Tandem arylation and regioselective allylic etherification of

2,3-allenol via a Pd/B cooperative catalysis

Hongfang Li,^{a,b} Tao Li,^b Yu Jen Hsueh,^b Xue Wu^{*,a} Feng Xu^{*,c} and Yong Jian Zhang^{*,‡}

^aKey Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, 977 Gongyuan Road, Yanji, Jilin 133002, P. R. China

^bSchool of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R.

China

^cShanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Hwy, Shanghai 201400, P. R. China.

Table of Contents

General experimental details	2
General procedure and product characterization	3
General procedures for the tandem arylation and allylic etherification of 2,3-allenol	3
Condition optimizations	3
Characterization of products 4	4
Characterization of product 5	.13
Procedure for reduction of 4aa to diol 6	.14
Characterization of diol 6	.14
Procedure for ring-closing metathesis of 4ai to cyclic ethers 7	.14
Characterization of cyclic ethers 7	.15
REFERENCES	.15
Copies of ¹ H and ¹³ C NMR spectra	.16

General experimental details

Analytical thin-layer chromatography (TLC) was carried out using 0.2-mm commercial silica gel plates (Yantai Jiangyou Silica Gel Development Co., Ltd., silica gel HSGF 254). Reactions were monitored by thin-layer chromatography (TLC) on silica plates (F-254) and visualized under UV light. Preparative column chromatography employing silica gel (Qingdao Shenghai Fine Silica Gel Chemical Co., Ltd., 200-300 mesh) was performed according to the method of Still. High-resolution mass spectra (HRMS) were performed at Instrumental Analysis Center of Shanghai Jiao Tong University using ESI method. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Bruker AVANCE III HD 500 (500 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from trimethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Bruker AVANCE III HD 500 (125 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.0 ppm for deuteriochloroform. ¹³C NMR spectra were routinely run with broadband decoupling. Buta-2,3-dien-1-ol were synthesized according to reported procedures, all characterization data are in accordance with literature.¹ Unless otherwise noted, all reagents and solvents were obtained from commercial sources and used without further purification.

General procedure and product characterization General procedures for the tandem arylation and allylic etherification of 2,3-allenol

Buta-2,3-dien-1-ol (1) (14.02 mg, 0.2 mmol, 1.0 equiv.), aryl iodides 2 (0.24 mmol, 1.2 equiv.), alcohols 3 (0.24 mmol, 1.2 equiv.) and BEt₃(10 μ L, 0.01 mmol, 5 mol%) were consecutively added to a sealed tube charged with a mixture of K₂CO₃ (55 mg, 0.4 mmol, 2.0 equiv.), Pd₂(dba)₃ CHCl₃ (5.2 mg, 0.005 mmol, 2.5 mol%), and DPPF (5.54 mg, 0.01 mmol, 5 mol%) under an atmosphere of nitrogen. THF (2 mL) were added sequentially. The reaction mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the solvent was removed in vacuum. The residue was purified by flash column chromatography on silica gel to afford products **4**.

Condition optimizations

Table S1 Condition optimizations^a

N		Pd ₂ (dba) ₃ · CHCl ₃ (2.5 mol%) ligand (5 mol%) Et ₃ B (5 mol%) base, solvent, 80 °C 3a		OBn OH	
1	он Р п Р пон 2а 3а			Ph 4aa	
entry	ligand	solvent	base	yield(%) ^b	
1	PPh₃	DCE	K_2CO_3	46	
2	PCy ₃	DCE	K_2CO_3	43	
3	P(2-furanyl) ₃	DCE	K_2CO_3	40	
4	$P(C_6F_5)_3$	DCE	K ₂ CO ₃	NR	
5	SPhos	DCE	K ₂ CO ₃	41	
6	XPhos	DCE	K ₂ CO ₃	39	
7	DPPM	DCE	K_2CO_3	29	
8	DPPE	DCE	K_2CO_3	25	
9	DPPP	DCE	K_2CO_3	20	
10	DPPB	DCE	K_2CO_3	30	
11	DPPF	DCE	K_2CO_3	64	
12	DPEphos	DCE	K_2CO_3	48	
13	BINAP	DCE	K_2CO_3	42	
14	DPPF	DCE	Cs_2CO_3	48	
15	DPPF	DCE	K_3PO_4	35	
16	DPPF	DCE	KF	trace	
17	DPPF	DCE	КОН	trace	
18	DPPF	DCE	Et_3N	trace	
19	DPPF	benzene	K_2CO_3	70	
20	DPPF	toluene	K_2CO_3	47	
21	DPPF	THF	K_2CO_3	75	
22	DPPF	MTBE	K ₂ CO ₃	68	
23	DPPF	dioxane	K_2CO_3	trace	
24	DPPF	CH₃CN	K_2CO_3	35	
25 ^c	DPPF	THF	K_2CO_3	NR	
26 ^{<i>d</i>}	DPPF	THF	K ₂ CO ₃	38	

