Hz), 154.3, 133.7, 133.6 (d, J = 4.3 Hz), 133.4, 132.3, 131.6 (d, J = 3.1 Hz), 131.5, 128.9 (d, J = 15.6 Hz), 128.2 (d, J = 4.6 Hz), 128.0 (d, J = 29.2 Hz), 124.4, 120.8 (d, J = 9.4 Hz), 119.3, 118.3, 116.7; ³¹P NMR (243 MHz, CDCl₃): δ 24.4; IR (neat): v = 3061, 2924,

2856, 1719, 1598, 1536, 1485, 1440, 1198, 1114, 914, 746 cm⁻¹; HRMS (ESI) Exact mass calculated for $[C_{27}H_{20}O_3P]^+$ [M+H]⁺: 423.1145, found: 423.1153.

3-(diphenylphosphoryl)-4-(2-methoxyphenyl)-2*H*-chromen-2-one (3c)

Yellow oil (91.7 mg, 51% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.83-7.71 (m, 4H), 7.55 (t, J = 7.6 Hz, 1H), 7.51–7.30 (m, 8H), 7.15 (t, J = 7.2 Hz, 2H), 7.11–7.00 (m, 2H), 6.83 (d, J = 8.3 Hz, 1H), 3.57 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 163.4 (d, J = 5.0 Hz), 159.6 (d, J = 13.6 Hz), 155.9, 154.2, 133.37, 133.35 (d, J = 48.0 Hz), 132.3 (d, J = 48.0 Hz), 131.56 (d, J = 16.0 Hz), 131.57 (d, J = 4.0 Hz), 131.6 (d, J

= 16.0 Hz), 131.3 (dd, J = 16.5, 2.8 Hz), 130.7, 129.4, 128.2 (d, J = 18.7 Hz), 127.9 (d, J = 7.1 Hz), 127.7, 124.2, 122.6 (d, J = 4.1 Hz), 120.5 (d, J = 11.7 Hz), 120.1, 116.6, 110.2, 55.0; ³¹P NMR (243 MHz, CDCl₃): δ 24.4; IR (neat): v = 3061, 2924, 2854, 1738, 1591, 1487, 1439, 1338, 1250, 1193, 1161, 793 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₂O₄P]⁺ [M+H]⁺: 453.1250, found: 453.1251.

3-(diphenylphosphoryl)-4-(4-methoxyphenyl)-2H-chromen-2-one (3d)^[4]

Yellow solid (130.0 mg, 72% yield); m.p. 114-115 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (dd, J = 12.2, 7.7 Hz, 4H), 7.56 (t, J = 7.4 Hz, 1H), 7.47–7.41 (m, 2H), 7.36 (dd, J = 21.2, 7.9 Hz, 5H), 7.24–7.10 (m, 4H), 6.87 (d, J = 7.9 Hz, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8 (d, J = 5.3), 160.2, 159.7 (d, J = 13.4 Hz), 154.3, 133.7 (d, J = 13.9 Hz), 132.7, 131.41 (d, J = 10.0 Hz), 131.41 (d, J = 3.0 Hz), 130.1, 128.8, 128.1 (d, J = 12.7 Hz), 125.7 (d, J = 4.4 Hz), 124.3, 122.0 (d, J = 9.3

Hz), 119.4, 118.3, 116.8, 113.4, 55.2; ³¹P NMR (243 MHz, CDCl₃): δ 24.2; IR (neat): *ν* = 3060, 2926, 1719, 1602, 1507, 1443, 1339, 1251, 1188, 854, 743 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₂O₄P]⁺

[M+H]⁺: 453.1250, found: 453.1253.

4-(4-chlorophenyl)-3-(diphenylphosphoryl)-2H-chromen-2-one (3e)^[4]

Yellow solid (125 mg, 68% yield); m.p. 242-243 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (dd, J = 12.4, 7.7 Hz, 4H), 7.59 (t, J = 7.7 Hz, 1H), 7.49 (t, J = 6.9 Hz, 2H), 7.45–7.32 (m, 7H), 7.17 (d, J = 8.2 Hz, 3H), 7.09 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 164.6 (d, J = 5.0 Hz), 159.3 (d, J = 13.1 Hz), 154.3, 135.1, 133.9, 133.1, 132.0, 131.9, 131.7 (d, J = 2.9 Hz), 131.5 (d, J = 10.3 Hz), 129.6, 128.5, 128.3, 128.2, 124.5, 120.5 (d, J = 9.1 Hz), 116.8; ³¹P NMR (243 MHz, CDCl₃): δ 24.8; IR

(neat): v = 3063, 2927, 2225, 1721, 1599, 1536, 1486, 1193, 1105, 740 cm⁻¹; HRMS (ESI) Exact mass calculated for $[C_{27}H_{19}CIO_3P]^+$ [M+H]⁺: 457.0755, found: 457.0767.

3-(diphenylphosphoryl)-8-methyl-4-phenyl-2H-chromen-2-one (3f)

Yellow oil (86 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.88–7.69 (m, 4H), 7.60–7.29 (m, 9H), 7.22 (dd, J = 14.5, 6.5 Hz, 2H), 7.13 (dd, J = 15.0, 7.6 Hz, 1H), 7.03 (d, J = 7.4 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1 (d, J = 5.3 Hz), 159.6 (d, J = 13.7 Hz), 154.1, 134.7, 133.7, 133.5 (d, J = 3.9 Hz), 133.0 (d, J = 8.0 Hz), 131.9 (d, J = 9.3 Hz), 131.51, 131.50 (t, J = 20.0 Hz), 129.2 (d, J = 74.4 Hz), 128.0, 128.04 (d, J = 25.0 Hz), 127.5, 125.2, 124.5, 120.1

(d, J = 9.5 Hz), 118.6 (d, J = 101.0 Hz), 116.6, 20.0; ³¹P NMR (243 MHz, CDCl₃): δ 24.5; IR (neat): v = 3063, 2925, 1719, 1598, 1538, 1441, 1330, 1260, 1194, 1116, 915, 741 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₂O₃P]⁺ [M+H]⁺: 437.1301, found: 437.1307.

