Supporting Information

cis-Selective Synthesis of 1,3-Substituted Tetrahydro-β-Carbolines from *N*,*S*-Sulfonyl Acetals

Shao-Xiong Lennon Luo, Yanzhou Liu, Michael J. Lambrecht, Daniel F. Ortwine, Antonio G.

DiPasquale, Jun Liang, Xiaojing, Wang, Jason R. Zbieg*, Jun Li*

Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.

E-mail: * Zbieg.Jason@gene,com, * Li.Jun_Medicinal@gene.com

Lists of Contents

General Methods	S3
General Sulfonylation Procedure for the Synthesis of N-Sulfonamides	S4
Characterization Data for N-Sulfonamides	S4-S8
General Procedure for the Synthesis of N,S-Sulfonyl Acetals	S9
Characterization Data for N,S-Sulfonyl Acetals	S9-S13
General Procedure for the Synthesis of 1,3-Substituted <i>cis</i> -Tetrahydro-β-carbo	olinesS14
Characterization Data for 1,3-Substituted <i>cis</i> -Tetrahydro-β-carbolines	S14-S27
X-ray Crystallography Methods and Results	S28-S45
Quantum Chemical Calculations	S46-S47
NMR Spectra	S48-S207

General methods

Unless otherwise indicated, all commercial reagents and solvents were used without additional purification. Anhydrous solvents were used. ¹H NMR spectra were recorded with a Bruker Avance 400 or 500 MHz spectrometer. Chemical shifts (in parts per million) were referenced to tetramethylsilane (δ 0) in DMSO- d_6 (δ 2.5) or CDCl₃ (δ 7.26) as an internal standard. ¹³C NMR spectra were obtained with the same NMR spectrometer and were calibrated with DMSO- d_6 (δ 39.51) or CDCl₃ (δ 77.2). HRMS spectra were recorded on an Orbitrap Q Exactive mass spectrometer. Reactions were monitored by a walkup LCMS/UV system using 2 to 98% acetonitrile with 0.1% formic acid (or 0.01% ammonia) over 2.5 min. Flash column chromatography purifications were performed on automated systems equipped with wavelengths of 254 and 280 nm.

General sulfonylation procedure for the synthesis of N-sulfonamides

Scheme S1: General depiction of sulfonylation for the synthesis of N-sulfonamides

A 11 dram scintillation vial equipped with a Teflon-coated magnetic stir bar was charged with (R)-1-(1H-indol-3-yl)propan-2-amine, the appropriate sulforyl chloride (1.5 equiv.) and dichloromethane (5.0 mL). N,N-Diisopropylethylamine (3 equiv.) was added at room temperature. The resulting solution was allowed to stir for overnight (approximately 12 h). H_2O (10 mL) was added, and the biphasic mixture was extracted with dichloromethane (10 mL) twice. The combined organic layer was dried over Na_2SO_4 and filtered. The filtrate was concentrated in vacuo, and the resulting oil was purified by silica gel column chromatography using a gradient solvent system ($0 \rightarrow 80\%$ iPrOAc/Heptane) as the eluent. The pure product was thus obtained as white solid or colorless oil. To prevent decomposition during prolonged storage, all N-sulfonamide were kept at -20 °C.

Characterization of N-sulfonamides

(*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)cyclopropanesulfonamide (9a)

140

The title compound was prepared from (R)-1-(1H-indol-3-yl)propan-2-amine Δ (300 mg, 1.74 mmol) and cyclopropanesulfonyl chloride (366 mg, 2.61 mmol) according to the general sulfonylation procedure and was obtained as a white solid (477 mg, 98% yield); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.62 (ddt, *J* = 7.8, 1.3, 0.8 Hz, 1H), 7.37 (dt, J = 8.1, 0.9 Hz, 1H), 7.21 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.16 – 7.08 (m, 2H), 4.15 (d, J = 7.3 Hz, 1H), 3.88 (hept, J = 6.6 Hz, 1H), 3.05 - 2.90 (m, 2H), 2.09 (tt, J = 8.0, 4.9

Hz, 1H), 1.32 (d, J = 6.5 Hz, 3H), 1.05 (ddt, J = 9.7, 6.7, 4.9 Hz, 1H), 0.97 – 0.89 (m, 1H), 0.74 (dddd, J = 9.0, 8.0, 6.6, 4.9 Hz, 1H), 0.62 (dddd, J = 9.2, 8.0, 6.7, 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.37, 127.58, 123.04, 122.36, 119.75, 118.93, 111.64, 111.24, 50.37, 33.54, 30.70, 22.55, 5.63, 5.12; HRMS (ESI) m/z calcd for C₁₄H₁₉O₂N₂S [M+H]⁺ 279.1167, found 279.1153.

(*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)propane-1-sulfonamide (27a)

 $\begin{array}{c|c} & & & \\ &$

solid (286 mg, 59% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.62 (ddt, J = 7.8, 1.4, 0.8 Hz, 1H), 7.38 (dt, J = 8.1, 0.9 Hz, 1H), 7.21 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.14 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 7.08 (d, J = 2.4 Hz, 1H), 4.06 (d, J = 7.5 Hz, 1H), 3.88 – 3.77 (m, 1H), 3.01 (ddd, J = 14.5, 5.8, 0.8 Hz, 1H), 2.91 (ddd, J = 14.5, 7.2, 0.6 Hz, 1H), 2.74 – 2.57 (m, 2H), 1.67 – 1.57 (m, 1H), 1.49 – 1.37 (m, 1H), 1.31 (d, J = 6.5 Hz, 3H), 0.79 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.35, 127.48, 123.02, 122.42, 119.84, 118.86, 111.67, 111.30, 54.97, 50.50, 33.56, 22.66, 17.18, 12.72; HRMS (ESI) m/z calcd for C₁₄H₂₁O₂N₂S [M+H]⁺ 281.1324, found 281.1310.

(*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)-4-methylbenzenesulfonamide (28a)

The title compound was prepared from (R)-1-(1H-indol-3-yl)propan-2-amine (100 mg, 0.57 mmol) and 4-methylbenzenesulfonyl chloride (164 mg, 0.86 mmol) according to the general sulfonylation procedure and was

obtained as a white solid (179 mg, 95% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.17 – 7.11 (m, 1H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 1.8 Hz, 1H), 4.68 (dd, *J* = 16.9, 6.1 Hz, 1H), 3.53 (hept, *J* = 6.5 Hz, 1H), 2.86 – 2.73 (m, 2H), 2.31 (s, 3H), 1.15 (d, *J* = 6.5 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 142.97, 137.01, 136.31, 129.36, 127.26, 126.75, 123.06, 121.94, 119.38, 118.65, 111.23, 111.06, 49.88, 33.04, 21.70, 21.45; **HRMS** (ESI) *m*/*z* calcd for C₁₈H₂₁N₂O₂S [M+H]⁺ 329.1324, found 329.1313.

(*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)naphthalene-2-sulfonamide (29a)

The title compound was prepared from (R)-1-(1H-indol-3-yl)propan-2-amine (100 mg, 0.57 mmol) and naphthalene-2-sulfonyl chloride (195 mg, 0.86 mmol) according to the

general sulfonylation procedure and was obtained as a white solid (210 mg, >95% yield); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, *J* = 1.6 Hz, 1H), 7.92 (s, 1H), 7.86 – 7.77 (m, 2H), 7.67 (d, *J* = 8.7 Hz, 1H), 7.63 – 7.48 (m, 3H), 7.23 – 7.17 (m, 2H), 7.03 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 6.86 (d, *J* = 2.3 Hz, 1H), 6.82 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 1H), 4.70 (d, *J* = 6.6 Hz, 1H), 3.63 (hept, *J* = 6.5 Hz, 1H), 2.87 – 2.75 (m, 2H), 1.18 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.95, 136.13, 134.57, 131.96, 129.17, 128.50, 128.12, 127.84, 127.29, 127.17, 122.92, 122.10, 121.97, 119.41, 118.46, 111.09, 50.18, 33.04, 21.90; **HRMS** (ESI) *m*/*z* calcd for C₂₁H₂₁N₂O₂S [M+H]⁺ 365.1324, found 365.1313.

(*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)-[1,1'-biphenyl]-3-sulfonamide (30a)

The title compound was prepared from (R)-1-(1H-indol-3-yl)propan-2-amine (100 mg, 0.57 mmol) and [1,1'-biphenyl]-3-sulfonyl chloride (217 mg, 0.86 mmol) according to the general sulfonylation procedure

and was obtained as a white solid (172 mg, 77% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (dt, J = 1.8, 0.9 Hz, 2H), 7.60 (dddd, J = 14.5, 7.8, 1.8, 1.1 Hz, 2H), 7.54 – 7.50 (m, 2H), 7.46 – 7.41 (m, 2H), 7.40 – 7.35 (m, 1H), 7.34 – 7.28 (m, 2H), 7.23 – 7.20 (m, 1H), 7.10 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 6.96 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.86 (d, J = 2.4 Hz, 1H), 4.72 (d, J = 6.6 Hz, 1H), 3.61 (hept, J = 6.5 Hz, 1H), 2.90 – 2.75 (m, 2H), 1.18 (d, J = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.79, 140.71, 139.18, 136.15, 130.75, 129.24, 128.96, 128.11, 127.26, 127.09, 125.34,

125.23, 122.98, 122.01, 119.49, 118.49, 111.23, 110.98, 50.22, 32.98, 21.78; **HRMS** (ESI) *m/z* calcd for C₂₃H₂₃N₂O₂S [M+H]⁺ 391.1480, found 391.1468.

(*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)-4-ethoxybenzenesulfonamide (31a)

2-amine (100 mg, 0.57 mmol) and 4-ethoxybenzenesulfonyl chloride (190 mg, 0.86 mmol) according to the general sulfonylation procedure and was obtained as a white solid (198 mg, 96% yield); ¹H NMR (400 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.57 – 7.50 (m, 2H), 7.38 – 7.29 (m, 2H), 7.19 – 7.13 (m, 1H), 7.03 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.94 (d, J = 2.3 Hz, 1H), 6.77 - 6.69 (m, 2H), 4.37 (d, J = 6.4 Hz, 1H), 4.02 (q, J = 7.0 Hz, 2H), 3.55 (hept, J = 6.5 Hz, 1H), 2.91 – 2.76 (m, 2H), 1.44 (t, J = 7.0 Hz, 3H), 1.18 (d, J = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.94, 136.30, 131.49, 128.86, 127.35, 122.89, 122.15, 119.56, 118.78, 114.29, 111.30, 111.13, 63.79, 49.83, 33.06, 21.79, 14.65; **HRMS** (ESI) *m/z* calcd

(*R*)-N-(1-(1H-indol-3-vl)propan-2-vl)-4-cvclohexvlbenzenesulfonamide (32a)

for C₁₉H₂₃N₂O₃S [M+H]⁺ 359.1429, found 359.1420.