^{*a*} Reaction conditions: $Pd_2(dba)_3 \circ CHCl_3$ (2.5 mol%), ligand (10 mol% for mono-phosphines, 5 mol% for bidentate ligands), BEt₃ (5mol%), base (0.4 mmol), **1** (0.2 mmol), **2a** (0.24 mmol), **3a** (0.24 mmol), solvent (2.0 mL), at 80 °C for 12 h. ^{*b*} Yields are of isolated materials. ^{*c*} The reaction was carried out without BEt₃ under otherwise identical conditions. ^{*d*} the reaction was carried out with bromobenzene instead of iodobenzene. DCE = 1,2-Dichloroethane; THF = tetrahydrofuran; MTBE = methyl *tert*-butyl ether.

Table S2 Tandem arylation and allylic etherification with chiral ligands^a

^{*a*} Reaction conditions: $Pd_2(dba)_3 \bullet CHCl_3$ (2.5 mol%), ligand (10 mol% for mono-phosphines, 5 mol% for bidentate ligands), BEt₃ (5mol%), K₂CO₃ (0.4 mmol), **1** (0.2 mmol), **2a** (0.24 mmol), **3a** (0.24 mmol), DCE (2.0 mL), at 80 °C for 12 h. The enantiomeric excesses were determined by HPLC using a chiral stationary phase.

Characterization of products 4 2-(benzyloxy)-3-phenylbut-3-en-1-ol (4aa)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.29 (m, 10H), 5.55 (d, J = 1.2 Hz, 1H), 5.47 (s, 1H), 4.78 (d, J = 11.4 Hz, 1H), 4.48 (dd, J = 11.4, 6.2 Hz, 2H), 3.64–3.56 (m, 2H), 2.17 (d, J = 3.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 144.86, 139.26, 137.93, 128.52, 128.26, 127.96, 127.89, 127.86, 126.57, 115.69, 82.24, 70.78, 65.54; HRMS (ESI-MS): Calcd. for C₁₇H₁₈O₂ (M + Na): 277.1204, Found: 277.1203.

2-((4-methoxybenzyl)oxy)-3-phenylbut-3-en-1-ol (4ab)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.26 (m, 7H), 6.91 (d, *J* = 8.6 Hz, 2H), 5.54 (d, *J* = 1.2 Hz, 1H), 5.46 (s, 1H), 4.70 (d, *J* = 11.1 Hz, 1H), 4.45 (dd, *J* = 7.5, 4.0 Hz, 1H), 4.41 (d, *J* = 11.1 Hz, 1H), 3.81 (s, 3H), 3.64–3.47 (m, 2H), 2.18 (dd, *J* = 8.9, 4.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.35, 145.00, 139.33, 130.04, 129.64, 128.46, 127.88, 126.59, 115.64, 113.94, 81.92, 70.49, 65.56, 55.29; HRMS (ESI-MS): Calcd. for C₁₈H₂₀O₃ (M + Na): 307.1310, Found: 307.1317.

2-((4-nitrobenzyl)oxy)-3-phenylbut-3-en-1-ol (4ac)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.44–7.30 (m, 4H), 5.57 (d, *J* = 1.2 Hz, 1H), 5.45 (s, 1H), 4.86 (d, *J* = 12.9 Hz, 1H), 4.63 (d, *J* = 12.9 Hz, 1H), 4.52–4.47 (m, 1H), 3.67 (t, *J* = 6.4 Hz, 2H), 2.07 (dd, *J* = 12.9, 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.43, 145.56, 144.61, 138.92, 128.60, 128.13, 127.88, 126.53, 123.72, 116.01, 83.08, 69.55, 65.52; HRMS (ESI-MS): Calcd. for C₁₇H₁₇NO₄ (M + Na): 322.1055, Found: 322.1057.