4-(cyclohexa-2,4-dien-1-yl)-3-(diphenylphosphoryl)-6-methyl-2H-chromen-2-one (3g)

Yellow solid (101mg, 58% yield); m.p. 96-97 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.81–7.71 (m, 4H), 7.49–7.43 (m, 2H), 7.39 (d, J = 6.8 Hz, 7H), 7.21 (d, J = 6.6 Hz, 2H), 7.14 (s, 1H), 6.97 (s, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.9 (d, J = 5.4 Hz), 159.8 (d, J = 13.7 Hz), 154.4, 145.5, 133.7 (d, J = 4.5 Hz), 133.6, 132.5, 131.5, 131.4 (d, J = 2.6 Hz), 128.6 (d, J = 36.1 Hz),

128.2, 128.1, 128.0, 127.7, 125.6, 118.4 (d, J = 9.2 Hz), 116.7, 21.7; ³¹P NMR (243 MHz, CDCl₃): δ 24.4; IR (neat): v = 3059, 2924, 1718, 1614, 1526, 1439, 1341, 1264, 1196, 1114, 916, 734 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₂O₃P]⁺ [M+H]⁺: 437.1301, found: 437.1304.

3-(dibutylphosphoryl)-7-methyl-4-phenyl-2*H*-chromen-2-one (3h)

Yellow oil (73.8 mg, 47% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.46– 7.42 (m, 3H), 7.23–7.18 (m, 2H), 7.17 (s, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 2.44 (s, 3H), 2.21–2.08 (m, 2H), 2.01–1.87 (m, 2H), 1.66–1.53 (m, 2H), 1.49–1.31 (m, 6H), 0.86 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl3): δ 166.1 (d, J = 3.6 Hz), 160.4 (d, J = 14.5 Hz), 153.9, 145.2, 133.9 (d, J = 3.6 Hz), 128.4, 127.8, 127.5, 125.7, 118.9, 118.8, 116.7 (d, J = 7.8 Hz), 115.8, 29.4 (d, J = 71.6 Hz), 24.1 (d, J = 16.1 Hz), 23.7 (d, J = 4.3 Hz), 21.7 (d, J = 10.3 Hz), 13.6 (d, J = 4.4 Hz); ³¹P NMR (243 MHz, CDCl₃): δ 43.8; IR (neat): v = 3053, 2947, 1709, 1609, 1532, 1456, 1336, 1198, 1088, 906, 782 cm-1; HRMS (ESI) Exact mass calculated for [C₂₄H₂₉NaO₃P]⁺ [M+Na]⁺: 419.1747, found: 419.1746.

6-(tert-butyl)-3-(diphenylphosphoryl)-4-phenyl-2H-chromen-2-one (3i)

Yellow solid (116 mg, 61% yield); m.p. 225-228 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.81–7.71 (m, 4H), 7.46 (t, *J* = 7.1 Hz, 2H), 7.37 (dd, *J* = 14.8, 7.9 Hz, 8H), 7.22 (dd, *J* = 12.6, 6.6 Hz, 3H), 7.04 (d, *J* = 8.4 Hz, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) : δ 165.8 (d, *J* = 5.3 Hz), 159.9 (d, *J* = 13.5 Hz), 158.6, 154.3, 133.7 (d, *J* = 4.3 Hz), 133.6, 132.5, 131.5 (d, *J* = 10.3 Hz), 128.6 (d, *J* = 47.5 Hz),

128.2 (d, J = 6.7 Hz), 128.0, 127.7, 122.0, 118.4 (d, J = 9.4 Hz), 117.9, 116.9, 113.4, 35.3, 30.8; ³¹P NMR (243 MHz, CDCl₃) : δ 24.6; IR (neat) : v = 3062, 2962, 1719, 1607, 1522, 1341, 1198, 1111, 1003, 915, 736 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₃₁H₂₈O₃P]⁺ [M+H]⁺: 479.1771, found: 479.1776.

7-(tert-butyl)-3-(di-p-tolylphosphoryl)-4-phenyl-2H-chromen-2-one (3j)

Yellow oil (121.9 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.64 (dd, J = 12.4, 8.0 Hz, 4H), 7.42 – 7.35 (m, 3H), 7.33 (d, J = 1.3Hz, 1H), 7.22 (s, 1H), 7.19 (d, J = 8.3 Hz, 6H), 7.03(d, J = 8.5 Hz, 1H), 2.35 (s, 6H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3(d, J = 5.2 Hz), 159.8(d, J = 13.5 Hz), 158.3, 154.2, 141.7(d, J = 2.7 Hz), 133.8(d, J = 4.2 Hz), 131.5(q, J = 10.9 Hz), 130.4, 129.7,

129.2, 128.6(q, J = 24.6 Hz), 127.6(d, J = 8.8 Hz), 127.5, 121.8(d, J = 6.2 Hz), 118.3(t, J = 7.2 Hz), 117.2, 113.3(d, J = 14.4 Hz), 35.2, 30.7(q, J = 7.3 Hz), 21.4(q, J = 12.0 Hz); ³¹P NMR (243 MHz, CDCl₃): δ 25.1; IR (neat): v = 3030, 2962, 2220, 1719, 1612, 1523, 1404, 1340, 916, 812, 731 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₃₃H₃₁NaO₃P]⁺ [M+Na]⁺: 529.1903, found: 529.1892.