The title compound was prepared from (R)-1-(1H-indol-3-yl)propan-2-amine (100 mg, 0.57 mmol) and 4-cyclohexylbenzenesulfonyl chloride (223 mg, 0.86 mmol) according to the general sulfonylation

The title compound was prepared from (R)-1-(1H-indol-3-yl)propan-

procedure and was obtained as a white solid (219 mg, 96% yield); ¹H NMR (400 MHz, Chloroform-d) δ 8.09 (s, 1H), 7.60 – 7.54 (m, 2H), 7.37 – 7.28 (m, 2H), 7.19 – 7.11 (m, 3H), 7.02 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.91 (d, J = 2.3 Hz, 1H), 4.62 (d, J = 6.7 Hz, 1H), 3.57 (hept, J = 6.5 Hz, 1H), 5.7 (hept, J = 6.5 Hz, 2H), 5.7 (hept, J = 6.5 Hz, 2H)Hz, 1H), 2.83 (d, J = 6.4 Hz, 2H), 2.55 – 2.44 (m, 1H), 1.90 – 1.80 (m, 4H), 1.79 – 1.72 (m, 1H), 1.46 - 1.31 (m, 4H), 1.30 - 1.22 (m, 1H), 1.13 (d, J = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.89, 137.51, 136.26, 127.42, 127.29, 126.96, 123.06, 122.08, 119.51, 118.72, 111.21, 111.16, 49.95, 44.40, 34.13, 34.03, 33.03, 26.66, 25.97, 21.54; HRMS (ESI) m/z calcd for C₂₃H₂₉N₂O₂S [M+H]⁺ 397.1950, found 397.1940.

(*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)-2,3-dihydro-1H-indene-5-sulfonamide (33a)

The title compound was prepared from (R)-1-(1H-indol-3-yl)propan-2-amine (100 mg, 0.57 mmol) and 2,3-dihydro-1H-indene-5-sulfonyl chloride (187 mg, 0.86 mmol) according to the general sulfonylation

procedure and was obtained as a white solid (199 mg, 98% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.52 – 7.48 (m, 1H), 7.43 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.32 (ddt, *J* = 8.2, 3.0, 0.7 Hz, 2H), 7.20 – 7.08 (m, 2H), 7.01 (ddd, *J* = 7.9, 7.1, 1.0 Hz, 1H), 6.95 (d, *J* = 2.3 Hz, 1H), 4.41 (d, *J* = 6.3 Hz, 1H), 3.57 (hept, *J* = 6.4 Hz, 1H), 2.92 – 2.80 (m, 6H), 2.08 (p, *J* = 7.5 Hz, 2H), 1.18 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.37, 145.16, 137.86, 136.29, 127.31, 125.10, 124.51, 122.96, 122.77, 122.13, 119.48, 118.74, 111.27, 111.11, 49.81, 33.11, 32.78, 32.54, 25.24, 21.75; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₃N₂O₂S [M+H]⁺ 355.1480, found 355.1469.

General procedure for the synthesis of N,S-sulfonyl acetals

Scheme S2: General depiction for the synthesis of *N*,*S*-sulfonyl acetals

A 11 dram scintillation vial equipped with a Teflon-coated magnetic stir bar was charged with appropriate sulfonamide, tris(phenylthio)methane (1.3 equiv.) and dichloromethane (5.0 mL). The solution was cooled to -78°C in a dry ice/acetone bath, and Tin(IV) chloride (1.0 M in DCM) (3 equiv.) was added. The resulting solution was allowed to warm to room temperature and stir for 5 hours. Cold aq. NaHCO₃ (20 mL) was added, and the biphasic mixture was extracted with dichloromethane (10 mL) twice. The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo, and the resulting oil was purified by silica gel column chromatography using a gradient solvent system (0 \rightarrow 30% iPrOAc/Heptane) as the eluent. Attempts were made to purify this product via silica gel chromatography, but were proved to be unsuccessful due to the thermal instability and instability of the compound on silica gel. In the interest of completeness, *N*,*S*-sulfonyl acetals were characterized by ¹H NMR (~90% purity) and HRMS. The resulting product was thus used in subsequent step without further purification. To prevent decomposition during prolonged storage, all *N*,*S*-acetals were kept at -20 °C.

Characterization of N,S-sulfonyl acetals

(3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4b]indole (9)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)cyclopropanesulfonamide (**9a**) (50 mg, 0.18 mmol) according to the general N,S-sulfonyl acetal synthesis procedure and was obtained as a white solid (53 mg,

72% yield); ¹**H NMR** (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 7.79 – 7.74 (m, 2H), 7.67 (s, 1H), 7.49 – 7.36 (m, 4H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.12 (td, *J* = 7.5, 7.1, 1.0 Hz, 1H), 6.67 (d, *J* = 1.7 Hz, 1H), 4.60 (p, *J* = 7.2 Hz, 1H), 3.14 (ddd, *J* = 15.7, 6.3, 1.5 Hz, 1H), 2.75 (d, *J* = 15.7 Hz, 1H), 2.53 (tt, *J* = 8.0, 4.9 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H), 1.30 (ddd, *J* = 10.5, 4.8, 2.0 Hz, 1H), 1.23 – 1.17 (m, 1H), 1.02 – 0.96 (m, 2H); **HRMS** (ESI) *m/z* calcd for C₂₁H₂₃N₂O₂S₂ [M+H]⁺ 399.1201, found 399.1187.

(3*R*)-3-methyl-1-(phenylthio)-2-(propylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (27b)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)propane-1-sulfonamide (**27a**) (51 mg, 0.18 mmol) according to the general N,S-sulfonyl acetal synthesis procedure and was obtained as a white solid (17

mg, 23% yield); ¹H NMR (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 7.74 – 7.70 (m, 2H), 7.47 (d, *J* = 7.9 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.27 – 7.26 (m, 1H), 7.22 – 7.17 (m, 1H), 7.14 – 7.08 (m, 1H), 6.74 – 6.71 (m, 1H), 4.69 – 4.56 (m, 1H), 3.13 – 3.07 (m, 1H), 3.01 – 2.85 (m, 2H), 2.75 (d, *J* = 15.9 Hz, 1H), 1.90 – 1.74 (m, 2H), 1.51 (d, *J* = 7.1 Hz, 3H), 0.99 (t, *J* = 7.5 Hz, 3H); **HRMS** (ESI) *m/z* calcd for C₂₁H₂₅N₂O₂S₂ [M+H]⁺ 401.1357, found 401.1337.

(3R)-3-methyl-1-(phenylthio)-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (28b)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)-4-methylbenzenesulfonamide (**28a**) (1.50 g, 4.6 mmol) according to the general *N*,*S*-sulfonyl acetal synthesis procedure and was obtained as a white

solid (1.36 g, 66% yield); ¹**H NMR** (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 7.82 – 7.77 (m, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.49 – 7.38 (m, 4H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.23 – 7.17 (m, 3H), 7.11 – 7.07 (m, 1H), 6.83 (d, *J* = 1.6 Hz, 1H), 4.46 (p, *J* = 6.7 Hz, 1H), 2.67 (ddd, *J* = 15.6, 6.1, 1.5 Hz, 1H), 2.54 (d, *J* = 15.5 Hz, 1H), 2.37 (s, 3H), 1.34 (d, *J* = 7.0 Hz, 3H); **HRMS** (ESI) *m*/*z* calcd for C₂₅H₂₅N₂O₂S₂ [M+H]⁺ 449.1357, found 449.1340.

(3*R*)-3-methyl-2-(naphthalen-2-ylsulfonyl)-1-(phenylthio)-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (29b)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)naphthalene-2-sulfonamide (**29a**) (86 mg, 0.24 mmol) according to the general *N*,*S*-sulfonyl acetal synthesis procedure and was obtained as a white

solid (63 mg, 55% yield); ¹**H NMR** (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 8.43 (d, *J* = 1.6 Hz, 1H), 7.93 – 7.88 (m, 1H), 7.87 – 7.82 (m, 2H), 7.80 (dt, *J* = 5.9, 1.4 Hz, 3H), 7.71 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.49 – 7.40 (m, 3H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.22 – 7.16 (m, 1H), 7.10 – 7.05 (m, 1H), 6.96 – 6.90 (m, 1H), 4.53 (p, *J* = 6.8 Hz, 1H), 2.68 (ddd, *J* = 15.6, 6.1, 1.7 Hz, 1H), 2.54 (d, *J* = 15.6 Hz, 1H), 1.35 (d, *J* = 7.0 Hz, 3H); **HRMS** (ESI) *m/z* calcd for C₂₈H₂₅N₂O₂S₂ [M+H]⁺ 485.1357, found 485.1338.

(*3R*)-2-([1,1'-biphenyl]-3-ylsulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (30b)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)-[1,1'-biphenyl]-3-sulfonamide (**30a**) (980 mg, 2.5 mmol) according to the general N,S-sulfonyl acetal synthesis procedure and was

obtained as a white solid (487 mg, 38% yield); ¹**H NMR** (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 8.01 (t, *J* = 1.7 Hz, 1H), 7.82 (s, 1H), 7.78 (ddt, *J* = 7.9, 3.0, 1.2 Hz, 3H), 7.71 (ddd, *J* = 7.8, 1.7, 1.1 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 1.5 Hz, 1H), 7.42 – 7.39 (m, 2H), 7.39 – 7.35 (m, 3H), 7.33 – 7.32 (m, 2H), 7.30 – 7.28 (m, 1H), 7.22 – 7.18 (m, 1H), 7.10 – 7.07 (m, 1H), 6.90 (d, *J* = 1.6 Hz, 1H), 4.54 (p, *J* = 6.8 Hz, 1H), 2.71 (ddd, *J* = 15.7, 6.2, 1.6 Hz, 1H), 2.57 (d, *J* = 15.5 Hz, 1H), 1.39 (d, *J* = 7.0 Hz, 3H); **HRMS** (ESI) *m*/*z* calcd for $C_{30}H_{27}N_2O_2S_2$ [M+H]⁺ 511.1514, found 511.1497.

(3*R*)-2-((4-ethoxyphenyl)sulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (31b)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl))propan-2-yl)-4-ethoxybenzenesulfonamide (**31a**) (150 mg, 0.42 mmol) according to the general *N*,*S*-sulfonyl acetal synthesis procedure and was obtained as

a white solid (172 mg, 86% yield); ¹**H NMR** (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 7.83 – 7.77 (m, 2H), 7.75 – 7.71 (m, 2H), 7.49 – 7.43 (m, 2H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.22 – 7.16 (m, 1H), 7.11 – 7.06 (m, 1H), 6.88 – 6.84 (m, 2H), 6.84 – 6.82 (m, 1H), 4.44 (p, *J* = 6.9 Hz, 1H), 4.04 (q, *J* = 7.0 Hz, 2H), 2.76 – 2.66 (m, 1H), 2.55 (d, *J* = 15.6 Hz, 1H), 1.41 (t, *J* = 7.0 Hz, 3H), 1.32 (d, *J* = 7.0 Hz, 3H); **HRMS** (ESI) *m*/*z* calcd for C₂₆H₂₇N₂O₃S₂ [M+H]⁺ 479.1463, found 479.1444.