2-(naphthalen-1-ylmethoxy)-3-phenylbut-3-en-1-ol (4ad)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.93–7.73 (m, 4H), 7.58–7.27 (m, 8H), 5.58 (d, *J* = 1.2 Hz, 1H), 5.51 (s, 1H), 4.93 (d, *J* = 11.7 Hz, 1H), 4.65 (d, *J* = 11.7 Hz, 1H), 4.54–4.51 (m, 1H), 3.72–3.46 (m, 2H), 2.20 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 144.92, 139.28, 135.39, 133.25, 133.01, 128.49, 128.34, 127.92, 127.86, 127.70, 126.75, 126.60, 126.18, 125.99, 125.85, 115.79, 82.22, 70.90, 65.57; HRMS (ESI-MS): Calcd. for C₂₁H₂₀O₂ (M + Na): 327.1361, Found: 327.1366. **2-(furan-2-ylmethoxy)-3-phenylbut-3-en-1-ol (4ae)**

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.26 (m, 6H), 6.37–6.34 (m, 2H), 5.53 (s, 1H), 5.46 (s, 1H), 4.69 (d, *J* = 12.7 Hz, 1H), 4.56–4.36 (m, 2H), 3.58–3.50 (m, 2H), 2.24 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 151.51, 144.61, 143.02, 139.25, 128.47, 127.91, 126.58, 115.65, 110.33, 109.60, 81.83, 65.45, 62.68; HRMS (ESI-MS): Calcd. for C₁₅H₁₆O₃ (M + Na): 267.0997, Found: 267.0992.

2-ethoxy-3-phenylbut-3-en-1-ol (4af)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.27 (m, 5H), 5.46 (d, J = 1.4 Hz, 1H), 5.37 (d, J = 1.1 Hz, 1H), 4.34 (ddd, J = 7.8, 3.8, 0.8 Hz, 1H), 3.78–3.72 (m, 1H), 3.61–3.37 (m, 3H), 2.30 (d, J = 6.6 Hz, 1H), 1.27 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.37, 139.46, 128.40, 127.78, 126.55, 115.10, 82.75, 65.49, 64.50, 15.33; HRMS (ESI-MS): Calcd. for C₁₂H₁₆O₂ (M + Na): 215.1048, Found: 215.1044.

2-(cyclohexylmethoxy)-3-phenylbut-3-en-1-ol (4ag)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.49–7.27 (m, 5H), 5.46 (d, *J* = 1.4 Hz, 1H), 5.36 (s, 1H), 4.30 (dd, *J* = 8.0, 3.2 Hz, 1H), 3.60–3.48 (m, 3H), 3.23 (dd, *J* = 9.0, 6.1 Hz, 1H), 2.24 (dd, *J* = 9.7, 3.2 Hz, 1H), 1.89–1.58 (m, 5H), 1.35–1.10 (m, 4H), 0.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 145.32, 139.47, 128.39, 127.76, 126.55, 115.15, 82.98, 75.01, 65.63, 38.25, 30.19, 30.12, 26.56, 25.87, 25.83; HRMS (ESI-MS): Calcd. for C₁₇H₂₄O₂ (M + Na): 283.1674, Found: 283.1667.

2-phenethoxy-3-phenylbut-3-en-1-ol (4ah)

Ph .OH Ph 4ah

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.09 (m, 10H), 5.42 (d, *J* = 1.3 Hz, 1H), 5.28 (s, 1H), 4.31 (dd, *J* = 8.2, 3.4 Hz, 1H), 3.93 (ddd, *J* = 6.8, 6.8, 9.3 Hz, 1H), 3.64 (ddd, J = 7.0, 7.0, 9.3 Hz, 1H), 3.55–3.45 (m, 2H), 3.00–2.90 (m, 2H), 2.10 (d, *J* = 9.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 145.07, 139.29, 138.87, 128.90, 128.39, 127.78, 126.53, 126.31, 115.34, 83.20, 69.89, 65.50, 36.45; HRMS (ESI-MS): Calcd. for C₁₈H₂₀O₂ (M + Na): 291.1361, Found: 291.1355.

2-(allyloxy)-3-phenylbut-3-en-1-ol (4ai)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.28 (m, 5H), 6.02–5.94 (m, 1H), 5.48 (d, *J* = 1.2 Hz, 1H), 5.39 (s, 1H), 5.33 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.23 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.42 (dd, *J* = 7.9, 3.4 Hz, 1H), 4.23 (dd, *J* = 11.3, 3.8 Hz, 1H), 4.01 (dd, *J* = 12.6, 6.2 Hz, 1H), 3.61–3.52 (m, 2H), 2.18 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 144.99, 139.34, 134.58, 128.40, 127.80, 126.54, 117.29, 115.42, 82.07, 69.75, 65.42; HRMS (ESI-MS): Calcd. for C₁₃H₁₆O₂ (M + Na): 227.1048, Found: 227.1051.