3-(bis(4-methoxyphenyl)phosphoryl)-7-(tert-butyl)-4-phenyl-2H-chromen-2-one (3k)

Yellow oil (132.5 mg, 62% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.42 (dd, J = 12.0, 8.7 Hz, 4H), 7.14 (d, J = 6.4 Hz, 3H), 7.06 (s, 1H), 6.95 (d, J = 6.0 Hz, 2H), 6.92 (s, 1H), 6.76 (d, J = 8.5 Hz, 1H), 6.63 (dd, J = 8.5, 1.7 Hz, 4H), 3.54 (s, 6H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.0 (d, J = 5.0 Hz), 162.0 (d, J = 2.5 Hz), 160.0 (d, J = 13.5 Hz), 158.3, 154.2, 134.0 (d, J = 54.2 Hz), 133.3

(q, J = 11.8 Hz), 128.2, 128.1 (d, J = 14.9 Hz), 127.6 (d, J = 16 Hz), 125.1, 123.9, 121.8 (d, J = 11.3 Hz), 118.5 (d, J = 9.9 Hz), 117.5, 113.4 (q, J = 15.6 Hz), 55.1 (q, J = 18.1 Hz), 35.2, 30.88, 30.80, 30.7 (q, J = 7.8 Hz); ³¹P NMR (243 MHz, CDCl₃): δ 24.3; IR (neat): v = 3064, 2961, 2218, 1718, 1596, 1503, 1295, 1252, 1182, 1113, 731 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₃₃H₃₁NaO₅P]⁺ [M+Na]⁺: 561.1801,

found: 561.1792.

3-(diphenylphosphoryl)-4-methyl-2*H*-chromen-2-one (3l)

3. General procedure the hydrophosphinylative cyclization of propynoic acid amide

Propynoic alkyl ester **1j-1m** or aryl propargyl amide **4a-4e** (0.40 mmol, 1.0 equiv), arylphosphine oxide **2** (0.48 mmol, 1.2 equiv), AgNO₃ (0.80 mmol, 2.0 equiv) and a stir bar were added to a sealed tube under a nitrogen atmosphere, MeCN (2 mL) as solvent was then added. The mixture was stirred for 24-48 h at 60 °C. After the **4** was completely consumed (monitored by TLC), the crude mixture was directly purified by flash column chromatography on silica gel (EtOAc/petroleum ether 1:1) to give the desired products **5a-5k**.

3-(diphenylphosphoryl)-4-phenylquinolin-2(1H)-one (5a)^[5]

Yellow solid (161.6 mg, 95% yield); m.p. 177-179 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 7.84–7.69 (m, 3H), 7.59–7.46 (m, 8H), 7.44 (t, J = 7.3 Hz, 4H), 7.22 (dd, J = 14.4, 6.7 Hz, 3H), 7.03 (t, J = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.2 (d, J = 12.7 Hz), 158.9 (d, J = 14.8 Hz), 142.7 (d, J = 26.2 Hz), 137.6, 133.4

(d, J = 2.0 Hz), 132.9 (d, J = 2.8 Hz), 131.0, 130.9, 129.5, 129.4, 129.3, 129.1, 129.0, 128.7, 128.6, 128.2, 127.6, 126.1, 126.0, 124.3, 120.0; ³¹P NMR (243 MHz, CDCl₃): δ 39.9; IR (neat): v = 3236, 3057, 2924, 1666, 1599, 1544, 1441, 1319, 1190, 1117, 742 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₇H₂₁NO₂P]⁺ [M+H]⁺: 422.1304, found: 422.1315.

3-(diphenylphosphoryl)-8-methyl-4-phenylquinolin-2(1*H*)-one (5b)

Yellow solid (104.4 mg, 60% yield); m.p. 115-116 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.86–7.69 (m, 3H), 7.62–7.42 (m, 10H), 7.14–6.93 (m, 4H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.2 (d, J = 12.6 Hz), 159.3 (d, J = 17.8 Hz), 143.9 (d, J = 26.2 Hz), 135.9, 133.5 (d,

J = 2.0 Hz), 132.9 (d, J = 4.0 Hz), 131.12, 131.08, 131.01, 131.00, 130.3, 129.5, 129.4, 129.3, 129.2, 129.1, 128.6, 128.3, 126.5, 126.15, 126.06, 124.6, 122.0, 17.7; ³¹P NMR (243 MHz, CDCl₃): δ 40.0; IR (neat): v = 3205, 3059, 2924, 2855, 1669, 1530, 1450, 1308, 1190, 1117, 914, 741 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₃NO₂P]⁺ [M+H]⁺: 436.1461, found: 436.1466.

3-(diphenylphosphoryl)-7-methyl-4-phenylquinolin-2(1*H*)-one (5c)

Yellow solid (104.5 mg, 60% yield); m.p. 68-69 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 7.87–7.70 (m, 3H), 7.51 (dt, *J* = 16.1, 7.6 Hz, 10H), 7.34 (s, 1H), 7.23–7.09 (m, 3H), 6.86 (d, *J* = 7.5 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.1 (d, *J* = 13.8 Hz), 159.0 (d, *J* = 18.1 Hz), 142.9 (d, *J* = 26.2 Hz), 138.8, 137.6, 133.5 (d, *J* = 32.0 Hz), 132.9 (d, *J* =

2.9 Hz), 132.8, 132.7, 131.1, 130.1, 129.52, 129.48, 129.4, 129.2, 129.1, 128.6, 128.2, 126.1, 126.0, 125.1, 120.6, 117.0, 21.4; ³¹P NMR (243 MHz, CDCl₃): δ 40.0; IR (neat): v = 3062, 2924, 2316, 1673, 1553, 1491, 1443, 1313, 1190, 1117, 732 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₃NO₂P]⁺ [M+H]⁺: 436.1461, found: 436.1466.

