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Protocol - Synthesis and purification of ONs. Modified oligodeoxyribonucleotides (ONs) were
synthesized on a computer-controlled DNA synthesizer (0.2 umol scale) using long-chain alkyl
amine-controlled pore glass (LCAA-CPG) solid support with a pore size of 500 A. The
corresponding DMTr-protected phosphoramidite of monomer X was prepared as previously
described®! and incorporated into ONs via hand-couplings (0.05 M in anhydrous acetonitrile; ~50-
fold molar excess) using 0.01 M 4,5-dicyanoimidazole in anhydrous acetonitrile as the activator
(15 min) and 0.02 M iodine in THF//H>O/pyridine for extended oxidation (45 s). The DMTr-
protected phosphoramidite of the spermine linker was obtained from a commercial source (Glen

Research - https://www.glenresearch.com/spermine-phosphoramidite.html) and incorporated into

ONs via hand-couplings using the abovementioned approach (3 min). Following synthesis, the
columns were treated with 10% diethylamine in acetonitrile (5 min, room temperature) and rinsed
with additional acetonitrile to remove the cyanoethyl protecting groups of the spermine monomers
as recommended by the vendor to prevent acrylonitrile addition to the spermine units.>?
Subsequent treatment with 32% aq. ammonia (55 °C, 17 h) facilitated global deprotection and
cleavage from the solid support. DMTr-protected ONs were purified via ion-pair reverse phase
HPLC (XTerra MS C18 column: 0.05 M aq. triethyl ammonium acetate - acetonitrile gradient)
and detritylated (80% aq. AcOH, 20 min) and precipitated (NaOAc, NaClO4, acetone, -18 °C, 16
h). The purity of the ONs was established using analytical HPLC (>85% purity), whereas the
identity was verified by MALDI-MS (using 2,4,6-trihydroxyacetophenone as a matrix) or ESI-MS
(modified ONs were dissolved in 2.5 M acetic acid, 25 mM imidazole and 25 mM piperidine in
80% aq. acetonitrile)>* recorded on a Quadrupole Time-of-Flight (Q-TOF) mass spectrometer
(Table S1). Raw ESI-signal peaks were deconvoluted using the Max Ent software provided with

the spectrometer to obtain molecular ion peaks.
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Table S1. MS data of ONs used in this study.?

ON Sequence Calculated m/z Observed m/z
(M+H)" (M+H)"

1 5-GGTAXAXATAGGC-3' 4445.5 4447.8

2 3'-CCATAXAXATCCG-5' 4325.5 4326.9

3 5'-GG-S-TAXAXATAGGC-3' 4855.5 4860.5

4 3'-CC-S-ATAXAXATCCG-5' 4735.5 4735.1
3C 5'-GG-S-TATATATAGGC-3' 4423.0 4428.4
4C 3'-CC-S-ATATATATCCG-5' 4303.0 4302.0

7 5'-GG-S-TAXAXATAG-S-GC-3' 5265.5 5268.8

a MALDI-MS was used to determine m/z for ON1, ON2, ON4 and ON4C, whereas ESI-MS was
used to determine m/z for ON3, ON3C and ON7.
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Figure S1. MALDI-MS spectrum of ON1.
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Figure S2. MALDI-MS spectrum of ON2.
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Figure S3. MALDI-MS spectrum of ON4.
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Figure S4. MALDI-MS spectrum of ON4c.
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Figure S5. Unprocessed (upper panel) and deconvoluted (lower panel) ESI-MS spectrum of
ON3.
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Figure S6. Unprocessed (upper panel) and deconvoluted (lower panel) ESI-MS spectrum of
ON3c.
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Figure S7. Unprocessed (upper panel) and deconvoluted (lower panel) ESI-MS spectrum of

ON?7.
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Figure S8. HPLC traces for modified ONs used in this study.
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Protocol - thermal denaturation experiments. The concentrations of ONs were estimated using the
following extinction coefficients (ODaso/umol): G (12.01), A (15.20), T (8.40), C (7.05) and
pyrene (22.4)%*. Thermal denaturation temperatures (7ms) of duplexes (1 uM final concentration
of each strand) were measured on a Cary 100 UV/VIS spectrophotometer equipped with a 12-cell
Peltier temperature controller and determined as the maximum of the first derivative of thermal
denaturation curves (4260 vs. T) recorded in medium salt buffer (7, buffer: 100 mM NacCl, 0.2 mM
EDTA, and pH 7.0 adjusted with 10 mM NaxHPO4 and 5 mM Na,HPOQOys). Strands were mixed in
quartz optical cells with a path length of 1.0 cm and annealed by heating to 85 °C (2 min), followed
by cooling to the starting temperature of the experiment. A temperature range from 3 °C (low salt)
or 10 °C (medium salt) to at least 20 °C above the duplex 7T was used, with 7Tis determined as the
average of two experiments within +£1.0 °C. A temperature ramp of 1 °C/min was used in all