2-((2-methylallyl)oxy)-3-phenylbut-3-en-1-ol (4aj)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.27 (m, 5H), 5.49 (d, *J* = 1.4 Hz, 1H), 5.40 (dd, *J* = 1.2, 1.1 Hz, 1H), 5.04 (s, 1H), 4.95 (s, 1H), 4.40 (ddd, *J* = 7.5, 3.9, 0.7 Hz, 1H), 4.12 (d, *J* = 12.4 Hz, 1H), 3.92 (d, *J* = 12.3 Hz, 1H), 3.65–3.46 (m, 2H), 2.15 (dd, *J* = 9.3, 3.8 Hz, 1H), 1.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.94, 142.03, 139.40, 128.44, 127.22, 126.60, 115.53, 112.68, 81.68, 72.58, 65.53, 19.74; HRMS (ESI-MS): Calcd. for C₁₄H₁₈O₂ (M + Na): 241.1204, Found: 241.1209. **2-(but-3-en-1-yloxy)-3-phenylbut-3-en-1-ol (4ak)**

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.26 (m, 5H), 5.95–5.78 (m, 1H), 5.47 (d, *J* = 1.3 Hz, 1H), 5.37 (s, 1H), 5.21–5.04 (m, 2H), 4.34 (dd, *J* = 8.2, 3.4 Hz, 1H), 3.79–3.74 (m, 1H), 3.60–3.47 (m, 3H), 2.41 (td, *J* = 6.7, 1.2 Hz, 2H), 2.28 (dd, *J* = 9.3, 2.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 145.14, 139.35, 135.26, 128.43, 127.83, 126.55, 116.71, 115.25, 83.00, 68.33, 65.61, 34.32; HRMS (ESI-MS): Calcd. for C₁₄H₁₈O₂ (M + Na): 241.1204, Found: 241.1209.

2-(cinnamyloxy)-3-phenylbut-3-en-1-ol (4al)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.27 (m, 10H), 6.64 (d, J = 15.9 Hz, 1H), 6.35 (ddd, J = 15.9, 6.5, 5.7 Hz, 1H), 5.52 (d, J = 1.3 Hz, 1H), 5.44 (s, 1H), 4.48 (ddd, J = 7.5, 4.0, 0.7 Hz, 1H), 4.39 (ddd, J = 11.8, 6.4, 1.5 Hz, 1H), 4.18 (ddd, J = 11.8, 7.2, 1.3 Hz, 1H), 3.67–3.52 (m, 2H), 2.19 (dd, J = 9.1, 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 144.95, 139.31, 136.52, 132.75, 128.56, 128.48, 127.89, 127.79, 126.58, 126.49, 125.76, 115.60, 82.05, 69.48, 65.52; HRMS (ESI-MS): Calcd. for C₁₉H₂₀O₂ (M + Na): 303.1361, Found: 303.1355.

4-((1-hydroxy-3-phenylbut-3-en-2-yl)oxy)butan-2-one (4am)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.78–7.04 (m, 5H), 5.46 (s, 1H), 5.35 (s, 1H), 4.36 (dd, *J* = 8.2, 3.1 Hz, 1H), 3.94–3.90 (m, 1H), 3.75 (ddd, *J* = 9.2, 7.5, 5.1 Hz, 1H), 3.60–3.56 (m, 1H), 3.53–3.42 (m, 1H), 2.89–2.68 (m, 2H), 2.62 (dd, *J* = 9.6, 3.2 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.28, 145.07, 139.26, 128.41, 127.82, 126.50, 115.00, 83.36, 65.44, 64.08, 43.59, 30.37; HRMS (ESI-MS): Calcd. for C₁₄H₁₈O₃ (M + Na): 257.1154, Found: 257.1151.

3-((1-hydroxy-3-phenylbut-3-en-2-yl)oxy)propanenitrile (4an)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.29 (m, 5H), 5.53 (d, *J* = 0.7 Hz, 1H), 5.42 (s, 1H), 4.41 (dd, *J* = 7.2, 4.0 Hz, 1H), 3.91 (dt, *J* = 9.4, 6.3 Hz, 1H), 3.68 (dt, *J* = 9.4, 6.3 Hz, 1H), 3.63–3.57 (m, 2H), 2.74–2.57 (m, 2H), 2.26 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 144.29, 138.76, 128.56, 128.09, 126.42, 117.81, 115.78, 83.79, 65.49, 63.58, 19.08; HRMS (ESI-MS): Calcd. for C₁₃H₁₅NO₂ (M + Na): 240.1000, Found: 240.0996.