3-(diphenylphosphoryl)-6-methyl-4-phenylquinolin-2(1*H*)-one (5d)

Yellow solid (146.2 mg, 84% yield); m.p. 87-89 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.67 (s, 1H), 7.85–7.68 (m, 3H), 7.55–7.39 (m, 9H), 7.36–7.20 (m, 4H), 7.03 (t, *J* = 7.8 Hz, 2H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0 (d, *J* = 12.4 Hz), 158.6 (d, *J* = 18.1 Hz), 142.7 (d, *J* = 26.0 Hz), 135.1, 133.9, 133.4 (d, *J* = 1.9 Hz), 132.8 (d, *J* = 2.9 Hz), 131.0, 130.9,

129.5, 129.4, 129.3, 129.2(One carbon is missing due to the single overlap), 129.1, 129.0, 128.5, 128.2, 126.0, 125.9, 119.9, 20.8; ³¹P NMR (243 MHz, CDCl₃): δ 39.8; IR (neat): v = 3053, 2924, 1667, 1601, 1526, 1319, 1251, 1191, 1115, 817, 705 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₃NO₂P]⁺ [M+H]⁺: 436.1461, found: 436.1469.

3-(diphenylphosphoryl)-4-phenyl-6-(trifluoromethyl)quinolin-2(1*H*)-one (5e)

Yellow solid (171.1 mg, 87% yield); m.p. 101-103 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.01 (s, 1H), 7.76 (d = 12.4, 7.6 Hz, 3H), 7.52 (t, *J* = 10.0 Hz, 8H), 7.50 (s, 6H), 7.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5 (d, *J* = 12.8 Hz), 159.9 (d, *J* = 17.7 Hz), 142.7 (d, *J* = 25.9 Hz), 140.7, 133.6 (d, *J* = 1.8 Hz), 133.1 (d, *J* = 2.8 Hz), 132.5, 132.4, 131.5, 131.3, 131.2,

131.0, 130.9, 129.7, 129.54, 129.45, 129.3, 129.1, 128.6, 128.2, 126.4, 126.3, 126.1 (q, J = 3.7 Hz), 119.6; ³¹P NMR (243 MHz, CDCl₃): δ 40.0; ¹⁹F NMR (565 MHz, CDCl₃): δ -62.2; IR (neat): v = 3049, 2929, 1674, 1604, 1541, 1411, 1323, 1181, 1117, 1067, 841, 732 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₀F₃NO₂P]⁺ [M+H]⁺: 490.1178, found: 490.1182.

3-(di-p-tolylphosphoryl)-4-phenylquinolin-2(1H)-one (5f)

Yellow solid (95.2 mg, 53% yield); m.p. 281-283 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.83 (s, 1H), 7.73–7.58 (m, 3H), 7.48 (dd, J = 19.1, 11.4 Hz, 7H), 7.31 (s, 1H), 7.25–7.19 (m, 3H), 7.10–6.97 (m, 3H), 2.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) : δ 160.3 (d, J = 12.7 Hz), 158.7 (d, J = 18.0 Hz), 144.3 (d, J = 2.1 Hz), 143.6 (d, J = 2.9 Hz), 143.2, 143.0, 137.7, 131.6, 131.5, 131.1, 131.0, 129.9, 129.8, 129.4, 128.7, 128.5, 128.2, 126.9, 126.8, 124.2, 120.0,

21.9, 21.6; ³¹P NMR (243 MHz, CDCl₃): δ 40.0; IR (neat) : v = 3049, 2926, 2859, 1670, 1599, 1544, 1391, 1319, 1253, 1186, 912, 740 cm⁻¹; HRMS (ESI) Exact mass calculated for $[C_{29}H_{25}NO_2P]^+$ [M+H]⁺: 450.1617, found: 450.1620.

3-(bis(4-methoxyphenyl)phosphoryl)-4-phenylquinolin-2(1*H*)-one (5g)

Yellow solid (95 mg, 50% yield); m.p. 210-212 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.88 (s, 1H), 7.66 (dd, J = 19.1, 9.8 Hz, 3H), 7.52–7.40 (m, 7H), 7.22 (t, J = 8.6 Hz, 2H), 7.03 (t, J = 7.2 Hz, 1H), 6.94 (t, J = 9.5 Hz, 3H), 6.74 (s, 1H), 3.79 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.0 (d, J = 1.8 Hz), 163.3 (d, J = 3.0 Hz), 160.3 (d, J = 12.2 Hz), 157.6 (d, J = 17.4 Hz), 145.4 (d, J = 28.0 Hz), 137.7, 133.0 (td, J = 26.7 Hz, J = 5.8

Hz), 131.0, 130.9, 129.4, 128.7, 128.5, 128.2, 124.2, 120.0, 114.8, 114.6, 114.1, 114.0, 113.4, 113.3, 55.6, 55.3; ³¹P NMR (243 MHz, CDCl₃): δ 38.9; IR (neat): v = 3051, 2939, 2844, 1667, 1592, 1499, 1315, 1254, 1183, 1115, 910, 740 cm⁻¹; HRMS (ESI) Exact mass calculated for $[C_{29}H_{25}NO_4P]^+$ [M+H]⁺: 482.1516, found: 482.1525.