(3*R*)-2-((4-cyclohexylphenyl)sulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (32b)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl)propan-2-yl)-4-cyclohexylbenzenesulfonamide (**32a**) (1.08 g, 2.7 mmol) according to the general *N*,*S*-sulfonyl acetal synthesis procedure and was

obtained as a white solid (680 mg, 48% yield); ¹**H NMR** (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 7.77 (dt, *J* = 5.7, 1.5 Hz, 2H), 7.73 – 7.68 (m, 2H), 7.48 – 7.37 (m, 4H), 7.29 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.24 – 7.21 (m, 2H), 7.19 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H), 7.08 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 1H), 6.84 (d, *J* = 1.6 Hz, 1H), 4.45 (p, *J* = 6.4 Hz, 1H), 2.67 (ddd, *J* = 15.6, 6.1, 1.6 Hz, 1H), 2.58 – 2.54 (m, 1H), 2.54 – 2.47 (m, 1H), 1.89 – 1.69 (m, 6H), 1.37 (t, *J* = 8.1 Hz, 3H), 1.33 (d, *J* = 7.0 Hz, 3H), 1.27 – 1.19 (m, 1H); **HRMS** (ESI) *m*/*z* calcd for C₃₀H₃₃N₂O₂S₂ [M+H]⁺ 517.1983, found 517.1970.

(3*R*)-2-((2,3-dihydro-1H-inden-5-yl)sulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (33b)

The title compound was prepared from (*R*)-N-(1-(1H-indol-3-yl)propan-2yl)-2,3-dihydro-1H-indene-5-sulfonamide (**33a**) (800 mg, 2.3 mmol) according to the general *N*,*S*-sulfonyl acetal synthesis procedure and was obtained as a white solid (624 mg, 58% yield); ¹**H NMR** (major diastereomer, ~90% purity) (400 MHz, Chloroform-*d*) δ 7.80 – 7.77 (m, 2H), 7.67 – 7.59 (m, 1H), 7.56 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.48 – 7.36 (m, 4H), 7.30 – 7.26 (m, 1H), 7.22 – 7.15 (m, 2H), 7.08 (ddd, *J* = 8.0, 7.2, 1.0 Hz, 1H), 6.86 – 6.81 (m, 1H), 4.46 (p, *J* = 6.7 Hz, 1H), 2.87 (dt, *J* = 20.5, 7.2 Hz, 4H), 2.69 (ddd, *J* = 15.6, 6.2, 1.6 Hz, 1H), 2.54 (d, *J* = 15.6 Hz, 1H), 2.07 (p, *J* = 7.3 Hz, 2H), 1.35 (d, *J* = 7.0 Hz, 3H); **HRMS** (ESI) *m*/*z* calcd for C₂₇H₂₇N₂O₂S₂ [M+H]⁺ 475.1514, found 475.1496.

General procedure for the synthesis of 1,3-substituted cis-tetrahydro-\beta-carbolines

Scheme S3: General depiction of the synthesis of 1,3-substituted *cis*-tetrahydro-β-carbolines

A flame-dried 100 mL Schlenk flask equipped with a Teflon-coated magnetic stir bar under N₂ was charged with appropriate *N*,*S*-acetal and anhydrous THF (20 mL). Grignard reagent of appropriate nucleophile (2 equiv.) was added at room temperature. The resulting solution was allowed to stir for 30 minutes. H₂O (10 mL) was added, and the biphasic mixture was extracted with dichloromethane (10 mL) twice. The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo, and the resulting oil was purified by silica gel column chromatography using a gradient solvent system (0 \rightarrow 40% iPrOAc/Heptane) as the eluent. The pure product was thus obtained as white soild. To prevent decomposition during prolonged storage, all tetrahydro- β -carbolines were kept at -20 °C.

Characterization of tetrahydro-β-carbolines

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4b]indole (10)

The title compound was prepared from (3R)-2-(cyclopropylsulfonyl)-3methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (46 mg,

0.12 mmol) and phenylmagnesium chloride (2.0 M, 0.12 mL, 0.23 mmol) according to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (34 mg, 80% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.48 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.26 –

7.23 (m, 1H), 7.20 – 7.16 (m, 1H), 6.29 (s, 1H), 4.64 (p, J = 7.1 Hz, 1H), 3.27 (ddd, J = 15.8, 6.8, 1.8 Hz, 1H), 2.78 (d, J = 15.8 Hz, 1H), 2.12 (tt, J = 8.0, 4.9 Hz, 1H), 1.22 (ddd, J = 10.9, 6.1, 3.3 Hz, 1H), 1.19 – 1.13 (m, 1H), 1.07 (d, J = 7.2 Hz, 3H), 0.90 – 0.84 (m, 1H), 0.81 (tdd, J = 9.0, 6.5, 4.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 140.48, 136.29, 129.19, 128.56, 128.50, 128.05, 127.36, 122.62, 119.81, 118.46, 111.10, 107.94, 54.03, 48.70, 30.08, 26.73, 22.48, 5.59, 5.30; HRMS (ESI) m/z calcd for C₂₁H₂₃N₂O₂S [M+H]⁺ 367.1480, found 367.1473.

((1*S*,3*S*)-1-allyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-3-yl)methanol (12)

A flame-dried 100 mL Schlenk flask equipped with a Teflon-coated magnetic stir bar under N₂ was charged with ethyl (1S,3S)-1-allyl-2-tosyl -2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole-3-carboxylate (120 mg, 0.27

mmol) and anhydrous THF (20 mL). Lithium borohydride (4 equiv.) was added at room temperature. The resulting solution was allowed to stir at room temperature for 15 hours. Methanol (10 mL) and H₂O (10 mL) were added, and the biphasic mixture was extracted with dichloromethane (10 mL) twice. The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo, and the resulting oil was purified by silica gel column chromatography using a gradient solvent system (0 \rightarrow 50% iPrOAc/Heptane) as the eluent to afford a white solid (83 mg, 76% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.32 (dd, *J* = 18.7, 8.0 Hz, 2H), 7.22 – 7.12 (m, 3H), 7.12 – 7.01 (m, 1H), 6.20 (dddd, *J* = 16.9, 10.3, 8.4, 5.9 Hz, 1H), 5.41 – 5.20 (m, 3H), 4.39 (q, *J* = 6.8 Hz, 1H), 3.62 (dtd, *J* = 17.4, 10.9, 4.2 Hz, 2H), 3.00 – 2.88 (m, 1H), 2.70 (dt, *J* = 14.0, 8.6 Hz, 1H), 2.61 (d, *J* = 16.0 Hz, 1H), 2.38 (ddd, *J* = 16.1, 6.8, 1.9 Hz, 1H), 2.34 (s, 3H), 2.13 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.70, 137.47, 136.00, 135.43, 131.09, 129.88, 126.78, 126.41, 122.33, 119.61, 119.43, 118.16, 111.02, 105.42, 63.59, 53.69, 51.79, 43.80, 21.47, 20.51; HRMS (ESI) *m/z* calcd for C₂₂H₂₅N₂O₃S [M+H]⁺ 397.1586, found 397.1572.

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-1-(4-methoxyphenyl)-3-methyl-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (13)

The title compound was prepared from (3R)-2-(cyclopropylsulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (30 mg, 0.08 mmol) and 4-methoxyphenylmagnesium bromide (0.5 M, 0.3 mL, 0.15 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis

procedure and was obtained as a white solid (25 mg, 84% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 11.03 (s, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.27 (d, J = 8.8 Hz, 2H), 7.14 – 7.09 (m, 1H), 7.04 – 6.99 (m, 1H), 6.93 – 6.89 (m, 2H), 6.14 (s, 1H), 4.50 (p, J = 7.1 Hz, 1H), 3.73 (s, 3H), 3.23 – 3.14 (m, 1H), 2.69 (d, J = 15.8 Hz, 1H), 2.44 (tt, J = 7.8, 4.9 Hz, 1H), 1.01 (qd, J = 8.9, 7.6, 3.6 Hz, 1H), 0.91 (d, J = 7.2 Hz, 3H), 0.90 – 0.85 (m, 2H), 0.77 – 0.69 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 158.39, 136.20, 133.24, 129.54, 129.03, 126.77, 121.30, 118.37, 117.88, 113.35, 111.13, 105.56, 54.96, 52.73, 47.79, 29.16, 25.91, 22.20, 4.76, 4.51; HRMS (ESI) m/z calcd for C₂₂H₂₅N₂O₃S [M+H]⁺ 397.1586, found 397.1571.

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-1-(4-methoxy-2-methylphenyl)-3-methyl-2,3,4,9-tetrahydro -1H-pyrido[3,4-b]indole (14)

The title compound was prepared from (3R)-2-(cyclopropylsulfonyl)-3-methyl-1 -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (120 mg, 0.30 mmol) and 4-methoxy-2-methyl-phenylmagnesium bromide (0.5 M, 1.0 mL, 0.60 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines

synthesis procedure and was obtained as a white solid (106 mg, 86% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (s, 1H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.21 – 7.12 (m, 2H), 6.89 (d, *J* = 8.7 Hz, 1H), 6.79 (d, *J* = 2.7 Hz, 1H), 6.61 (dd, *J* = 8.6, 2.8 Hz, 1H), 6.33 (d, *J* = 1.6 Hz, 1H), 4.69 (td, *J* = 6.9, 1.0 Hz, 1H), 3.78 (s, 3H), 3.28 (ddd, *J* = 15.7, 6.9, 1.8 Hz, 1H), 2.80 (d, *J* = 15.9 Hz, 1H), 2.63 (s, 3H), 1.97 (tt, *J* = 8.1, 5.0 Hz, 1H), 1.23 (d, *J* = 7.1 Hz, 3H), 1.13 – 1.04 (m, 2H), 0.81 – 0.68 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 159.11, 139.08, 136.15, 131.64, 130.30, 127.46, 122.22, 119.75, 118.26, 116.29, 111.58, 111.14, 107.15, 55.19, 52.60, 48.71, 30.44, 27.19, 23.72, 20.40, 5.64, 5.34; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₇N₂O₃S [M+H]⁺ 411.1742, found 411.1723.

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4b]indole (15)

The title compound was prepared from (3R)-2-(cyclopropylsulfonyl)-3 -methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and *p*-tolylmagnesium bromide (1.0 M, 0.30 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis

procedure and was obtained as a white solid (55 mg, 96% yield); ¹**H** NMR (500 MHz, DMSO- d_6) δ 11.04 (s, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 7.13 – 7.09 (m, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.15 (s, 1H), 4.51 (p, J = 7.1Hz, 1H), 3.24 – 3.15 (m, 1H), 2.68 (d, J = 15.9 Hz, 1H), 2.44 (tt, J = 7.8, 5.0 Hz, 1H), 2.29 (s, 3H), 1.05 – 0.98 (m, 1H), 0.89 (d, J = 7.1 Hz, 3H), 0.89 – 0.84 (m, 2H), 0.72 (ddd, J = 10.8, 7.0, 4.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 139.02, 137.04, 136.79, 129.98, 129.17, 128.28, 127.35, 121.89, 118.96, 118.48, 111.74, 106.15, 53.51, 48.48, 29.72, 26.49, 22.82, 21.13, 5.36, 5.10; **HRMS** (ESI) m/z calcd for C₂₂H₂₅N₂O₂S [M+H]⁺ 381.1637, found 381.1627.

