Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

> Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Base-Promoted Cascade Reaction of α , β -Unsaturated *N*-Tosylhydrazones with o-Hydroxybenzyl Alcohols: Highly Regioselective Synthesis of *N*-sec-Alkylpyrazoles

Lian-Mei Chen,*^a Juan Zhao,[‡] An-Jie Xia,[‡] Xiao-Qiang Guo,^a Ya Gan,^a Chuang Zhou,^a Zai-Jun Yang,^b Jun Yang^b and Tai-Ran Kang^{*ab}

^aCollege of Pharmacy and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. of China. E-mail: chenlianmei845@163.com; kangtairan@sina.com ^bCollaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Chemistry & Chemical Engineering, China West Normal University, Nanchong City, Sichuan, 637002, P. R. of China.

Table of Contents

I-General information	.2
II-Experimental Section	.3
III-Optimization of the Reaction conditions	.4
IV-General Procedure	5
V-NMR spectra for compounds	12
VI-X-ray crystal structure analysis of compound 41	46

I-General information

¹H NMR spectra were determined on a 400 MHz spectrometer in CDCl₃ solution. Chemical shifts are expressed in parts per million (δ), and the signals were reported as s (singlet), d (doublet), t (triplet), m (multiplet), and coupling constants J were given in Hz. ¹³C NMR spectra were recorded at 100 MHz in CDCl₃ solution. Chemical shifts are expressed in parts per million (δ) and are referenced to CDCl₃ (δ = 77.16) as an internal standard. TLC was done on silica gel coated glass slide (Silica gel G for TLC). Silica gel (60-120 mesh) was used for column chromatography. Petroleum ether refers to the fraction boiling in the range of 60-90 °C unless otherwise mentioned. All solvents were dried and distilled before use. Commercially available substrates were freshly distilled before the reaction. Solvents, reagents and chemicals were commercially purchased. All reactions involving moisture sensitive reactants were executed using oven-dried glassware. The α , β -unsaturated tosylhydrazones **1** and ortho-hydroxymethzyl phenols **2** were synthesized according to the reported procedure.¹⁻⁴ The relative configuration of **4**I was assigned by the X-ray analysis.

II-Experimental Section

1. Synthesis of α , β -unsaturated tosylhydrazones 1

 α , β -unsaturated tosylhydrazones were prepared according to literature procedure.³

A solution of pure 4-methylbenzenesylfonhydrazide (5 mmol) in methanol (5 mL) was stirred and heated to 60 °C until the 4-methylbenzenesylfonhydrazide was completely dissolved. Then α , β unsaturated aldehydes were slowly dropped to the mixture. After approximately 30 min, the crude products as precipitates were obtained. The precipitates were washed by petroleum ether and dried in *vacuo* to afford the pure products **1a-k**.

2. Synthesis of ortho-hydroxymethzyl phenols 2

General procedure for *ortho*-hydroxymethzyl phenols.⁴ RMgBr (2.0 equiv) was added into a solution of salicyclaldehyde (1 equiv) in THF at 0 °C. The mixture was refluxed for about 5 hours. The reaction was quenched with 2mL saturated NH₄Cl solution, and the mixture solution was transferred to a separatory funnel. The aqueous layer was extracted with 4mL EtOAc. The organic layer was separated. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by recrystallization to provide the desired products **2** (40-80% yields).

Table 1. Optimization of reaction conditions					
NNHTs Ph +	Ph OH base (3 equiv) solvent, temp.	Ph	7		
1a	2a	3a 3a'			
entry ^a	base	solvent/temp(°C)	3a yield (%) ^b	3a/3a' °	
1	Cs ₂ CO ₃	1,4-dioxane/60	70	>20:1	
2	K ₂ CO ₃	1,4-dioxane/60	68	>20:1	
3	Na ₂ CO ₃	1,4-dioxane/60	55	>20:1	
4	Cs ₂ CO ₃	THF/60	62	>20:1	
5	Cs ₂ CO ₃	Toluene/60	48	>20:1	
6	Cs ₂ CO ₃	(CH ₂ Cl) ₂ /60	23	>20:1	
7 ^[d]	Cs ₂ CO ₃	1,4-dioxane/90	92	>20:1	

III-Optimization of the Reaction conditions

^{*o*}Reaction conditions: α ,β-unsaturated *N*-tosylhydrazone **1a** (0.22 mmol, 1.1 equiv), *ortho*-hydroxybenzyl alcohol **2a** (0.2 mmol, 1 equiv), base (0.6 mmol, 3.0 equiv) in 1 mL solvent for 12 hours. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}For 4 hours.