3-(bis(4-fluorophenyl)phosphoryl)-4-phenylquinolin-2(1H)-one (5h)

Yellow solid (90 mg, 49% yield); m.p. 119-121 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H), 7.86 –7.60 (m, 3H), 7.55 (s, 2H), 7.49 (s, 2H), 7.40 (d, J = 7.5Hz, 2H), 7.26–7.20 (m, 2H), 7.17 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 7.3 Hz, 1H), 6.95 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3 (d, J = 48.5 Hz), 164.8 (d, J = 44.9 Hz), 159.8 (d, J = 12.2 Hz), 156.9 (d, J = 19.1 Hz), 146.0 (d, J = 8.7 Hz), 145.7 (d, J = 8.9 Hz), 137.4, 133.7, 133.66 (d, J = 3.6 Hz), 133.5,

131.9, 131.8, 131.5 (d, J = 3.0), 131.4 (d, J = 1.0), 130.0, 128.9, 128.8, 128.1, 124.5, 120.0, 118.0 (d, J = 12.0 Hz), 117.8 (d, J = 12.0 Hz), 116.9 (d, J = 14.0 Hz), 116.7 (d, J = 14.0 Hz), 114.3 (d, J = 12.0), 114.0 (d, J = 12.0); ³¹P NMR (243 MHz, CDCl₃) : δ 37.1; ¹⁹F NMR (565 MHz, CDCl₃): δ -103.0, -104.4; IR (neat) : v = 3060, 1667, 1593, 1548, 1499, 1444, 1321, 1195, 1112, 910, 740 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₇H₁₉F₂NO₂P]⁺ [M+H]⁺: 458.1116, found: 458.1124.

3-(bis(3-methoxyphenyl)phosphoryl)-4-phenylquinolin-2(1*H*)-one (5i)

Colorless solid (101 mg, 52% yield); m.p. 152–154 °C; ¹H NMR (400 MHz, CDCl₃): 8 8.50 (s, 1H), 7.51 (s, 3H), 7.47 (s, 2H), 7.39 (d, *J* = 7.8 Hz, 3H), 7.31 – 7.23 (m, 3H), 7.20 (t, *J* = 7.4 Hz, 2H), 7.14 (d, *J* = 8.6 Hz, 3H), 7.47 (s, 2H), 7.47 (s, 2H), 7.48 Hz, 3H), 7.48 Hz, 3H), 7.49 Hz,

1H), 7.09 – 6.98 (m, 2H), 6.96 (d, J = 8.6 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.2 (d, J = 13.8 Hz), 160.3 (d, J = 12.6 Hz), 159.8 (d, J = 15.7 Hz), 159.6 (d, J = 17.9 Hz), 137.7, 134.8 (d, J = 25.9 Hz), 134.0, 133.0, 132.9, 130.4, 130.3, 129.5, 128.8, 128.6, 128.1, 127.5 (d, J =12.8 Hz), 124.2, 122.7 (d, J = 11.2 Hz), 119.9, 118.8 (d, J = 2.5 Hz), 118.76, 118.5 (dd, J = 66.7 Hz, J = 2.5 Hz)), 115.6 (dd, J = 78.8 Hz, J = 10.9 Hz)),

55.81, 55.40; ³¹P NMR (243 MHz, CDCl₃): δ 39.07; IR (neat): v = 3060, 2923, 2851, 1748, 1662, 1596, 1548, 1480, 1432, 1315, 1242, 1185, 1036, 912, 854, 743 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₉H₂₅NO₄P]⁺ [M+H]⁺: 482.1516, found: 482.1527.

3-(bis(3,5-dimethylphenyl)phosphoryl)-4-phenylquinolin-2(1H)-one (5j)

Yellow solid (147 mg, 77% yield); m.p. 254-256 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.55 (s, 1H), 7.50 (d, J = 7.5 Hz, 4H), 7.41 (s, 1H), 7.36 (d, J = 8.7 Hz, 4H), 7.30 (s, 1H), 7.18 (d, J = 9.6 Hz, 3H), 7.06–6.94 (m, 2H), 2.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 161.5 (d, J = 17.7 Hz), 160.4 (d, J = 12.0 Hz), 141.6, 141.5, 138.9, 138.7, 138.2 (d, J = 1.9 Hz), 137.8, 137.6, 137.4, 136.8 (d, J = 13.3 Hz), 134.7 (d, J = 3.0 Hz), 129.2, 128.8, 128.7, 128.4 (d, J = 10.9 Hz),

128.2 (d, J = 10.1 Hz), 127.9, 126.3, 124.0, 119.9, 21.3, 21.14, 21.07, 20.98; ³¹P NMR (243 MHz, CDCl₃): δ 36.0; IR (neat): v = 3045, 2926, 2857, 1671, 1601, 1545, 1443, 1318, 1257, 1183, 909, 743 cm⁻¹; HRMS (ESI) Exact mass calculated for $[C_{31}H_{29}NO_2P]^+$ [M+H]⁺: 478.1930, found: 478.1926.

3-(bis(2-methoxyphenyl)phosphoryl)-4-phenylquinolin-2(1H)-one (5k)

Yellow solid (91.8 mg, 48% yield); m.p. 185-186 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.95 (s, 1H), 8.10 (dd, J = 14.4, 7.6 Hz, 1H), 7.45 (dd, J = 19.6, 7.7 Hz, 9H), 7.21 (t, J = 7.4 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 7.00 (t, J = 7.3 Hz, 1H), 6.94 (t, J = 7.0 Hz, 1H), 6.85–6.75 (m, 2H), 3.82 (s, 3H), 3.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.9 (d, J = 4.6 Hz), 160.5 (d, J = 3.0 Hz), 160.8, 157.5, 157.3, 145.1 (d, J = 24.6