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-1-(4-fluoro-3-methylphenyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (16)

The title compound was prepared from (3R)-2-(cyclopropylsulfonyl)-3-methyl-1 -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and 4-fluoro-3-methylphenyl magnesium bromide (1.0 M, 0.30 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis

procedure and was obtained as a white solid (58 mg, 97% yield); ¹**H** NMR (500 MHz, DMSO- d_6) δ 11.04 (s, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.26 (dd, J = 7.4, 1.9 Hz, 1H), 7.20 (ddd, J = 7.5, 5.0, 2.2 Hz, 1H), 7.17 – 7.09 (m, 2H), 7.02 (t, J = 7.4 Hz, 1H), 6.14 (s, 1H), 4.52 (p, J = 7.1 Hz, 1H), 3.24 – 3.16 (m, 1H), 2.69 (d, J = 15.9 Hz, 1H), 2.46 (ddd, J = 7.8, 5.0, 2.8 Hz, 1H), 2.24 – 2.17 (m, 3H), 1.02 (tq, J = 10.4, 3.7 Hz, 1H), 0.92 (d, J = 7.1 Hz, 3H), 0.88 (ddd, J = 8.6, 6.3, 2.6 Hz, 2H), 0.73 (ddd, J = 10.8, 7.4, 3.9 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 161.34, 159.49, 137.93, 136.84, 131.43, 129.69, 127.83, 127.33, 124.22, 124.08, 122.01, 119.04, 118.55, 115.21, 115.03, 111.83, 106.31, 53.19, 48.49, 40.28, 29.66, 26.44, 22.83, 14.80, 5.36, 5.09; **HRMS** (ESI) m/z calcd for C₂₂H₂₄FN₂O₂S [M+H]⁺ 399.1543, found 399.1528.

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1-(3-(methylthio)phenyl)-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (17)

The title compound was prepared from (3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1 -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and 3-thioanisolemagnesium bromide (0.5 M, 0.60 mL, 0.30 mmol) according to

the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (55 mg, 89% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.06 (s, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.29 (s, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.16 – 7.10 (m, 2H), 7.05 – 7.01 (m, 1H), 6.15 (s, 1H), 4.53 (p, J = 7.1 Hz, 1H), 3.24 – 3.17 (m, 1H), 2.69 (d, J = 15.9 Hz, 1H), 2.49 – 2.45 (m, 1H), 2.42 (s, 3H), 1.02 (ddp, J = 13.1, 8.1, 4.4 Hz, 1H), 0.91 (d, J = 7.2 Hz, 3H), 0.88 (dq, J = 10.5, 3.8, 3.3 Hz, 2H), 0.73 (ddd, J = 10.8, 7.0, 4.1 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 142.79, 138.40, 136.81, 129.44, 129.35, 127.29, 125.95, 125.28, 124.91, 122.04, 119.04, 118.56, 111.78, 106.34, 53.57, 48.56, 29.66, 26.43, 22.79, 15.20, 5.37, 5.09; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₅N₂O₂S₂ [M+H]⁺ 413.1357, found 413.1346.

(1*S*,3*R*)-1-(4-chlorophenyl)-2-(cyclopropylsulfonyl)-3-methyl-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (18)

The title compound was prepared from (3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1 -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and 3-chlorophenylmagnesium bromide (0.5 M, 0.60 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and

was obtained as a white solid (56 mg, 93% yield); ¹**H** NMR (500 MHz, DMSO-*d*₆) δ 11.05 (s, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.41 – 7.36 (m, 3H), 7.15 – 7.10 (m, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.17 (s, 1H), 4.53 (p, *J* = 7.1 Hz, 1H), 3.24 – 3.17 (m, 1H), 2.69 (d, *J* = 15.9 Hz, 1H), 2.50 – 2.45 (m, 1H), 1.02 (dq, *J* = 9.4, 4.5 Hz, 1H), 0.95 – 0.89 (m, 2H), 0.89 (d, *J* = 7.2 Hz, 3H), 0.77 – 0.71 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 141.12, 136.83, 132.54, 130.20, 129.27, 128.66, 127.31, 122.08, 119.08, 118.58, 111.82, 106.42, 53.13, 48.54, 29.66, 26.39, 22.80, 5.38, 5.10; **HRMS** (ESI) *m*/*z* calcd for C₂₁H₂₂ClN₂O₂S [M+H]⁺ 401.1091, found 401.1077.

(1*S*,3*R*)-1-(3-chlorophenyl)-2-(cyclopropylsulfonyl)-3-methyl-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (19)

The title compound was prepared from (3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1 -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and 3-chlorophenylmagnesium bromide (0.5 M, 0.60 mL, 0.30 mmol) according

to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (59 mg, 98% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.08 (s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.40 (dt, J = 8.5, 3.9 Hz, 4H), 7.34 (d, J = 7.2 Hz, 1H), 7.16 – 7.12 (m, 1H), 7.03 (t, J = 7.3 Hz, 1H), 6.18 (s, 1H), 4.54 (p, J = 7.1 Hz, 1H), 3.24 – 3.18 (m, 1H), 2.70 (d, J = 16.0 Hz, 1H), 2.55 – 2.51 (m, 1H), 1.06 – 1.00 (m, 1H), 0.95 – 0.90 (m, 2H), 0.89 (d, J = 7.1 Hz, 3H), 0.74 (ddd, J = 11.2, 7.6, 4.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 144.69, 136.84, 133.33, 130.66, 128.93, 128.03, 127.97, 127.27, 126.97, 122.16, 119.13, 118.64, 111.87, 106.54, 53.24, 48.58, 29.61, 26.35, 22.80, 5.39, 5.09; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₂ClN₂O₂S [M+H]⁺ 401.1091, found 401.1076.

(1*R*,3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1-(thiophen-2-yl)-2,3,4,9-tetrahydro-1H-pyrido[3, 4-b]indole (20)

The title compound was prepared from (3*R*)-2-(cyclopropylsulfonyl)-3-methyl-($f_{0,0}$) (60 mg, 0.15 mmol) and 2-thienylmagnesium bromide (1.0 M, 0.30 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis procedure and was obtained as a white solid (51 mg, 91% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.12 (s, 1H), 7.50 (dd, *J* = 13.9, 6.4 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.92 (d, *J* = 3.5 Hz, 1H), 6.38 (s, 1H), 4.54 (p, *J* = 7.0 Hz, 1H), 3.18 – 3.11 (m, 1H), 2.72 (d, *J* = 15.7 Hz, 1H), 2.55 (tt, *J* = 7.6, 5.2 Hz, 1H), 1.08 (d, *J* = 7.1 Hz, 3H), 1.05 – 0.99 (m, 1H), 0.96 – 0.89 (m, 2H), 0.81 (tt, *J* = 7.2, 3.0 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 146.36, 136.81, 129.68, 127.10, 126.88, 126.85, 126.83, 122.08, 119.07, 118.59, 111.87, 105.85, 50.34, 48.48, 30.02, 26.66, 22.11, 5.38, 5.12; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₁N₂O₂S₂ [M+H]⁺ 373.1044, found 373.1033. (1*S*,3*R*)-2-(cyclopropylsulfonyl)-1,3-dimethyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (21)

$$\begin{array}{c} Me & Th \\ 0 \\ N & S \\ H & Me \\ \end{array}$$

The title compound was prepared from (3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and methylmagnesium bromide (1.4 M, 0.22 mL, 0.30 mmol) according to

the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis procedure and was obtained as a white solid (43 mg, 94% yield); ¹H NMR (500 MHz, DMSO-*d*6) δ 10.98 (s, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.15 – 7.02 (m, 1H), 6.98 (td, *J* = 0.9, 7.6 Hz, 1H), 5.08 – 5.00 (m, 1H), 4.49 (p, *J* = 6.9 Hz, 1H), 2.98 (ddd, *J* = 1.6, 6.0, 15.3 Hz, 1H), 2.69 (d, *J* = 15.3 Hz, 1H), 2.62 (tt, *J* = 5.0, 7.8 Hz, 1H), 1.61 (d, *J* = 6.9 Hz, 3H), 1.25 (d, *J* = 7.0 Hz, 3H), 1.03 – 0.85 (m, 4H). ¹³C NMR (126 MHz, DMSO) δ 136.12, 132.71, 126.80, 120.91, 118.36, 117.65, 110.93, 103.40, 58.97, 47.52, 29.36, 26.30, 23.32, 22.12, 4.59, 4.50. HRMS (ESI) *m/z* calcd for C₁₆H₂₁N₂O₂S [M+H]⁺ 305.1324, found 305.1316.

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-1-ethyl-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (22)

The title compound was prepared from (3R)-2-(cyclopropylsulfonyl)-3-methyl-1 \checkmark -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and ethylmagnesium bromide (1.0 M, 0.30 mL, 0.30 mmol) according to the

general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (46 mg, 96% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.88 (s, 1H), 7.43 – 7.39 (m, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 7.1 Hz, 1H), 6.97 (t, J = 7.4 Hz, 1H), 4.86 (dd, J = 9.7, 4.8 Hz, 1H), 4.51 (p, J = 7.0 Hz, 1H), 3.13 – 3.07 (m, 1H), 2.65 (d, J = 15.6 Hz, 1H), 2.50 – 2.46 (m, 1H), 2.10 – 2.00 (m, 1H), 1.77 (ddq, J = 14.7, 10.1, 7.4 Hz, 1H), 1.28 (d, J = 7.1 Hz, 3H), 1.10 (t, J = 7.4 Hz, 3H), 0.99 (ddt, J = 9.6, 6.5, 4.8 Hz, 1H), 0.93 – 0.82 (m, 2H), 0.77 (ddt, J = 8.8, 7.0, 4.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 136.22, 132.68, 126.95, 121.03, 118.44, 117.77, 111.11, 103.40, 53.29, 47.57, 29.68, 29.08, 25.88, 22.27, 11.30, 5.04, 4.46; HRMS (ESI) m/z calcd for C₁₇H₂₃N₂O₂S [M+H]⁺ 319.1480, found 319.1466.

(1*S*,3*R*)-1-cyclopropyl-2-(cyclopropylsulfonyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4b]indole (23) Me N-S H

The title compound was prepared from (3*R*)-2-(cyclopropylsulfonyl)-3-methyl-1 -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol) and cyclopropylmagnesium bromide (1.0 M, 0.30 mL, 0.30 mmol) according to

the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (37 mg, 75% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.67 (s, 1H), 7.40 (dd, J = 16.6, 7.9 Hz, 2H), 7.10 – 7.05 (m, 1H), 6.98 (t, J = 7.2 Hz, 1H), 4.50 (p, J = 7.0 Hz, 1H), 4.19 – 4.13 (m, 1H), 3.08 – 3.00 (m, 1H), 2.68 (d, J = 15.5 Hz, 1H), 2.50 – 2.45 (m, 1H), 1.38 (d, J = 7.1 Hz, 3H), 1.32 – 1.23 (m, 1H), 1.01 – 0.94 (m, 1H), 0.93 – 0.86 (m, 2H), 0.82 (ddd, J = 12.2, 8.4, 4.2 Hz, 2H), 0.76 (dq, J = 9.1, 4.6 Hz, 1H), 0.73 – 0.66 (m, 1H), 0.60 – 0.53 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 136.87, 132.44, 127.25, 121.59, 118.88, 118.23, 111.78, 104.21, 57.28, 47.89, 30.07, 26.70, 22.52, 18.81, 6.18, 5.34, 5.14, 4.10; HRMS (ESI) *m*/*z* calcd for C₁₈H₂₃N₂O₂S [M+H]⁺ 331.1480, found 331.1464.