¹H NMR spectroscopy of the crude reaction mixture (1a)

¹H NMR spectroscopy of the crude reaction mixture (1a +2a)

the value of 3a/3a' was about > 20:1.

IV-General Procedure

1. Procedure for the cascade Reaction

 α ,β-unsaturated *N*- tosylhydrazones **1** (0.22 mmol), *ortho*-hydroxymethzyl phenols **2** (0.2 mmol), Cs₂CO₃ (0.6 mmol) and 1,4-dioxane (1 mL) were added into a tube. The mixture was stirred at 90 °C for 4-8 hours. After cooling to room temperature, the mixture was quenched with NH₄Cl saturated aqueous solution (2 mL) and extracted with CH₂Cl₂ (3 × 2 mL). The combined organic phase was dried over Na₂SO₄, and then organic solvents were removed in *vacuo*. The residue was purified by flash column chromatography on silica gel with ethyl acetate/petroleum ether (1:15-1:10, V/V) as the eluent, affording the desired products **3** and **4**, which were characterized by ¹H and ¹³C NMR spectroscopy, HRMS.

2. Procedure for the gram scale reaction (for Scheme 5)

 α , β -unsaturated tosylhydrazones **1** (5.5 mmol), *ortho*-hydroxymethzyl phenols **2** (5 mmol), Cs₂CO₃ (15 mmol) were suspended in 1,4-dioxane (10 mL) in a flask. The resulting solution was stirred at 90 °C for 4 h. After cooling to room temperature, the mixture was quenched with NH₄Cl saturated aqueous solution (40 mL) and extracted with CH₂Cl₂ (3 × 40 mL). The combined organic phase was dried over Na₂SO₄, and then the solvent was removed in *vacuo* to give a residue. The residue was purified by flash column chromatography (EtOAc/hexane) to give the compounds **3a** (90% yield) or **4l** (91% yield).

3. Synthesis of compound 5 (for Scheme 4)

The compound **5** was prepared according to the reported literature procedure.⁵ α , β -unsaturated tosylhydrazones **1** (0.11 mmol), *ortho*-hydroxymethzyl phenols **2** (0.1 mmol),

 Cs_2CO_3 (0.4 mmol) and 1,4-dioxane (0.5 mL) were added into a tube. The mixture was stirred at 90 °C for 4 h. Next, (E)-4-methyl-N'-(1-phenylethylidene)benzenesulfonohydrazide (0.1 mmol) was added. The system was heated at 110 °C with stirring and refluxing. After the reaction was completed, the reaction mixture was cooled to room temperature, and the solvent was eliminated under reduced pressure. 2mL NaOH solution (2M) and 2mL dichloromethane were added to the residue. The aqueous phase was extracted three times with dichloromethane. The combined organic layer was washed with brine and dried over MgSO₄. The organic solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel or alumina eluted with EtOAc/hexane to afford the product **5** in 85% yield.

4. Synthesis of compound 6 (for Scheme 4)

The compound **6** was prepared according to the literature procedure.⁵

α,β-unsaturated tosylhydrazones **1** (0.11 mmol), ortho-hydroxymethzyl phenols **2** (0.1 mmol), Cs_2CO_3 (0.4 mmol) and 1,4-dioxane (0.5 mL) were added into a tube. The mixture was stirred at 90 °C for 4 h. Next, (E)-4-methyl-N'-(1-phenylethylidene)benzenesulfonohydrazide (0.1 mmol) was added. The system was heated at 110 °C with stirring and refluxing. After the reaction was completed, the crude reaction mixture was cooled to room temperature. The solvent was eliminated. 2mL NaOH solution (2M) and 2mL dichloromethane were added. The layers were separated. The aqueous phase was extracted with dichloromethane three times. The combined organic layer was washed with brine and dried over MgSO₄. After the solvent was removed under reduced pressure, the residue was purified by chromatography on silica gel with EtOAc/hexane. The product **6** was obtained in 80% yield.

5. Synthesis of compound 7 (for Scheme 5 b)

The compound **7** was synthesized according to the reported literature.⁶ Triflic anhydride (21.8 uL, 0.12 mmol) in CH_2Cl_2 (0.5 mL) was added to a solution of **3a** (32.6 mg, 0.1 mmol) and 2,6-lutidine (18.6 uL, 0.15 mmol) in dry CH_2Cl_2 (0.5 mL) under argon at -30°C for 1 hour. And then, the reaction system reacted at 0°C for 1 hour. The reaction was quenched by addition of water (0.5 mL). The solution was allowed to warm to room temperature. The layers were separated. The aqueous phase was extracted with dichloromethane three times. The combined organic layer was washed with brine and dried over MgSO₄. After the solvent was

removed under reduced pressure, the residue was purified by chromatography on silica gel with EtOAc/hexane. The product **7** was obtained in 95% yield.