Hz), 138.1, 135.1, 135.05, 134.5 (d, J = 1.9 Hz), 133.5 (d, J = 14.0 Hz), 129.0, 128.7, 128.3 (d, J = 5.9 Hz), 123.9, 121.1 (d, J = 12.2 Hz), 119.8, 118.6 (d, J = 11.5 Hz), 116.9, 116.6, 115.8, 113.5 (d, J = 6.3 Hz), 111.1(d, J = 6.9 Hz), 56.1, 55.5; ³¹P NMR (243 MHz, CDCl₃) δ 42.2; IR (neat) : v = 3056, 2932, 2849, 1670, 1587, 1472, 1266, 1181, 911, 743 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₉H₂₅NO₄P]⁺ [M+H]⁺: 482.1516, found: 482.1523.

methyl 1,3-diphenylphosphindole-2-carboxylate 1-oxide (5l)

Yellow oil (72.5 mg, 50% yield); ¹H NMR (600 MHz, CDCl₃): δ 7.81–7.70 (m, 3H), 7.58–7.50 (m, 6H), 7.46 (s, 2H), 7.39 (s, 2H), 7.22 (s, 1H), 3.59 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 164.5 (d, J = 18.5 Hz), 163.0 (d, J = 12.3 Hz), 142.1 (d, J = 24.9 Hz), 133.1, 133.0, 132.9 (d, J = 8.1 Hz), 132.5 (d, J = 2.7 Hz), 131.8 (d, J=10.7

Hz), 131.0 (d, J = 11.0 Hz), 129.5 (d, J = 9.6 Hz), 129.4, 128.8 (d, J = 12.9 Hz), 128.3, 127.9, 126.5 (d, J =

10.5 Hz), 126.1, 125.5, 52.0; ³¹P NMR (243 MHz, CDCl₃) δ 35.8; IR (neat) : v = 3059, 2925, 2849, 1720, 1561, 1487, 1314, 1219, 1077, 758, 703 cm⁻¹; HRMS (ESI) Exact mass calculated for $[C_{22}H_{18}O_3P]^+[M+H]^+$: 361.0988, found: 361.0992.

ethyl 1,3-diphenylphosphindole-2-carboxylate 1-oxide (5m)

Yellow gum (99.1 mg, 66% yield); ¹H NMR (600 MHz, CDCl₃): δ 7.83–7.70 (m, 3H), 7.58–7.48 (m, 6H), 7.46 (s, 2H), 7.39 (s, 2H), 7.23 (s, 1H), 4.11–3.94 (m, 2H), 0.97 (d, J = 4.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 163.8 (d, J = 18.3 Hz), 162.4 (d, J = 12.3 Hz), 142.2 (d, J = 24.9 Hz), 133.0, 132.9, 132.8, 132.3 (d, J = 2.6 Hz), 131.6 (d, J = 10.7 Hz), 131.0 (d, J = 11.0 Hz), 129.4 (d, J = 9.6 Hz), 129.2, 128.6 (d, J = 12.8 Hz), 128.2, 127.8, 126.6, 126.3 (d, J = 10.5 Hz), 125.9, 60.7, 13.5; ³¹P NMR (243 MHz, CDCl₃) δ 35.8; IR (neat) : v = 3060, 2984, 1714, 1562, 1444, 1311, 1217, 1079, 758, 703 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₃H₂₀O₃P]⁺ [M+H]⁺: 375.1145, found: 375.1149.

isopropyl 1,3-diphenylphosphindole-2-carboxylate 1-oxide (5n)

Yellow solid (120.3 mg, 78% yield); m.p. 142-144 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.82–7.69 (m, 3H), 7.52 (m, 6H), 7.45 (s, 2H), 7.38 (s, 2H), 7.21 (s, 1H), 4.85 (d, J = 5.8 Hz, 1H), 1.08 (d, J = 25.7 Hz, 3H), 0.82 (d, J = 64.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 163.2 (d, J = 18.3 Hz), 162.0 (d, J = 12.5 Hz), 142.2 (d, J = 25.1

Hz), 133.1 (d, J=13.0 Hz), 133.0, 132.2 (d, J= 2.6 Hz), 131.5 (d, J=10.5 Hz), 131.0 (d, J= 11.0 Hz), 129.4 (d, J= 9.6 Hz), 129.1, 128.7 (d, J= 28.2 Hz), 128.5, 128.1, 127.8, 127.1, 126.5, 126.2 (d, J= 10.4 Hz), 68.6, 21.3, 21.2; ³¹P NMR (243 MHz, CDCl₃) δ 35.7; IR (neat) : v = 3061, 2981, 1711, 1560, 1446, 1307, 1217, 1076, 756, 705 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₄H₂₂O₃P]⁺ [M+H]⁺: 389.1301, found: 389.1305.

benzyl 1,3-diphenylphosphindole-2-carboxylate 1-oxide (50)

Yellow oil (160.6 mg, 92% yield); ¹H NMR (600 MHz, CDCl₃): δ 7.75–7.67 (m, 3H), 7.49 (m, 6H), 7.37 (s, 4H), 7.21 (s, 2H), 7.17 (d, J = 6.7 Hz, 2H), 6.90 (d, J = 6.0 Hz, 2H), 5.12 (d, J = 12.6 Hz, 1H), 4.96 (d, J = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 164.2 (d, J = 18.2 Hz), 162.2 (d, J = 12.3 Hz), 142.0 (d, J = 24.8 Hz),

135.1, 133.0, 132.9, 132.8, 132.2, 131.7 (d, J=10.7 Hz), 131.0 (d, J=11.0 Hz), 129.4 (d, J=9.6 Hz), 129.3, 128.6 (d, J=12.9 Hz), 128.1 (d, J=22.2 Hz), 127.8, 127.65, 127.60, 126.4 (d, J=10.4 Hz), 126.2, 125.5, 66.3; ³¹P NMR (243 MHz, CDCl₃) δ 35.7; IR (neat) : v = 3061, 2931, 1719, 1559, 1446, 1310, 1215, 1161, 1076, 753, 702 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₈H₂₂O₃P]⁺ [M+H]⁺: 437.1301, found: 437.1300.