(1*S*,3*R*)-1-cyclohexyl-2-(cyclopropylsulfonyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4b]indole (24)

The title compound was prepared from (3R)-2-(cyclopropylsulfonyl)-3-methyl-1 -(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (9) (60 mg, 0.15 mmol) and cyclohexylmagnesium bromide (2.0 M, 0.15 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis procedure and was obtained as a white solid (51 mg, 91% yield); ¹H NMR (500 MHz, DMSO-*d*6) δ 10.78 (s, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.08 – 7.00 (m, 1H), 6.99 – 6.94 (m, 1H), 4.53 (d, *J* = 10.1 Hz, 1H), 4.33 (ddq, *J* = 3.5, 7.0, 10.7 Hz, 1H), 3.29 – 3.21 (m, 1H), 2.59 (dd, *J* = 3.7, 15.7 Hz, 1H), 2.21 – 2.13 (m, 2H), 1.81 (dd, *J* = 8.2, 16.7 Hz, 2H), 1.70 (dt, *J* = 7.0, 14.2 Hz, 2H), 1.64 – 1.58 (m, 1H), 1.42 (d, *J* = 6.9 Hz, 3H), 1.22 – 1.03 (m, 4H), 0.87 (ddt, *J* = 4.3, 7.2, 9.5 Hz, 1H), 0.78 – 0.67 (m, 2H), 0.52 – 0.43 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 135.72, 133.28, 126.25, 120.77, 118.31, 117.53, 111.09, 104.35, 57.67, 48.07, 42.56, 30.47, 30.43, 28.00, 26.11, 25.79, 25.46, 25.40, 23.74, 4.30, 4.05. HRMS (ESI) *m*/*z* calcd for C₂₁H₂₉N₂O₂S [M+H]⁺ 373.1950, found 373.1939.

(1*S*,3*R*)-1-allyl-2-(cyclopropylsulfonyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (25)

A 11-dram scintillation vial equipped with a Teflon-coated magnetic stir bar was charged with (3R)-2-(cyclopropylsulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**9**) (60 mg, 0.15 mmol), allyltrimethylsilane

(2 equiv.) and dichloromethane (5.0 mL). The solution was cooled to -78° C in a dry ice/acetone bath, and Tin(IV) chloride (1.0 M in DCM) (2 equiv.) was added. The resulting solution was allowed to warm to room temperature and stir for 3 hours. Cold aq. NaHCO₃ (20 mL) was added, and the biphasic mixture was extracted with dichloromethane (10 mL) twice. The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo, and the resulting oil was purified by silica gel column chromatography using a gradient solvent system (0 \rightarrow 30% iPrOAc/Heptane) as the eluent to afford a white solid (24 mg, 48% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.83 (s, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.05 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 1H), 6.99 – 6.90 (m, 1H), 6.00 (dddd, *J* = 16.8, 10.4, 7.7, 6.3 Hz, 1H), 5.13 – 5.10 (m, 1H), 5.09 – 5.04 (m, 2H), 4.46 (p, *J* = 7.0 Hz, 1H), 3.04 (ddd, *J* = 15.6, 6.5, 1.9 Hz, 1H), 2.80 (dddd, *J* = 13.1, 6.6, 4.0, 1.5 Hz, 1H), 2.63 (d, *J* = 15.5 Hz, 1H), 2.61 – 2.48 (m, 2H), 1.27 (d, *J* = 7.2 Hz, 3H), 0.96 (tdt, *J* = 9.7, 6.7, 3.7 Hz, 1H), 0.92 – 0.82 (m, 2H), 0.77 (ddt, *J* = 12.8, 8.5, 3.4 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 136.25, 135.54, 131.84, 126.88, 121.16, 118.50, 117.81, 117.29, 111.19, 103.90, 51.54, 47.52, 41.30, 29.30, 25.96, 22.25, 4.97, 4.58; HRMS (ESI) *m/z* calcd for C₁₈H₂₃N₂O₂S [M+H]⁺ 331.1480, found 331.1466.

(1S,3R)-3-methyl-1-phenyl-2-(propylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole

(27) The title compound was prepared from (3R)-3-methyl-1-(phenylthio)-2-(propylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (27b) (60 mg, 0.15 mmol) and phenylmagnesium chloride (2.0 M, 0.15 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis procedure and was obtained as a white solid (44 mg, 80% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.34 – 7.28 (m, 3H), 7.28 – 7.24 (m, 1H), 7.21 – 7.16 (m, 1H), 6.23 (s, 1H), 4.62 (p, *J* = 7.1 Hz, 1H), 3.17 (ddd, *J* = 15.9, 6.8, 1.7 Hz, 1H), 2.83 (t, *J* = 7.8 Hz, 2H), 2.79 (d, *J* = 15.9 Hz, 1H), 1.90 – 1.67 (m, 2H), 1.07 (d, *J* = 7.2 Hz, 3H), 0.95 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 140.42, 136.30, 129.22, 128.62, 128.50, 128.08,

127.30, 122.67, 119.84, 118.48, 111.14, 107.80, 54.49, 53.79, 48.31, 26.59, 22.52, 17.14, 13.18; **HRMS** (ESI) m/z calcd for C₂₁H₂₅N₂O₂S [M+H]⁺ 369.1637, found 369.1627.

(15,3R)-3-methyl-1-phenyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (28)

tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (28b) (67 mg, 0.15 mmol) and phenylmagnesium chloride (2.0 M, 0.15 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis procedure and was obtained as a white solid (52 mg, 83% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.97 (s, 1H), 7.66 (d, J = 8.3Hz, 2H), 7.42 – 7.36 (m, 4H), 7.31 (td, J = 7.7, 7.3, 3.9 Hz, 3H), 7.24 (d, J = 8.2 Hz, 2H), 7.09 – 7.05 (m, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.38 (s, 1H), 4.47 (p, J = 7.0 Hz, 1H), 2.43 (d, J = 15.6Hz, 1H), 2.38 - 2.32 (m, 1H), 2.26 (s, 3H), 0.87 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO) & 143.61, 141.94, 137.79, 136.68, 130.16, 129.37, 128.72, 128.48, 128.03, 127.07, 121.87, 118.92, 118.33, 111.71, 105.85, 53.99, 48.46, 24.97, 22.60, 21.34; HRMS (ESI) m/z calcd for C₂₅H₂₅N₂O₂S [M+H]⁺ 417.1637, found 417.1625.

(1S,3R)-3-methyl-2-(naphthalen-2-ylsulfonyl)-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole (29)

The title compound was prepared from (3R)-3-methyl-2-(naphthalen-2 -ylsulfonyl)-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (29b) (73 mg, 0.15 mmol) and phenylmagnesium chloride (2.0 M, 0.15 mL, 0.30

The title compound was prepared from (3R)-3-methyl-1-(phenylthio)-2-

mmol) according to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (59 mg, 87% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.99 (s, 1H), 8.55 (s, 1H), 8.10 – 8.06 (m, 1H), 7.92 (d, J = 8.7 Hz, 2H), 7.68 (dd, J = 8.7, 1.9 Hz, 1H), 7.63 (pd, J = 6.9, 1.3 Hz, 2H), 7.45 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.= 7.4 Hz, 1H), 6.52 (s, 1H), 4.57 (p, J = 7.0 Hz, 1H), 2.41 (d, J = 15.7 Hz, 1H), 2.28 (dd, J = 15.7 15.7, 6.7 Hz, 1H), 0.90 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 141.87, 137.56, 136.66, 134.58, 132.08, 129.81, 129.65, 129.40, 128.76, 128.53, 128.21, 128.10, 126.91, 122.26, 121.87, 118.90, 118.27, 111.69, 105.84, 54.22, 48.59, 25.11, 22.56; HRMS (ESI) m/z calcd for C₂₈H₂₅N₂O₂S [M+H]⁺ 453.1637, found 453.1623.

(1*S*,3*R*)-2-([1,1'-biphenyl]-3-ylsulfonyl)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3, 4-b]indole (30)

The title compound was prepared from (3R)-2-([1,1'-biphenyl]-3-ylsulfonyl) -3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (30b) (77 mg, 0.15 mmol) and phenylmagnesium chloride (2.0 M, 0.15 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro- β -carbolines synthesis procedure and was obtained as a white solid (26 mg, 36% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.12 (s, 1H), 7.83 – 7.80 (m, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.75 (t, *J* = 1.7 Hz, 1H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.45 – 7.37 (m, 5H), 7.35 – 7.27 (m, 3H), 7.22 (t, *J* = 7.7 Hz, 2H), 7.18 – 7.16 (m, 2H), 7.13 – 7.09 (m, 1H), 6.94 (t, *J* = 7.4 Hz, 1H), 6.56 (s, 1H), 4.52 (p, *J* = 7.1 Hz, 1H), 2.45 (d, *J* = 15.9 Hz, 1H), 2.39 – 2.31 (m, 1H), 0.88 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 141.27, 141.15, 140.84, 138.13, 136.20, 131.04, 129.78, 128.77, 128.73, 128.19, 127.94, 127.75, 127.51, 126.62, 126.49, 125.43, 123.89, 121.47, 118.49, 117.78, 111.13, 105.39, 53.77, 47.95, 24.38, 22.11; HRMS (ESI) *m/z* calcd for C₃₀H₂₇N₂O₂S [M+H]⁺ 479.1793, found 479.1785.

(1*S*,3*R*)-2-((4-ethoxyphenyl)sulfonyl)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4b]indole (31)

The title compound was prepared from (3*R*)-2-((4-ethoxyphenyl)sulfonyl) -3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (31b) (72 mg, 0.15 mmol) and phenylmagnesium chloride (2.0 M, 0.15 mL, 0.30

mmol) according to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (53 mg, 76% yield); ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 11.00 (s, 1H), 7.71 – 7.64 (m, 2H), 7.42 – 7.36 (m, 4H), 7.31 (t, *J* = 7.7 Hz, 3H), 7.09 – 7.04 (m, 1H), 6.96 – 6.89 (m, 3H), 6.37 (s, 1H), 4.45 (p, *J* = 7.0 Hz, 1H), 4.02 – 3.91 (m, 2H), 2.43 (d, *J* = 15.5 Hz, 1H), 2.36 (dd, *J* = 15.9, 6.4 Hz, 1H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.86 (d, *J* = 7.1 Hz, 3H); ¹³**C NMR** (126 MHz, DMSO) δ 162.08, 142.01, 136.69, 131.94, 129.42, 129.22, 128.70, 128.43, 127.99, 127.02, 121.84, 118.89, 118.31, 115.15, 111.69, 105.85, 64.09, 53.89, 48.38, 24.98, 22.60, 14.76; **HRMS** (ESI) *m/z* calcd for C₂₆H₂₇N₂O₃S [M+H]⁺ 447.1742, found 447.1724.

(1S,3R)-2-((4-cyclohexylphenyl)sulfonyl)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3

,4-b]indole (32)

The title compound was prepared from (3R)-2-((4-cyclohexylphenyl)-sulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]in dole (32b) (78 mg, 0.15 mmol) and phenylmagnesium chloride (2.0 M,

0.15 mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (65 mg, 89% yield); ¹**H** NMR (500 MHz, DMSO-*d*₆) δ 10.95 (s, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.42 – 7.35 (m, 4H), 7.33 – 7.29 (m, 2H), 7.24 (dd, J = 12.0, 8.1 Hz, 3H), 7.08 – 7.04 (m, 1H), 6.92 (t, J = 7.4 Hz, 1H), 6.37 (s, 1H), 4.45 (p, J = 7.0 Hz, 1H), 2.43 (tt, J = 8.4, 4.4 Hz, 1H), 2.39 (d, J = 16.0 Hz, 1H), 2.36 – 2.30 (m, 1H), 1.70 (d, J = 11.3 Hz, 2H), 1.64 (d, J = 12.6 Hz, 1H), 1.57 (d, J = 11.0 Hz, 2H), 1.32 – 1.11 (m, 5H), 0.86 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 152.63, 141.29, 137.14, 136.08, 128.77, 128.13, 127.79, 127.43, 127.21, 126.55, 126.42, 121.23, 118.26, 117.62, 111.05, 105.27, 53.44, 47.90, 43.22, 33.23, 33.17, 25.92, 25.25, 24.35, 22.13; HRMS (ESI) *m*/*z* calcd for $C_{30}H_{33}N_2O_2S$ [M+H]⁺ 485.2263, found 485.2250.