2-((6-chlorohexyl)oxy)-3-phenylbut-3-en-1-ol (4ao)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.28 (m, 5H), 5.47 (d, *J* = 1.4 Hz, 1H), 5.36 (s, 1H), 4.32 (dd, *J* = 8.1, 3.5 Hz, 1H), 3.80–3.18 (m, 6H), 2.19 (dd, *J* = 9.5, 3.3 Hz, 1H), 1.86–1.73 (m, 2H), 1.73–1.55 (m, 2H), 1.54–1.35 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 145.31, 139.38, 128.41,

127.81, 126.54, 115.19, 82.94, 69.00, 65.56, 45.01, 32.51, 30.28, 26.68, 25.55; HRMS (ESI-MS): Calcd. for $C_{16}H_{23}ClO_2$ (M + Na): 305.1284, Found: 305.1282.

2-((4-methoxybenzyl)oxy)-3-(m-tolyl)but-3-en-1-ol (4cb)

4cb

Me

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.05 (m, 6H), 6.90 (d, *J* = 8.5 Hz, 2H), 5.52 (s, 1H), 5.44 (s, 1H), 4.70 (d, *J* = 11.1 Hz, 1H), 4.50–4.33 (m, 2H), 3.80 (s, 3H), 3.60–3.52 (m, 2H), 2.35 (s, 3H), 2.26 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.35, 145.09, 139.35, 138.04, 130.10, 129.64, 128.63, 128.35, 127.29, 123.65, 115.29, 113.93, 81.90, 70.49, 65.62, 55.29, 21.46; HRMS (ESI-MS): Calcd. for C₁₉H₂₂O₃ (M + Na): 321.1467, Found: 321.1464.

2-((4-methoxybenzyl)oxy)-3-(p-tolyl)but-3-en-1-ol (4db)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.26 (m, 4H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.97–6.81 (m, 2H), 5.52 (d, *J* = 1.4 Hz, 1H), 5.42 (s, 1H), 4.70 (d, *J* = 11.1 Hz, 1H), 4.47–4.42 (m, 1H), 4.40 (d, *J* = 11.1 Hz, 1H), 3.82 (s, 3H), 3.59–3.55 (m, 2H), 2.34 (s, 3H), 2.14 (d, *J* = 4.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.35, 144.74, 137.73, 136.39, 130.12, 129.63, 129.15, 126.42, 114.86, 113.94, 81.95, 70.46, 65.61, 55.29, 21.10; HRMS (ESI-MS): Calcd. for C₁₉H₂₂O₃ (M + Na): 321.1467, Found: 321.1460.

N-(4-(4-hydroxy-3-((4-methoxybenzyl)oxy)but-1-en-2-yl)phenyl)acetamide (4eb)

4eb

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 5.51 (s, 1H), 5.41 (s, 1H), 4.67 (d, *J* = 11.1 Hz, 1H), 4.43–4.38 (m, 2H), 3.80 (s, 3H), 3.62–3.52 (m, 2H), 2.40 (s, 1H), 2.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.42, 159.34, 144.14, 137.62, 135.10, 129.99, 129.63, 127.15, 119.74, 115.21, 113.93, 81.85, 70.44, 65.47, 55.27, 24.53; HRMS (ESI-MS): Calcd. for C₂₀H₂₃NO₄ (M + H): 342.1705, Found: 342.1700.

3-(benzo[d][1,3]dioxol-5-yl)-2-((4-methoxybenzyl)oxy)but-3-en-1-ol (4fb)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 8.5 Hz, 2H), 6.93–6.85 (m, 4H), 6.76 (d, *J* = 8.1 Hz, 1H), 5.94 (s, 2H), 5.45 (d, *J* = 1.2 Hz, 1H), 5.37 (s, 1H), 4.67 (d, *J* = 11.1 Hz, 1H), 4.42–4.27 (m, 2H), 3.80 (s, 3H), 3.59–3.43 (m, 2H), 2.28 (d, *J* = 5.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.31, 147.69, 147.28, 144.43, 133.41, 129.58, 128.54, 120.07, 114.81, 113.88, 108.13, 107.20, 101.05, 82.09, 70.39, 65.43, 55.22; HRMS (ESI-MS): Calcd. for C₁₉H₂₀O₅ (M + Na): 351.1208, Found: 351.1203.

3-(4-bromophenyl)-2-((4-methoxybenzyl)oxy)but-3-en-1-ol (4gb)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.42 (m, 2H), 7.30–7.27 (m, 4H), 6.95–6.84 (m, 2H), 5.55 (d, J = 1.1 Hz, 1H), 5.47 (s, 1H), 4.68 (d, J = 11.0 Hz, 1H), 4.42–4.24 (m, 2H), 3.82 (s, 3H), 3.58–3.53 (m, 2H), 2.13 (dd, J = 6.6, 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.38, 143.94, 138.09, 131.57, 129.78, 129.66, 128.28, 121.97, 116.48, 113.95, 81.80, 70.51, 65.37, 55.29; HRMS (ESI-MS): Calcd. for C₁₈H₁₉BrO₃ (M + Na): 385.0415, Found: 385.0423.