4. Procedure the phosphinylative cyclization of *N*,3-diphenylpropiolamide with dibutylphosphine oxide

N,3-diphenylpropiolamide **5** (0.40 mmol, 1.0 equiv), dibutylphosphine oxide **2h** (0.48 mmol, 1.2 equiv), AgNO₃ (0.80 mmol, 2.0 equiv) and a stir bar were added to a sealed tube under a nitrogen atmosphere, MeCN (2 mL) as solvent was then added. The mixture was stirred for 48 h at 60 °C. After the **5** was completely consumed (monitored by TLC), the crude mixture was directly purified by flash column chromatography on silica gel (EtOAc/petroleum ether 1:1) to give the desired products **3**-(**dibutylphosphoryl)-4-phenylquinolin-2(1***H***)-one (6**) as Yellow oil (122,0 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.73 (s, 1H), 7.64 (d, *J* = 18.2 Hz, 1H), 7.48 (s, 2H), 7.35 (s, 2H), 7.30 (d, *J* = 2.8 Hz, 3H), 7.13 (d, *J* = 5.7 Hz, 1H), 2.06 (s, 1H), 1.97 (dd, *J* = 17.6, 9.4 Hz, 3H), 1.60 (m, 4H), 1.44–1.35 (m, 4H), 0.87 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 165.4 (d, *J* = 16.1 Hz), 145.2 (d, *J* = 3.7 Hz), 137.1, 133.6 (d, *J* = 13.8 Hz), 132.0 (d, *J* = 78.2 Hz), 130.2, 129.3, 129.0, 128.9, 127.4 (d, *J* = 38.1 Hz), 125.0, 124.0, 120.3, 28.4 (d, *J* = 68.9 Hz), 24.1 (d, *J* = 15.0 Hz), 23.5 (d, *J* = 34.5 Hz), 13.6; ³¹P NMR (243 MHz, CDCl₃): δ 42.1; IR (neat): ν = 3030, 2953, 1664, 1602, 1543, 1448, 1314, 1162, 906, 752 cm⁻¹; HRMS (ESI) Exact mass calculated for [C₂₃H₂₈NNaO₂P]⁺ [M+Na]⁺: 404.1750, found: 404.1687.

5. The reaction of 1,3-diphenylprop-2-yn-1-one 6 with 2a

The reaction of 1,3-diphenylprop-2-yn-1-one **6** with **2a** gave an inseparable mixture **7** and **8** in 58% combined yield (in 1:1 ratio).

¹H NMR (600 MHz, CDCl₃) δ 7.75–7.70 (m, 2H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.46 (s, 0H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 6.9 Hz, 2H), 7.23 (d, *J* = 4.6 Hz, 1H), 7.19 (s, 1H), 7.13 (t, *J* = 6.9 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 194.93, 194.86, 193.17, 193.12, 173.45, 173.41, 156.09, 155.98, 144.49, 144.40, 141.77, 141.61, 136.86, 133.57, 133.22, 133.12, 133.07, 132.55, 132.53, 132.50, 131.47, 131.40, 131.23, 131.16, 131.11, 130.63, 130.56, 130.35, 129.57, 129.49, 128.82, 128.74, 128.53, 128.16, 128.08, 127.94, 125.33, 125.26, 123.31, 123.25; ³¹P NMR (243 MHz, CDCl₃): δ 18.3, 38.2; HRMS (ESI) Exact mass calculated for [C₂₇H₁₉O₂P]⁺ [M+Na]⁺: 429.1020, found: 429.1008.

6. References

- (a) W. Gao, T. Liu, B. Zhang, X. Li, W Wei, Q. Liu, J. Tian and H. Chang, *J. Org. Chem.*, 2016, *81*, 11297–11304;
 (b) K. Park, T. Palani, A. Pyo and S. Lee. *Tetrahedron Lett.*, 2012, **53**, 733–737;
 (c) T. Kawate, N. Iwase, M. Shimizu, S. A. Stanley, Samantha. Wellington, E. Kazyanskaya, D. T. Hung, *Bioorg. Med. Chem. Lett.* 2013, **23**, 6052-6059;
 (d) V. Lellek and H.-J. Hansen, *Helv. Chim. Acta*, 2001, **84**, 3548–3580.
- (a) C. C, Chen, and J. Waser, *Chem. Commun.*, 2014, **50**, 12923–12926; (b) P. Peng, L. Peng, G. Wang,
 F. Wang, Y. Luo, and A. Lei, *Org. Chem. Front.*, 2016, **3**, 749–752; (c) C. A. Busacca, J. C. Lorenz, N.
 Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R.
 Varsolona, X. Wei, C. H. Senanayake, *Org. Lett.* 2005, **19**, 4277–4280.
- 3. K. Okamoto, T. Shimbayashi, E. Tamura, K. Ohe, Org. Lett. 2015, 17, 5843–5845.
- 4. D. Liu, J.-Q. Chen, X.-Z. Wang, P.-F. Xu, Adv. Synth. Catal. 2017, 359, 2773–2777.
- 5. P. Zhang, Y. Gao, L. Zhang, Z. Li, Y. Liu, G. Tang, Y. Zhao, Adv. Synth. Catal. 2016, 358, 138–142.