(1*S*,3*R*)-2-((2,3-dihydro-1H-inden-5-yl)sulfonyl)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1H-p yrido[3,4-b]indole (33)

The title compound was prepared from (3*R*)-2-((2,3-dihydro-1H-inden-5 -yl)sulfonyl)-3-methyl-1-(phenylthio)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]in dole (33b) (71 mg, 0.15 mmol) and phenylmagnesium chloride (2.0 M, 0.15

mL, 0.30 mmol) according to the general 1,3-substituted *cis*-tetrahydro-β-carbolines synthesis procedure and was obtained as a white solid (60 mg, 91% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.97 (s, 1H), 7.54 – 7.50 (m, 1H), 7.48 (s, 1H), 7.42 – 7.36 (m, 4H), 7.34 – 7.29 (m, 2H), 7.25 (dd, J = 13.2, 7.9 Hz, 2H), 7.10 – 7.05 (m, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.38 (s, 1H), 4.44 (p, J = 7.0 Hz, 1H), 2.81 – 2.69 (m, 3H), 2.55 – 2.51 (m, 1H), 2.38 (d, J = 15.4 Hz, 1H), 2.36 – 2.29 (m, 1H), 1.95 – 1.74 (m, 2H), 0.87 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 149.31, 144.93, 141.46, 137.80, 136.26, 129.10, 128.27, 127.93, 127.56, 126.60, 124.86, 124.71, 122.40, 121.43, 118.45, 117.81, 111.18, 105.56, 53.69, 48.02, 32.14, 31.85, 24.79, 24.57, 22.39; HRMS (ESI) *m/z* calcd for C₂₇H₂₇N₂O₂S [M+H]⁺ 443.1793, found 443.1774.

(R)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (34)

A 100-mL round bottom flask equipped with a Teflon-coated magnetic stir bar was charged with (R)-1-(1H-indol-3-yl)propan-2-amine (300 mg, 1.74 mmol), benzaldehyde (1 equiv.) and toluene (20.0 mL). Acetic acid (2 equiv.) was added. The resulting solution was heated to reflux at 80 °C and stirred for 15 hours. Cold

aq. NaHCO₃ (20 mL) was added, and the biphasic mixture was extracted with dichloromethane (10 mL) twice. The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo, and the resulting oil was purified by silica gel column chromatography using a gradient solvent system (0 \rightarrow 90% iPrOAc/Heptane) as the eluent to afford colorless oil (283 mg, 62% yield) which consisted of a mixture of 5:2 (*cis:trans*) diastereoisomers; ¹H NMR (major diastereomer) (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.50 – 7.46 (m, 1H), 7.27 – 7.17 (m, 5H), 7.09 – 7.07 (m, 1H), 7.04 – 6.99 (m, 2H), 5.05 (s, 1H), 3.24 – 3.17 (m, 1H), 2.87 – 2.82 (m, 1H), 2.55 – 2.43 (m, 1H), 1.25 (d, *J* = 6.4 Hz, 3H); HRMS (ESI) *m*/*z* calcd for C₁₈H₁₉N₂ [M+H]⁺ 263.1548, found 263.1534.

(1*S*,3*R*)-3-methyl-2-(methylsulfonyl)-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (35)

The title compound was prepared from (R)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (34) (283 mg, 1.08 mmol) and methanesulfonyl chloride (186 mg, 1.62 mmol) according to the general sulfonylation procedure and was

obtained as a white solid (142 mg, 54% yield based on the quantity of (1S,3R)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole); ¹**H** NMR (500 MHz, DMSO-*d*₆) δ 11.09 (s, 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.40 – 7.33 (m, 5H), 7.31 – 7.27 (m, 1H), 7.15 – 7.11 (m, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.16 (s, 1H), 4.54 (p, *J* = 7.1 Hz, 1H), 3.25 – 3.14 (m, 1H), 2.90 (s, 3H), 2.66 (d, *J* = 16.1 Hz, 1H), 0.88 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 141.81, 136.84, 129.51, 128.64, 128.34, 127.95, 127.27, 122.01, 119.02, 118.52, 111.77, 106.07, 53.37, 48.23, 25.74, 22.74; **HRMS** (ESI) *m*/*z* calcd for C₁₉H₂₁N₂O₂S [M+H]⁺ 341.1324, found 341.1313.

(1*R*,3*R*)-3-methyl-2-(methylsulfonyl)-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (36)

The title compound was prepared from (3R)-3-methyl-1-phenyl-2,3,4,9tetrahydro-1H-pyrido[3,4-b]indole (34) (283)1.08 mg, mmol) and methanesulfonyl chloride (186 mg, 1.62 mmol) according to the general sulfonylation procedure and was obtained as a white solid (99 mg, 94% yield based on the quantity of (1R,3R)-3-methyl-1-phenyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole); ¹H NMR (500 MHz, DMSO- d_6) δ 7.47 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 7.3 Hz, 2H), 7.35 – 7.29 (m, 2H), 7.24 (d, J = 7.2 Hz, 2H), 7.12 - 7.06 (m, 1H), 7.04 - 6.98 (m, 1H), 6.13 (s, 1H), 3.78 (dq, J = 14.1, 7.0 Hz, 1H), 2.98 - 2.87 (m, 2H), 2.84 (s, 3H), 1.44 (d, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 140.61, 136.78, 132.19, 128.89, 128.67, 128.35, 126.72, 121.80, 119.10, 118.45, 111.74, 108.40, 57.70, 50.29, 43.27, 28.56, 20.25; **HRMS** (ESI) m/z calcd for C₁₉H₂₁N₂O₂S [M+H]⁺ 341.1324, found 341.1314.

Epimerization of

То

ethyl(1S,3S)-1-allyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (11) to ethyl(1S,3R)-1-allyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (11b)

ethyl

(1S,3S)-1-allyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (**11**) (12.5 mg, 0.0285 mmol, 1 eq) was added a solution of DBU (6.5 mg, 0.043 mmol, 1.5 eq) in methylene chloride (0.28 mL, 0.1 M). The reaction was heated at 30°C for 22 h at which point 2 mL water was added. The solution was extracted twice with methylene chloride (2 mL each), dried through sodium sulfate and concentrated. Analysis of the crude reaction mixture by NMR spectroscopy revealed compounds 11 and 11b in a ratio of approximately 3 to 1. The crude reaction was purified by silica column chromatography using an isopropyl acetate/heptanes gradient to give ethyl (1S,3R)-1-allyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (**11b**) (3.0 mg, 24% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.75 (bs, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.29-7.24 (m, 1H), 7.21 (d, J = 7.8 Hz, 2H), 7.15 (ddd, J = 8.2, 7.1, 1.3 Hz, 1H), 7.08

 $(ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 5.58 (ddt, J = 17.2, 10.3, 7.1 Hz, 1H), 5.08 (t, J = 6.2 Hz, 1H), 5.01 - 4.86 (m, 2H), 4.59 (dd, J = 8.0, 4.7 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.30 (ddd, J = 15.9, 8.0, 1.2 Hz, 1H), 3.07 (ddd, J = 15.9, 4.6, 0.9 Hz, 1H), 2.66 (t, J = 6.9 Hz, 2H), 2.36 (s, 3H), 1.28 - 1.17 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) <math>\delta$ 170.6, 143.8, 138.1, 136.2, 133.2, 133.1, 129.4, 127.7, 126.6, 122.3, 119.9, 119.1, 118.4, 111.0, 108.0, 61.7, 56.8, 55.0, 39.7, 24.2, 21.6, 14.2. LRMS (ESI) Calculated for C₂₄H₂₇N₂O₄ (M+H)⁺: 439.2 Found: 439.1.

X-Ray Crystallography Methods and Results

(1*S*,3*R*)-2-(cyclopropylsulfonyl)-1-(4-methoxy-2-methylphenyl)-3-methyl-2,3,4,9-tetrahydro -1H-pyrido[3,4-b]indole (14)

X-ray quality crystals were grown by the slow evaporation of a saturated 1,2-dichloroethane/ethanol/methanol solution. A yellow plate 0.080 x 0.080 x 0.040 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using and scans. Crystal-to-detector distance was 50 mm and exposure time was 10 seconds per frame using a scan width of 1.0°. Data collection was 100.0% complete to 25.000° in θ . A total of 42376 reflections were collected covering the indices, $-11 \le k \le 10$, $-13 \le k \le 13$, -23 <= l <= 23. 3784 reflections were found to be symmetry independent, with an R_{int} of 0.0450. Indexing and unit cell refinement indicated a primitive, orthorhombic lattice. The space group was found to be P 21 21 21 (No. 19). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by iterative methods (SHELXT-2014) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Absolute stereochemistry was unambiguously determined to be R at C11 and S at C1, respectively.

Table S1. Crystal data and structure refinement for	r 14.	
CCDC	1900975	
Empirical formula	C23 H26 N2 O3 S	
Formula weight	410.52	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.2149(3) Å	α= 90°.
	b = 11.3488(4) Å	β= 90°.
	c = 19.7251(7) Å	$\gamma = 90^{\circ}.$
Volume	2062.81(12) Å ³	
Z	4	
Density (calculated)	1.322 Mg/m ³	
Absorption coefficient	0.184 mm ⁻¹	
F(000)	872	
Crystal size	0.080 x 0.080 x 0.040 mm ³	
Theta range for data collection	2.065 to 25.367°.	
Index ranges	-11<=h<=10, -13<=k<=13, -23<	<=l<=23
Reflections collected	42376	
Independent reflections	3784 [R(int) = 0.0450]	
Completeness to theta = 25.000°	100.0 %	
Absorption correction	Semi-empirical from equivalents	8
Max. and min. transmission	0.928 and 0.842	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3784 / 0 / 265	
Goodness-of-fit on F ²	1.063	
Final R indices [I>2sigma(I)]	R1 = 0.0342, wR2 = 0.0826	
R indices (all data)	R1 = 0.0364, wR2 = 0.0843	
Absolute structure parameter	-0.03(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.377 and -0.230 e.Å $^{\text{-3}}$	