2-((4-methoxybenzyl)oxy)-3-(4-nitrophenyl)but-3-en-1-ol (4hb)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.21–8.17 (m, 2H), 7.61–7.54 (m, 2H), 7.30–7.26 (m, 2H), 6.94–6.87 (m, 2H), 5.68 (d, J = 0.5 Hz, 1H), 5.63 (s, 1H), 4.68 (d, J = 11.1 Hz, 1H), 4.46–4.30 (m, 2H), 3.82 (s, 3H), 3.57 (d, J = 6.8 Hz, 2H), 2.15 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.51, 147.34, 145.78, 143.65, 129.64, 129.48, 127.57, 123.71, 119.34, 114.02, 81.66, 70.70, 65.17, 55.30; HRMS (ESI-MS): Calcd. for C₁₈H₁₉NO₅ (M + Na): 352.1161, Found: 352.1164.

2-((4-methoxybenzyl)oxy)-3-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (4ib)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 5.60 (s, 1H), 5.55 (s, 1H), 4.69 (d, *J* = 11.1 Hz, 1H), 4.49–4.37 (m, 2H), 3.82 (s, 3H), 3.56 (t, *J* = 5.7 Hz, 2H), 2.13 (d, *J* = 5.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.47, 144.15, 142.87, 129.72, 129.64, 127.05, 125.42, 125.39, 117.81, 114.00, 81.82, 70.62, 65.29, 55.30; HRMS (ESI-MS): Calcd. for C₁₉H₁₉F₃O₃ (M + Na): 375.1184, Found: 375.1181.

4-(4-hydroxy-3-((4-methoxybenzyl)oxy)but-1-en-2-yl)benzonitrile (4jb)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 5.63 (s, 1H), 5.58 (s, 1H), 4.67 (d, J = 11.1 Hz, 1H), 4.48–4.35 (m, 2H), 3.82 (s, 3H), 3.58–3.51 (m, 2H), 2.17 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.47, 143.87, 143.81, 132.24, 129.61, 129.53, 127.39, 118.73, 118.64, 113.99, 111.51, 81.62, 70.64, 65.19, 55.28; HRMS (ESI-MS): Calcd. for C₁₉H₁₉NO₃ (M + Na): 332.1263, Found: 332.1254.

methyl 4-(4-hydroxy-3-((4-methoxybenzyl)oxy)but-1-en-2-yl)benzoate (4kb)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.03–7.96 (m, 2H), 7.49–7.45 (m, 2H), 7.31–7.26 (m, 2H), 6.95–6.83 (m, 2H), 5.63 (d, *J* = 1.0 Hz, 1H), 5.54 (s, 1H), 4.69 (d, *J* = 11.1 Hz, 1H), 4.47–4.38 (m, 2H), 3.92 (s, 3H), 3.82 (s, 3H), 3.56 (d, *J* = 6.1 Hz, 2H), 2.20 (d, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.74, 159.41, 144.38, 143.81, 129.78, 129.74, 129.63, 129.46, 117.48, 113.96, 81.71, 70.58, 65.39, 55.27, 52.13; HRMS (ESI-MS): Calcd. for C₂₀H₂₂O₅ (M + Na): 365.1365, Found: 365.1360.

1-(4-(4-hydroxy-3-((4-methoxybenzyl)oxy)but-1-en-2-yl)phenyl)ethanone (4lb)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.98–7.81 (m, 2H), 7.54–7.45 (m, 2H), 7.29 (d, J = 8.6 Hz, 2H), 6.95–6.85 (m, 2H), 5.64 (d, J = 1.0 Hz, 1H), 5.56 (s, 1H), 4.69 (d, J = 11.1 Hz, 1H), 4.47–4.41 (m, 2H), 3.82 (s, 3H), 3.57 (t, J = 5.7 Hz, 2H), 2.61 (s, 3H), 2.16 (dd, J = 6.7, 6.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 197.57, 159.44, 144.32, 143.97, 136.38, 129.76, 129.64, 128.55, 126.82, 117.68, 113.98, 81.69, 70.61, 65.40, 55.29, 26.61; HRMS (ESI-MS): Calcd. for C₂₀H₂₂O₄(M + H): 327.1596, Found: 327.1597.