6. Synthesis of compound 8 (for Scheme 5 b)

The compound **8** was prepared according to literature procedure.⁶ A solution of **7** (45.8 mg, 0.1 mmol), Pd(PPh₃)₂Cl₂ (7.01 mg, 0.01 mmol), LiCl (12.7 mg, 0.3 mmol), and DBU (18 uL, 0.12 mmol) in dry DMF (0.5 mL), was heated at 145 °C under argon for 18 h. After cooling, the dark brown solution was transferred to a separatory funnel. Water and ether was added. The ether layer was washed 3 times with water, dried over MgSO₄, and evaporated to dryness. The residue was chromatographed on a column of silica gel eluted with EtOAc/hexane to **8** (60% yield).

7. Synthesis of compound 9 (for Scheme 5 b)

A modified literature procedure was followed.⁷

PhI(OAc)₂ (32.2 mg, 0.1 mmol) was added to the solution of **3a** (32.6 mg, 0.1 mmol) in MeOH (1 mL) at 0 °C. The mixture was stirred at room temperature for 1 h. Then, 5 mL saturated aqueous NaHCO₃ solution was added. The mixture was extracted with DCM (3×10 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (hexanes/EtOAc) to afford the product **9** as a colorless oil in 66% yield.

8. Some complementary experiments (for Scheme 5 a)

¹H NMR spectroscopy of the crude reaction mixture (Scheme 4 a)

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80-7.78 (m, 2H), 7.64 (d, *J* = 1.9Hz, 1H), 7.45-7.41 (m, 2H), 7.38-7.34 (m, 1H), 6.64 (d, *J* = 1.9Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 149.1, 133.3, 132.2, 128.8, 128.0, 125.9, 102.6.

References

- [1] Zhu, J.; Mao, M.; Ji, H.-J.; Xu, J.-Y.; Wu, L. Org. Lett. **2017**, *19*, 1946-1949.
- [2] Liang, M.; Zhang, S.; Jia, J.; Tung, C.-H.; Wang, J.; Xu, Z. Org. Lett. 2017, 19, 2526-2529.
- [3] Fulton, J.; Aggarwal, V.; Vicente, J. Eur. J. Org. Chem. 2005, 8, 1479.
- [4] Fan, J.; Wang, Z. Chem. Commun. 2008, 5381–5383.
- [5] Barluenga, J.; Aznar, F.; Valdes, C. Angew. Chem., Int. Ed. 2010, 49, 4993.
- [6] Wang, J.-Q.; Harvey, R. G. Tetrahedron. 2002, 58, 5927.
- [7] Yin, Z.; Zhang, J.; Wu, J.; Liu, C.; Sioson, K.; Devany, M.; Hu, C.; Zheng, S. Org. Lett. 2013, 15, 3534.

V-NMR spectra for compounds

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

VI-Structure of compound 4I

CCDC 1582529 (compound **4**I) contains the supplementary crystallographic data for this paper . These data can be obtained by free of charge on application to the Director, CCDC 12 Union Road, Cambridge CB2 1EZ, UK (fax (+44) 1223-336033; or e-mail <u>deposit@ccdc.cam.uk</u>) or via <u>www.ccdc.cam.ac.uk/data_request/cif</u>

Table 1. Crystal data and structure refinement for Compound 4I

Identification code	41
Empirical formula	$C_{23}H_{20}N_2O_2$
Formula weight	356.41
Temperature/K	293.1(3)
Crystal system	monoclinic
Space group	P21/c
a/Å	9.34970(18)
b/Å	9.15478(16)
c/Å	21.8715(4)
α/°	90
β/°	92.8985(15)
γ/°	90
Volume/Å ³	1869.68(6)
Z	4
pcalcg/cm3	1.266
μ/mm-1	0.649
F(000)	752.0
Crystal size/mm3	$0.8 \times 0.35 \times 0.2$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	9.472 to 145.056
Index ranges	-11 ≤ h ≤11, -7 ≤ k ≤11, -17 ≤ l ≤26
Reflections collected	10657
Independent reflections	3641 [Rint = 0.0325, Rsigma = 0.0244]
Data/restraints/parameters	3641/0/246
Goodness-of-fit on F2	1.027
Final R indexes [I>=2σ (I)]	R1 = 0.0505, wR2 = 0.1394
Final R indexes [all data]	R1 = 0.0574, wR2 = 0.1512
Largest diff. peak/hole / e Å-3	0.22/-0.24