	X	У	Z	U(eq)
C(1)	3143(3)	3338(2)	7561(1)	17(1)
C(2)	2466(3)	3234(2)	6875(1)	17(1)
C(3)	1188(3)	2453(2)	6020(1)	20(1)
C(4)	376(3)	1729(2)	5595(1)	26(1)
C(5)	-199(3)	2232(3)	5012(1)	28(1)
C(6)	43(3)	3412(3)	4852(1)	30(1)
C(7)	840(3)	4134(2)	5282(1)	25(1)
C(8)	1413(3)	3657(2)	5878(1)	20(1)
C(9)	2227(3)	4139(2)	6438(1)	19(1)
C(10)	2770(3)	5370(2)	6553(1)	24(1)
C(11)	3321(3)	5541(2)	7285(1)	21(1)
C(12)	2137(3)	5988(2)	7759(2)	28(1)
C(13)	6144(3)	4016(2)	6607(1)	24(1)
C(14)	7686(3)	4177(3)	6370(1)	32(1)
C(15)	6531(4)	5001(3)	6132(2)	33(1)
C(16)	2024(3)	3341(2)	8129(1)	18(1)
C(17)	551(3)	3335(2)	7981(1)	21(1)
C(18)	-518(3)	3422(2)	8474(1)	23(1)
C(19)	-88(3)	3507(2)	9144(1)	21(1)
C(20)	1374(3)	3475(2)	9314(1)	22(1)
C(21)	2443(3)	3381(2)	8822(1)	20(1)
C(22)	4004(3)	3360(2)	9037(1)	23(1)
C(23)	-2528(3)	3793(3)	9511(2)	28(1)
N(1)	4023(2)	4450(2)	7565(1)	17(1)
N(2)	1848(2)	2207(2)	6631(1)	19(1)
O(1)	6215(2)	3299(2)	7840(1)	22(1)
O(2)	6424(2)	5431(2)	7628(1)	26(1)
O(3)	-1033(2)	3643(2)	9680(1)	27(1)
S (1)	5773(1)	4316(1)	7460(1)	18(1)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **14**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.495(3)	C(14)-C(15)	1.492(4)
C(1)-N(1)	1.499(3)	C(14)-H(14A)	0.9900
C(1)-C(16)	1.522(4)	C(14)-H(14B)	0.9900
C(1)-H(1)	1.0000	C(15)-H(15A)	0.9900
C(2)-C(9)	1.359(4)	C(15)-H(15B)	0.9900
C(2)-N(2)	1.384(3)	C(16)-C(17)	1.388(4)
C(3)-N(2)	1.378(3)	C(16)-C(21)	1.421(4)
C(3)-C(4)	1.391(4)	C(17)-C(18)	1.388(4)
C(3)-C(8)	1.411(4)	C(17)-H(17)	0.9500
C(4)-C(5)	1.389(4)	C(18)-C(19)	1.384(4)
C(4)-H(4)	0.9500	C(18)-H(18)	0.9500
C(5)-C(6)	1.394(4)	C(19)-O(3)	1.378(3)
C(5)-H(5)	0.9500	C(19)-C(20)	1.389(4)
C(6)-C(7)	1.389(4)	C(20)-C(21)	1.388(4)
C(6)-H(6)	0.9500	C(20)-H(20)	0.9500
C(7)-C(8)	1.397(4)	C(21)-C(22)	1.500(4)
C(7)-H(7)	0.9500	C(22)-H(22A)	0.9800
C(8)-C(9)	1.442(4)	C(22)-H(22B)	0.9800
C(9)-C(10)	1.501(4)	C(22)-H(22C)	0.9800
C(10)-C(11)	1.543(4)	C(23)-O(3)	1.428(3)
C(10)-H(10A)	0.9900	C(23)-H(23A)	0.9800
C(10)-H(10B)	0.9900	C(23)-H(23B)	0.9800
C(11)-N(1)	1.503(3)	C(23)-H(23C)	0.9800
C(11)-C(12)	1.523(4)	N(1)-S(1)	1.633(2)
C(11)-H(11)	1.0000	N(2)-H(2)	0.8800
C(12)-H(12A)	0.9800	O(1)-S(1)	1.4349(19)
C(12)-H(12B)	0.9800	O(2)-S(1)	1.4384(18)
C(12)-H(12C)	0.9800	N(1)-C(1)-H(1)	108.6
C(13)-C(15)	1.501(4)	C(16)-C(1)-H(1)	108.6
C(13)-C(14)	1.507(4)	N(1)-C(1)-C(16)	111.1(2)
C(13)-S(1)	1.751(3)	C(2)-C(1)-H(1)	108.6
C(13)-H(13)	1.0000	C(2)-C(1)-C(16)	112.5(2)
C(2)-C(1)-N(1)	107.3(2)	C(9)-C(2)-N(2)	110.4(2)
		C(9)-C(2)-C(1)	125.7(2)
		N(2)-C(2)-C(1)	123.6(2)

Table S3.Bond lengths [Å] and angles [°] for 14.

N(2)-C(3)-C(4)	130.1(2)	H(12A)-C(12)-H(12C)	109.5
N(2)-C(3)-C(8)	107.8(2)	H(12B)-C(12)-H(12C)	109.5
C(4)-C(3)-C(8)	122.1(2)	C(15)-C(13)-C(14)	59.49(19)
C(5)-C(4)-C(3)	117.5(3)	C(15)-C(13)-S(1)	120.1(2)
C(5)-C(4)-H(4)	121.3	C(14)-C(13)-S(1)	117.3(2)
C(3)-C(4)-H(4)	121.3	C(15)-C(13)-H(13)	116.0
C(4)-C(5)-C(6)	121.4(3)	C(14)-C(13)-H(13)	116.0
C(4)-C(5)-H(5)	119.3	S(1)-C(13)-H(13)	116.0
C(6)-C(5)-H(5)	119.3	C(15)-C(14)-C(13)	60.07(19)
C(7)-C(6)-C(5)	120.9(3)	C(15)-C(14)-H(14A)	117.8
C(7)-C(6)-H(6)	119.6	C(13)-C(14)-H(14A)	117.8
C(5)-C(6)-H(6)	119.6	C(15)-C(14)-H(14B)	117.8
C(6)-C(7)-C(8)	119.0(3)	C(13)-C(14)-H(14B)	117.8
C(6)-C(7)-H(7)	120.5	H(14A)-C(14)-H(14B)	114.9
C(8)-C(7)-H(7)	120.5	C(14)-C(15)-C(13)	60.44(19)
C(7)-C(8)-C(3)	119.2(3)	C(14)-C(15)-H(15A)	117.7
C(7)-C(8)-C(9)	133.9(3)	C(13)-C(15)-H(15A)	117.7
C(3)-C(8)-C(9)	106.9(2)	C(14)-C(15)-H(15B)	117.7
C(2)-C(9)-C(8)	106.5(2)	C(13)-C(15)-H(15B)	117.7
C(2)-C(9)-C(10)	123.5(2)	H(15A)-C(15)-H(15B)	114.8
C(8)-C(9)-C(10)	129.9(2)	C(17)-C(16)-C(21)	117.9(2)
C(9)-C(10)-C(11)	111.7(2)	C(17)-C(16)-C(1)	120.5(2)
C(9)-C(10)-H(10A)	109.3	C(21)-C(16)-C(1)	121.6(2)
C(11)-C(10)-H(10A)	109.3	C(18)-C(17)-C(16)	123.2(2)
C(9)-C(10)-H(10B)	109.3	C(18)-C(17)-H(17)	118.4
C(11)-C(10)-H(10B)	109.3	C(16)-C(17)-H(17)	118.4
H(10A)-C(10)-H(10B)	107.9	C(19)-C(18)-C(17)	118.1(3)
N(1)-C(11)-C(12)	110.9(2)	C(19)-C(18)-H(18)	120.9
N(1)-C(11)-C(10)	112.4(2)	C(17)-C(18)-H(18)	120.9
C(12)-C(11)-C(10)	112.4(2)	O(3)-C(19)-C(18)	124.1(2)
N(1)-C(11)-H(11)	106.9	O(3)-C(19)-C(20)	115.5(2)
C(12)-C(11)-H(11)	106.9	C(18)-C(19)-C(20)	120.4(2)
C(10)-C(11)-H(11)	106.9	C(21)-C(20)-C(19)	121.5(2)
C(11)-C(12)-H(12A)	109.5	C(21)-C(20)-H(20)	119.3
C(11)-C(12)-H(12B)	109.5	C(19)-C(20)-H(20)	119.3
H(12A)-C(12)-H(12B)	109.5	C(20)-C(21)-C(16)	118.9(2)
C(11)-C(12)-H(12C)	109.5	C(20)-C(21)-C(22)	119.0(2)

C(16)-C(21)-C(22)	122.1(2)	C(1)-N(1)-C(11)	117.32(19)
C(21)-C(22)-H(22A)	109.5	C(1)-N(1)-S(1)	117.04(15)
C(21)-C(22)-H(22B)	109.5	C(11)-N(1)-S(1)	117.07(16)
H(22A)-C(22)-H(22B)	109.5	C(3)-N(2)-C(2)	108.4(2)
C(21)-C(22)-H(22C)	109.5	C(3)-N(2)-H(2)	125.8
H(22A)-C(22)-H(22C)	109.5	C(2)-N(2)-H(2)	125.8
H(22B)-C(22)-H(22C)	109.5	C(19)-O(3)-C(23)	116.3(2)
O(3)-C(23)-H(23A)	109.5	O(1)-S(1)-O(2)	117.94(11)
O(3)-C(23)-H(23B)	109.5	O(1)-S(1)-N(1)	106.79(11)
H(23A)-C(23)-H(23B)	109.5	O(2)-S(1)-N(1)	107.51(11)
O(3)-C(23)-H(23C)	109.5	O(1)-S(1)-C(13)	106.88(12)
H(23A)-C(23)-H(23C)	109.5	O(2)-S(1)-C(13)	108.08(13)
H(23B)-C(23)-H(23C)	109.5	N(1)-S(1)-C(13)	109.46(12)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	17(1)	14(1)	21(1)	0(1)	-4(1)	-1(1)
C(2)	14(1)	17(1)	21(1)	-2(1)	0(1)	0(1)
C(3)	16(1)	23(1)	20(1)	-1(1)	1(1)	2(1)
C(4)	28(2)	24(2)	25(1)	-4(1)	-2(1)	1(1)
C(5)	23(2)	39(2)	22(1)	-10(1)	-4(1)	3(1)
C(6)	25(2)	42(2)	22(1)	3(1)	-4(1)	8(1)
C(7)	23(2)	28(2)	23(1)	5(1)	1(1)	3(1)
C(8)	14(1)	24(1)	21(1)	1(1)	3(1)	2(1)
C(9)	14(1)	21(1)	22(1)	1(1)	2(1)	1(1)
C(10)	22(2)	19(1)	31(1)	5(1)	-5(1)	-1(1)
C(11)	18(1)	14(1)	31(1)	2(1)	-2(1)	1(1)
C(12)	25(2)	19(1)	40(2)	-1(1)	5(1)	3(1)
C(13)	24(2)	25(1)	23(1)	-1(1)	1(1)	1(1)
C(14)	26(2)	41(2)	29(1)	3(1)	7(1)	4(1)
C(15)	33(2)	37(2)	28(1)	7(1)	5(1)	-2(1)
C(16)	19(1)	15(1)	21(1)	1(1)	-2(1)	-1(1)
C(17)	21(1)	21(1)	19(1)	1(1)	-3(1)	-3(1)
C(18)	17(1)	21(1)	29(1)	1(1)	-1(1)	-1(1)
C(19)	22(2)	18(1)	23(1)	0(1)	4(1)	-2(1)
C(20)	25(2)	21(1)	19(1)	-1(1)	-4(1)	-1(1)
C(21)	21(1)	17(1)	22(1)	0(1)	-3(1)	0(1)
C(22)	20(2)	27(1)	21(1)	-1(1)	-1(1)	0(1)
C(23)	19(2)	38(2)	29(1)	-1(1)	3(1)	0(1)
N(1)	15(1)	14(1)	22(1)	0(1)	-2(1)	-1(1)
N(2)	23(1)	15(1)	20(1)	0(1)	-4(1)	0(1)
O(1)	18(1)	23(1)	26(1)	1(1)	-4(1)	2(1)
O(2)	18(1)	23(1)	36(1)	-6(1)	-4(1)	-2(1)
O(3)	21(1)	37(1)	23(1)	0(1)	2(1)	2(1)
S (1)	15(1)	17(1)	21(1)	-2(1)	-1(1)	0(1)