2-((4-methoxybenzyl)oxy)-3-(naphthalen-1-yl)but-3-en-1-ol (4mb)

4mb

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.05–7.99 (m, 1H), 7.86–7.84 (m, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.52–7.41 (m, 3H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 7.0 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 2H), 5.85 (s, 1H), 5.41 (d, *J* = 1.7 Hz, 1H), 4.92 (d, *J* = 11.0 Hz, 1H), 4.60 (d, *J* = 11.0 Hz, 1H), 4.36 (dd, *J* = 7.1, 2.9 Hz, 1H), 3.82 (s, 3H), 3.61–3.33 (m, 2H), 2.09 (d, *J* = 4.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.42, 144.11, 137.82, 133.75, 131.55, 130.10, 129.58, 128.41, 127.84, 126.08, 125.85, 125.80, 125.20, 125.11, 117.77, 114.00, 83.08, 71.06, 64.62, 55.30; HRMS (ESI-MS): Calcd. for C₂₂H₂₂O₃ (M + Na): 357.1467, Found: 357.1469.

2-((4-methoxybenzyl)oxy)-3-(naphthalen-2-yl)but-3-en-1-ol (4nb)

4nb

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.88–7.76 (m, 4H), 7.56 (dd, J = 8.6, 1.8 Hz, 1H), 7.51–7.42 (m, 2H), 7.35–7.26 (m, 2H), 6.95–6.79 (m, 2H), 5.69 (d, J = 1.1 Hz, 1H), 5.56 (s, 1H), 4.77 (d, J = 6.0 Hz, 1H), 4.59 (dd, J = 7.3, 3.4 Hz, 1H), 4.46 (d, J = 11.1 Hz, 1H), 3.82 (s, 3H), 3.67–3.59 (m, 2H), 2.23 (dd, J = 8.8, 3.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.38, 144.79, 136.53, 133.23, 132.89, 130.04, 129.68, 128.61, 128.15, 128.09, 127.53, 126.31, 126.12, 125.23, 124.83, 116.07, 113.96, 113.92, 81.88, 70.56, 65.68, 55.28; HRMS (ESI-MS): Calcd. for C₂₂H₂₂O₃ (M + Na): 357.1467, Found: 357.1474.

```
2-((4-methoxybenzyl)oxy)-3-(thiophen-2-yl)but-3-en-1-ol (4ob)
```


4ob

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.26 (m, 2H), 7.22 (dd, J = 5.1, 1.0 Hz, 1H), 7.17 (dd, J = 3.6, 1.0 Hz, 1H), 7.00 (dd, J = 10.3, 6.7 Hz, 1H), 6.92–6.85 (m, 2H), 5.66 (s, 1H), 5.35 (s, 1H), 4.66 (d, J = 11.1 Hz, 1H), 4.46–4.31 (m, 2H), 3.81 (s, 3H), 3.72–3.62 (m, 2H), 2.16 (dd, J = 12.9, 5.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.38, 141.65, 138.41, 129.83, 129.74, 127.42, 124.91, 124.09, 114.05, 113.91, 82.00, 70.53, 65.68, 55.28; HRMS (ESI-MS): Calcd. for C₁₆H₁₈SO₃ (M + Na): 313.0874, Found: 313.0876.

2-((4-methoxybenzyl)oxy)-3-(pyridin-2-yl)but-3-en-1-ol (4pb)

4pb

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.55 (d, J = 4.8 Hz, 1H), 7.69 (td, J = 7.7, 1.8 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.27–7.18 (m, 3H), 6.87 (d, J = 8.6 Hz, 2H), 5.88 (s, 1H), 5.71 (s, 1H), 4.75 (t, J = 5.4 Hz, 1H), 4.59 (d, J = 11.2 Hz, 1H), 4.38 (d, J = 11.2 Hz, 1H), 3.83–3.77 (m, 4H), 3.73 (dd, J = 11.2, 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.23, 157.15, 148.36, 146.21, 136.83, 130.25, 129.44, 122.45, 121.23, 117.62, 113.82, 80.09, 70.68, 66.24, 55.25; HRMS (ESI-MS): Calcd. for C₁₇H₂₀NO₃ (M + H): 286.1443, Found: 286.1444.