7. ¹H NMR, ¹³C NMR, ³²P, and ¹⁹F NMR spectra of products

- 24.44

— 24.3

- 37.13

- 42.22

230 200 170 140 110 80 60 40 20 0 -10 -30 -50 -70 -90 -120

230 200 170 140 110 80 60 40 20 0 -10 -30 -50 -70 -90 -120

12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

230 200 170 140 110 80 60 40 20 0 -10 -30 -50 -70 -90 -120

- 35.7

230	200	170	140	110	80	60	40	20	0	-30	-60	-90	-120

8. X-ray Structure of 3i

Slow diffusion of petrol ether into a solution of **3i** in EtOAc gave crystals that were suitable for X-ray diffraction:

-

3i: CCDC 1921050

	Product	Crystal size(mm)	0.24 x 0.24 x 0.20
Empirical formula	$C_{31}H_{27}O_3P$	θ range for data collection	2.40 to 27.41 $^\circ$
			-22<=h<=22,
Formula weight	478.50	h, k, l ranges	-14<=k<=17,
			- 14<=l<=14
Tomporatura(V)	272(2)	Reflections collected /	5795 / 3909
Temperature(K)	275(2)	unique	[R(int) = 0.0565]
Wavelength(Å)	0.71073	Completeness	99.7%
Crystal system	monoclinic	Absorption correction	Nono
space group	p 1 21/c 1	Absorption concetion	None
	a = 17.0617(8) Å		
	b = 13.6110(6) Å		
Unit cell dimensions	c = 11.3034(6) Å	Data / restraints /	5705/0/210
	$\alpha = 90^{\circ}$	parameters	5795/07 519
	$\beta = 106.030(2)^{\circ}$		
	$\gamma = 90^{\circ}$		
Volume(Å ³)	2522.9(2)	Goodness-of-fit on F^2	1.052
Ζ	1		$P_{1} = 0.0565$
Calculated	1 260	Final R indices [I> 2σ (I)]	$M_{\rm I} = 0.0505$, $M_{\rm I} = 0.1506$
density(g·cm ⁻³)	1.200		$WR_2 = 0.1390$
Absorption	0.140	R indices	$R_1 = 0.0933,$
coefficient(mm ⁻¹)	0.140	(all data)	$wR_2 = 0.1298$
F(000)	1008.9	Largest diff. peak and hole(e·Å ⁻³)	0.601 and -0.405

9. X-ray Structure of 5g

Slow diffusion of petrol ether into a solution of **5g** in EtOAc gave crystals that were suitable for X-ray diffraction:

59. CCDC 1921045	5g:	CCDC	1921	043
-------------------------	-----	------	------	-----

	Product	Crystal size(mm)	0.28 x 0.26 x 0.24	
Empirical formula	$C_{29}H_{24}NO_4P$	θ range for data collection	2.40 to 24.67 $^\circ$	
			-23<=h<=29,	
Formula weight	481.49	h, k, l ranges	-13<=k<=14,	
			-26<=l<=26	
Tome another (V)	272	Reflections collected /	5688 / 3639	
Temperature(K)	213	unique	[R(int) = 0.0552]	
Wavelength(Å)	0.71073	Completeness	99.7%	
Crystal system	monoclinic	Altrametican composition	Nora	
space group	C 1 2/c 1	Absorption correction	None	
	a = 22.6531(10) Å			
	b = 11.2558(4) Å			
Unit cell dimensions	c = 20.1149(9) Å	Data / restraints /	5688/0/318	
	$\alpha = 90^{\circ}$	parameters		
	$\beta = 105.379(1)^{\circ}$			
	$\gamma = 90^{\circ}$			
Volume(Å ³)	4945.2(4)	Goodness-of-fit on F^2	1.076	
Ζ	0		$P_{1} = 0.1022$	
Calculated	0 1 202	Final <i>R</i> indices [I> 2σ (I)]	$R_{\rm I} = 0.1032,$	
density(g·cm ⁻³)	1.295		$WR_2 = 0.1239$	
Absorption	0 147	R indices	$R_1 = 0.0552,$	
coefficient(mm ⁻¹)	0.147	(all data)	$wR_2 = 0.1457$	
F(000)	2017.8	Largest diff. peak and hole(e·Å ⁻³)	0.379 and -0.595	

10. X-ray Structure of 5j

Slow diffusion of petrol ether into a solution of **5j** in EtOAc gave crystals that were suitable for X-ray diffraction:

5j :	CCDC	1921	051
-------------	------	------	-----

	Product	Crystal size(mm)	0.28 x 0.24 x 0.24
Empirical formula	$C_{31}H_{28}NO_2P$	θ range for data collection	2.37 to 24.71 $^{\circ}$
			-13<=h<=13,
Formula weight	477.51	h, k, l ranges	-13<=k<=13,
			-16<=l<=16
Tome another (V)	272(2)	Reflections collected /	6000/ 2961
Temperature(K)	273(2)	unique	[R(int) = 0.0468]
Wavelength(Å)	0.71073	Completeness	99.1%
Crystal system	triclinic	Abcomption composition	Nona
space group	P -1	Absorption correction	INOILE
	a = 10.4035(16) Å		
	b = 10.5900(16) Å		
Unit cell dimensions	c = 13.0053(19) Å	Data / restraints /	6000 / 0 / 215
	$\alpha = 89.785(5)^{\circ}$	parameters	0000707313
	$\beta = 77.673(5)^{\circ}$		
	$\gamma = 69.240(4)^{\circ}$		
Volume(Å ³)	1304.9(3)	Goodness-of-fit on F^2	1.049
Ζ	2		$P_{c} = 0.0769$
Calculated	1 215	Final R indices [I> 2σ (I)]	$M_1 = 0.0709$, $M_2 = 0.1530$
density(g·cm ⁻³)	1.215		$WR_2 = 0.1550$
Absorption	0 133	R indices	$R_1 = 0.1858,$
coefficient(mm ⁻¹)	0.155	(all data)	$wR_2 = 0.1994$
F(000)	348.0	Largest diff. peak and hole(e·Å ⁻³)	0.736 and -0.658