experiments.
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Figure S9. Representative thermal denaturation curves of Invader probes, duplexes between

individual probe strands and cDNA, and unmodified reference duplexes recorded in medium salt

buffer. Experimental conditions are described in Table 1.
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Figure S10. Representative thermal denaturation curves of Invader probes, duplexes between
individual probe strands and cDNA, and unmodified reference duplexes recorded in low salt

buffer. Experimental conditions are described in Table S2.
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Trends of Tnus determined at low ionic strength. The Tws of all duplexes are substantially lower at
low ionic strength ([Na'] = 10 mM, Table S2) than at medium ionic strength ([Na'] = 110 mM,
Table 1), as lower salt concentrations increase the electrostatic repulsion between polyanionic
strands. Interestingly, probe duplexes are 2.5-6 °C more destabilized at low vis-a-vis medium ionic
strength relative to the unmodified DNA reference duplex (e.g., ATm for ON1:ON2 = +3.5 °C vs
+7.5 °C at low and medium strength, respectively), whereas duplexes between individual probe
strands and cDNA duplexes are 0-3 °C more stable relative to the unmodified DNA reference
duplex (e.g., ATm for ON1:cDNA = +18 °C at either condition). Consequently, the probes are more
strongly activated for dsDNA-recognition at low salt conditions (i.e., 74 values are increased by
4.5-8.0 °C). The decrease in ATy, seen for probes at low ionic strength appears, in most part, to be
an effect of the +1 interstrand zipper arrangements of X monomers rather than the spermine bulges.
Thus, the relative effect of the change in salt concentration, calculated as ATm (low salt) - AT
(medium salt), is -2.5 °C for Invader probe ON3:0N4 with two opposing spermine monomers and
approximately -5.5 °C for single bulge Invader probes ON3:ON2 and ON1:ON4 and -4.0 °C for
conventional Invader probe ON1:ON2. Evidently, ON3:ON4 is far more stable than would be
expected based on the 7i’s of ON3:0ON2 and ON1:0ON4 suggesting that the overriding effect of
the spermine bulges is a reduction of the net negative charge of the strands. We speculate that
opposing spermine bulges are too far from each other to exert destabilizing electrostatic
interactions (a fully extended protonated spermine residue spans a distance equivalent to ~5 base
pairs;>® an internal spermine bulge would, therefore, be expected to project a distance of up to 2-3
base pairs out from a duplex). We note that prior work, in which 5'-spermine-conjugated ONs were
hybridized with complementary 3'-spermine-conjugated ONs, showed that opposing terminal

spermine residues only have a limited effect on each other.5’
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Table S2. Tws of probe duplexes and duplexes between individual probe strands and cDNA

determined at low ionic strengths, as well as, thermal advantages (TAs) of probes.?

T [ATm] (°C)

upper strand lower strand
vs cDNA vs cDNA

Probe Sequence probe TA (°C)