2-((4-methoxybenzyl)oxy)-3-(1-methyl-1H-indol-5-yl)but-3-en-1-ol (4qb)

4qb

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.38–7.27 (m, 4H), 7.06 (d, J = 3.1 Hz, 1H), 6.93–6.77 (m, 2H), 6.47 (d, J = 3.1 Hz, 1H), 5.54 (d, J = 1.5 Hz, 1H), 5.43 (s, 1H), 4.76 (d, J = 11.1 Hz, 1H), 4.56 (dd, J = 7.8, 3.6 Hz, 1H), 4.45 (d, J = 11.1 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.68–3.53 (m, 2H), 2.16 (dd, J = 8.9, 3.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.29, 145.62, 136.36, 130.72, 130.29, 129.68, 129.47, 128.39, 120.63, 118.79, 113.89, 109.14, 101.24, 82.34, 70.43, 65.77, 55.29, 32.91; HRMS (ESI-MS): Calcd. for C₂₁H₂₃O₃ (M + Na): 360.1576, Found: 360.1573. **Characterization of product 5**

2-(2-(4-(3-(2-chloro-10H-phenothiazin-10-yl)propyl)piperazin-1-yl)ethoxy)-3-phenylbut-3-en -1-ol (5)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.26 (m, 5H), 7.18–7.06 (m, 2H), 7.01 (d, *J* = 8.2 Hz, 1H), 6.97–6.75 (m, 4H), 5.40 (d, *J* = 7.4 Hz, 2H), 4.37 (dd, *J* = 8.7, 2.4 Hz, 1H), 3.94–3.88 (m, 2H), 3.57–3.47 (m, 3H), 2.86–2.36 (m, 12H), 2.01–1.89 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 146.43, 145.74, 144.43, 139.43, 133.14, 128.38, 127.83, 127.73, 127.46, 127.36, 126.46, 124.69, 123.42, 122.83, 122.17, 115.76, 115.72, 114.27, 83.03, 65.88, 65.29, 57.32, 55.25, 52.93, 52.81, 45.27, 24.17; HRMS (ESI-MS): Calcd. for C₃₁H₃₆ClN₃O₂S (M + H): 550.2295, Found: 550.2302.

Procedure for reduction of 4aa to diol 6

To a 5 mL reaction vial containing a stirring bar, **4aa** (0.4 mmol) in EtOH (1.0 mL) was added. Then, $Pd(OH)_2$ (11.23 mg, 20 mol%) was added to the reaction mixture. The reaction mixture was vigorously stirred in the presence of hydrogen gas at room temperature for 18 hours. The precipitate was filtered out with celite and washed with ethanol, and the filtrate was removed in vacuum. The residue was purified by flash column chromatography on silica gel to afford product **6** (30.5 mg, 92%).

Characterization of diol 6

3-phenylbutane-1,2-diol (6)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.21 (m, 10H), 3.87–3.73 (m, 3H), 3.66–3.54 (m, 1H), 3.48 (dd, J = 11.2, 3.1 Hz, 1H), 3.38 (dd, J = 11.2, 7.6 Hz, 1H), 2.92–2.85 (m, 1H), 2.87–2.77 (m, 1H), 2.42 (s, 1H), 2.20 (s, 1H), 2.00 (s, 1H), 1.74 (s, 1H), 1.39 (d, J = 7.0 Hz, 3H), 1.30 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.59, 143.04, 128.74, 128.60, 127.95, 127.53, 126.91, 126.65, 76.67, 76.29, 65.07, 64.57, 42.92, 42.80, 17.82, 17.31; HRMS (ESI-MS): Calcd. for C₁₀H₁₄O₂ (M + Na): 189.0891, Found: 189.0890.

Procedure for ring-closing metathesis of 4ai to cyclic ethers 7

Under nitrogen atmosphere, **4ai** (40.86 mg, 0.2 mmol), Hoveyda-Grubbs 2nd catalyst (6.26 mg, 5 mol%), and CH_2Cl_2 (2.0 mL) were added into a Schlenk flask in order and the mixture was refluxed at 40 °C for overnight. After cooling to room temperature, the reaction mixture was concentrated under reduce pressure and the resulting residue was chromatographed on silica gel (EA/PE = 1/10) to give the

desired product 7 as a tan oil (30.0 mg, 85%).

Characterization of cyclic ethers 7 (3-phenyl-2,5-dihydrofuran-2-yl)methanol (7)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.27 (m, 5H), 6.23 (d, J = 1.8 Hz, 1H), 5.42– 5.33 (m, 1H), 4.88–4.81 (m, 2H), 3.99–3.80 (m, 1H), 3.75–3.57 (m, 1H), 1.93 (dd, J = 12.7, 6.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.57, 132.64, 128.74, 128.11, 126.24, 123.39, 86.50, 75.54, 64.14; HRMS (ESI-MS): Calcd. for C₁₁H₁₂O₂ (M + Na): 199.0735, Found: 199.0729.

Reference

1. F. Lehrich, H. Hopf, J. Grunenberg, Eur. J. Org. Chem. 2011, 14, 2705.

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

S47