T4
5'- GGTAXAXJFTAGGC

1:2 scoarMfdharcce 240[35] 385[F18.0]  39.0 [+185] 33.0
SG_GmTAﬂ )? TAGGC

3:2 el HA@ ﬁmccc 16.0[-45]  3L5[+11.0] 39.0[+I185] 340
5-G G TA)? )?ATAGGC

1:4 e AR Nt 200051 385[+18.0]  36.0 [+15.5] 34.0
—\J VU

3:4 e L‘;Aé‘(igliﬁig 21.5[+1.0] 31.5[+11.0]  36.0 [+15.5] 25.5

7.4 s'.e—emrﬂﬂm‘jmré—c

wer gray Sk areee <10 [<5.5] 21.0 [+0.5] 36.0 [+15.5] >21.5
=g U v

*ATms are calculated relative to the corresponding unmodified dsDNA (7w = 20.5 °C). Thermal
denaturation curves were recorded in low salt phosphate buffer ([Na'] = 10 mM, pH 7.0
(NaH>PO4/Na;HPO4), [EDTA] = 0.2 mM) and each [ON] = 1.0 uM.
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Protocol - electrophoretic mobility shift assay. DNA hairpins were obtained from commercial
sources and were used without further purification. The DNA hairpins were DIG-labeled using the
2" generation DIG Gel Shift Kit (Roche Applied Bioscience). Briefly, 11-digoxigenin-ddUTP was
incorporated at the 3’-end of the hairpin (100 pmol) using a recombinant DNA terminal transferase.
The reaction mixture was quenched through addition of EDTA (0.05 M), diluted to 68.8 nM in 2X
HEPES buffer, and used without further processing. The recognition experiments were conducted
essentially as previously reported.5® Thus, Invader probes (variable 2X concentration in water)
were annealed (90 °C for 2 min, followed by cooling to room temperature) and subsequently
incubated with DIG-labeled DNA hairpins (34.4 nM final concentration in 1X HEPES buffer: 50
mM HEPES, 100 mM NaCl, 5 mM MgClL, pH 7.2, 10% sucrose, 1.44 mM spermine
tetrahydrochloride) at either 8§ °C £ 2 °C, 25 °C+2 °C, or 37 °C £ 2 °C for 17 hours. One microliter
of loading dye (6X) was added and the reaction mixtures were loaded onto 12% non-denaturing
TBE-PAGE gels (45 mM tris-borate, 1 mM EDTA; acrylamide:bisacrylamide (19:1)).
Electrophoresis was performed using constant voltage (70 V) at ~4 °C for 1.5 h. Bands were blotted
onto positively charged nylon membranes (100 V, 30 min, ~4 °C) and cross-linked through
exposure to UV light (254 nm, 5 x 15 W bulbs, 3 min). Membranes were incubated with anti-
digoxigenin alkaline phosphatase Fa., fragments as recommended by the manufacturer and
transferred to a hybridization jacket. Membranes were incubated with CSPD for 10 min at 37 °C,
and chemiluminescence from the formed product was captured on X-ray films. Digital images of
developed X-ray films were obtained using a Fluor-S Multilmager and quantified using
appropriate software (Quantity One). The percentage of dsDNA recognition was calculated as the
intensity of the recognition complex band relative to the total intensity of all bands. An average of

three independent experiments is reported along with standard deviations (). Non-linear
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regression was used to fit data points from dose-response experiments. A script written for the
“Solver” module in Microsoft Office Excel,%’ was used to fit the following equation to the data
points: y = C + 4 (1 — e*) where C, 4 and k are constants. The resulting equation was used to

calculate Cso values by setting y = 50 and solving for ¢.
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Figure S11. Representative electrophoretogram depicting recognition of model dsDNA target
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DHI1 using 100-fold molar excess (3.44 uM) of different probes at 8 °C. Experimental conditions

are otherwise as described in Figure 2.
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Table S3. Levels of recognition of DNA hairpin DH1 using a 200-fold molar excess (at 25 °C) or

100-fold molar excess (at 8 °C) of various double-stranded probes.?

Recognition (%)
Probe Sequence 8°C 25°C
5-GGTAXJAXATAGGC
1:2 3.CC ATAJ&AXATCCG 2042 >90
5-GGTA ﬂ )? TAGGC
3:2 3¥-CC AT AXJ‘\ﬁ(ATCCG 23:l:4 >90
vV
&G TA)Q ;jATAGGC
5',
1:4 3.CC ATAXAXATCCG 2043 >9(
LY U U
5-G G TA;‘AJEIATAGGC
3:4 3.CC ATAXAKATCCG 9+8 45+1
TS U U
7:2 SGGTAX?X.FTAGGC 34:|:5 >90
3-CC ATAXA&(ATCCG
5 GG TAXAXATAG GC
7:4 3.CC ATAXAKATCCG 1542 36+8
oS LV
“GG TATATATAGGC
3eide 3.CC ATATATATCCG <5 <5
gy
5-GG TATATATAGGC
SC:Z 3-CC ATAXAXATCCG <5 lliS
v U
n Fa)
5-6G TAXAXATAGGC
1:4c¢ <5 21+3

3-CC ATATATATCCG
U

2 Experiments were performed in triplicate. Conditions are described in Figure 2.
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Figure S12. Representative electrophoretograms illustrating dose-response experiment between
dsDNA target DH1 (34.4 nmol) using a variable molar excess of Invader probes ON1:0ON2,
ON3:0N2, and ON7:ON2 at a) 8 °C, b) 25 °C, and c) 37 °C. Experimental conditions are

otherwise as described in Figure 2.
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Table S4. Seqeuences and 7Tws of DNA hairpins used in this study.?

DH Sequence Tnm (CO)
1 5’-GGTATATATAGGC/_\T 58.5
3'-CCATATATATCCG /"

/
2 5’-GGTAT7TATAGGCI_\T 60.5
3'-CCATAAATATCCG /"
/
3 5’-GGTATGTATAGGCf\-r 63.5
3'-CCATACATATCCG /"
- J
4 5*-GGTATcrATAGGcf\T 63.0
3'-CCATAGATATCCG ;"
/
5 5*-GGTATATAAAGGcf\T 60.0
3'-CCATATATTTCCG /"
/
6 5*-GGTATATAGAGGcf\T 62.5
3'-CCATATATCTCCG /"
e
7 5 GGTATATACAGGC ) 62.5

3'-CCATATATGTCCG J W

4 For experimental conditions, see Table 1. Data previously published in reference S6.
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