Table S4. Anisotropic displacement parameters (Å²x 10³) for **14**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

	Х	У	Z	U(eq)
H(1)	3812	2655	7630	21
H(4)	221	922	5700	31
H(5)	-769	1762	4716	34
H(6)	-342	3727	4444	36
H(7)	993	4940	5173	30
H(10A)	1977	5936	6462	29
H(10B)	3569	5538	6232	29
H(11)	4087	6164	7268	25
H(12A)	1262	5508	7702	42
H(12B)	1916	6812	7651	42
H(12C)	2474	5932	8229	42
H(13)	5602	3340	6402	29
H(14A)	8402	4479	6701	38
H(14B)	8075	3601	6040	38
H(15A)	6209	4935	5655	40
H(15B)	6535	5813	6316	40
H(17)	261	3269	7521	25
H(18)	-1517	3423	8355	27
H(20)	1649	3518	9778	26
H(22A)	4435	4139	8965	34
H(22B)	4532	2774	8768	34
H(22C)	4066	3152	9518	34
H(23A)	-2641	4493	9224	42
H(23B)	-3097	3892	9927	42
H(23C)	-2873	3097	9265	42
H(2)	1873	1515	6831	23

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 14.

Figure S1. X-ray crystal structure of 14 with 50% probability ellipsoids.
(1S,3R)-3-methyl-1-phenyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (28)

X-ray quality crystals were grown from a saturated 1,2-dichloroethane/ethanol/methanol solution followed by the slow vapor diffusion of diisopropyl ether to deposit the crystal diffracted. A colorless prism 0.070 x 0.030 x 0.030 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using and scans. Crystal-to-detector distance was 50 mm and exposure time was 20 seconds per frame using a scan width of 1.0°. Data collection was 100.0% complete to 25.000° in 0. A total of 26438 reflections were collected covering the indices, $-10 \le h \le 10$, $-14 \le k \le 14$, $-22 \le l \le 22$. 3817 reflections were found to be symmetry independent, with an R_{int} of 0.0602. Indexing and unit cell refinement indicated a primitive, orthorhombic lattice. The space group was found to be P 21 21 21 (No. 19). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by iterative methods (SHELXT-2014) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Absolute stereochemistry was unambiguously determined to be *R* at C1 and *S* at C11, respectively.

Table S6. Crystal data and structure refinement for	r 28.	
CCDC ID	1900974	
Empirical formula	C25 H24 N2 O2 S	
Formula weight	416.52	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.0518(4) Å	α= 90°.
	b = 12.1315(5) Å	β= 90°.
	c = 18.9731(8) Å	$\gamma = 90^{\circ}$.
Volume	2083.47(15) Å ³	
Z	4	
Density (calculated)	1.328 Mg/m ³	
Absorption coefficient	0.180 mm ⁻¹	
F(000)	880	
Crystal size	$0.070 \text{ x} \ 0.030 \text{ x} \ 0.030 \text{ mm}^3$	
Theta range for data collection	1.993 to 25.377°.	
Index ranges	-10<=h<=10, -14<=k<=14, -22	<=l<=22
Reflections collected	26438	
Independent reflections	3817 [R(int) = 0.0602]	
Completeness to theta = 25.000°	100.0 %	
Absorption correction	Semi-empirical from equivalent	ts
Max. and min. transmission	0.928 and 0.851	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3817 / 0 / 273	
Goodness-of-fit on F ²	1.081	
Final R indices [I>2sigma(I)]	R1 = 0.0403, wR2 = 0.0889	
R indices (all data)	R1 = 0.0472, wR2 = 0.0922	
Absolute structure parameter	0.04(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.255 and -0.290 e.Å ⁻³	

	X	у	Z	U(eq)
 C(1)	6266(4)	4514(3)	3074(2)	19(1)
C(2)	6141(4)	5525(2)	3546(2)	19(1)
C(3)	6867(4)	5289(3)	4241(2)	18(1)
C(4)	7543(4)	6004(3)	4750(2)	18(1)
C(5)	7737(4)	7154(3)	4805(2)	21(1)
C(6)	8497(4)	7568(3)	5376(2)	24(1)
C(7)	9041(4)	6881(3)	5908(2)	22(1)
C(8)	8855(4)	5748(3)	5876(2)	21(1)
C(9)	8117(4)	5329(3)	5288(2)	17(1)
C(10)	7032(4)	4246(3)	4486(2)	17(1)
C(11)	6411(4)	3214(2)	4167(2)	16(1)
C(12)	7792(4)	4369(3)	2749(2)	23(1)
C(13)	7496(4)	2259(3)	4132(2)	17(1)
C(14)	8995(4)	2426(3)	3992(2)	21(1)
C(15)	9961(4)	1542(3)	3958(2)	25(1)
C(16)	9457(4)	476(3)	4081(2)	26(1)
C(17)	7977(4)	304(3)	4226(2)	25(1)
C(18)	7007(4)	1192(3)	4248(2)	21(1)
C(19)	2905(4)	4076(3)	3255(2)	19(1)
C(20)	2634(4)	4696(3)	2656(2)	24(1)
C(21)	1768(4)	5637(3)	2706(2)	26(1)
C(22)	1137(4)	5951(3)	3341(2)	25(1)
C(23)	1380(4)	5287(3)	3930(2)	25(1)
C(24)	2274(4)	4370(3)	3896(2)	22(1)
C(25)	218(4)	6986(3)	3387(2)	33(1)
N(1)	5777(3)	3503(2)	3461(1)	18(1)
N(2)	7804(3)	4249(2)	5112(1)	18(1)
O(1)	3801(3)	2166(2)	3731(1)	24(1)
O(2)	4304(3)	2668(2)	2491(1)	24(1)
S (1)	4197(1)	2987(1)	3217(1)	19(1)

Table S7. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **28**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-N(1)	1.497(4)	C(13)-C(14)	1.397(5)
C(1)-C(12)	1.523(5)	C(14)-C(15)	1.385(5)
C(1)-C(2)	1.524(4)	C(14)-H(14)	0.9500
C(1)-H(1)	1.0000	C(15)-C(16)	1.391(5)
C(2)-C(3)	1.500(4)	C(15)-H(15)	0.9500
C(2)-H(2A)	0.9900	C(16)-C(17)	1.383(5)
C(2)-H(2B)	0.9900	C(16)-H(16)	0.9500
C(3)-C(10)	1.356(4)	C(17)-C(18)	1.390(5)
C(3)-C(4)	1.435(5)	C(17)-H(17)	0.9500
C(4)-C(9)	1.409(5)	C(18)-H(18)	0.9500
C(4)-C(5)	1.410(4)	C(19)-C(20)	1.386(5)
C(5)-C(6)	1.379(5)	C(19)-C(24)	1.391(5)
C(5)-H(5)	0.9500	C(19)-S(1)	1.765(3)
C(6)-C(7)	1.398(5)	C(20)-C(21)	1.388(5)
C(6)-H(6)	0.9500	C(20)-H(20)	0.9500
C(7)-C(8)	1.387(4)	C(21)-C(22)	1.388(5)
C(7)-H(7)	0.9500	C(21)-H(21)	0.9500
C(8)-C(9)	1.396(4)	C(22)-C(23)	1.395(5)
C(8)-H(8)	0.9500	C(22)-C(25)	1.508(5)
C(9)-N(2)	1.382(4)	C(23)-C(24)	1.378(5)
C(10)-N(2)	1.379(4)	C(23)-H(23)	0.9500
C(10)-C(11)	1.499(4)	C(24)-H(24)	0.9500
C(11)-N(1)	1.499(4)	C(25)-H(25A)	0.9800
C(11)-C(13)	1.521(4)	C(25)-H(25B)	0.9800
C(11)-H(11)	1.0000	C(25)-H(25C)	0.9800
C(12)-H(12A)	0.9800	N(1)-S(1)	1.629(3)
C(12)-H(12B)	0.9800	N(2)-H(2)	0.8800
C(12)-H(12C)	0.9800	O(1)-S(1)	1.439(2)
C(13)-C(18)	1.387(4)	O(2)-S(1)	1.433(2)
N(1)-C(1)-C(12)	111.9(3)	C(2)-C(1)-H(1)	106.9
N(1)-C(1)-C(2)	110.4(3)	C(3)-C(2)-C(1)	109.3(3)
C(12)-C(1)-C(2)	113.5(3)	C(3)-C(2)-H(2A)	109.8
N(1)-C(1)-H(1)	106.9	C(1)-C(2)-H(2A)	109.8
C(12)-C(1)-H(1)	106.9	C(3)-C(2)-H(2B)	109.8

Table S8.	Bond lengths [Å] and angles [°] for 28.

C(1)-C(2)-H(2B)	109.8	H(12B)-C(12)-H(12C)	109.5
H(2A)-C(2)-H(2B)	108.3	C(18)-C(13)-C(14)	118.4(3)
C(10)-C(3)-C(4)	106.7(3)	C(18)-C(13)-C(11)	119.9(3)
C(10)-C(3)-C(2)	121.8(3)	C(14)-C(13)-C(11)	121.7(3)
C(4)-C(3)-C(2)	131.5(3)	C(15)-C(14)-C(13)	120.6(3)
C(9)-C(4)-C(5)	118.4(3)	C(15)-C(14)-H(14)	119.7
C(9)-C(4)-C(3)	107.1(3)	C(13)-C(14)-H(14)	119.7
C(5)-C(4)-C(3)	134.5(3)	C(14)-C(15)-C(16)	120.3(3)
C(6)-C(5)-C(4)	118.7(3)	C(14)-C(15)-H(15)	119.8
C(6)-C(5)-H(5)	120.7	C(16)-C(15)-H(15)	119.8
C(4)-C(5)-H(5)	120.7	C(17)-C(16)-C(15)	119.4(3)
C(5)-C(6)-C(7)	121.8(3)	C(17)-C(16)-H(16)	120.3
C(5)-C(6)-H(6)	119.1	C(15)-C(16)-H(16)	120.3
C(7)-C(6)-H(6)	119.1	C(16)-C(17)-C(18)	120.1(3)
C(8)-C(7)-C(6)	121.1(3)	C(16)-C(17)-H(17)	120.0
C(8)-C(7)-H(7)	119.4	C(18)-C(17)-H(17)	120.0
C(6)-C(7)-H(7)	119.4	C(13)-C(18)-C(17)	121.1(3)
C(7)-C(8)-C(9)	117.0(3)	C(13)-C(18)-H(18)	119.4
C(7)-C(8)-H(8)	121.5	C(17)-C(18)-H(18)	119.4
C(9)-C(8)-H(8)	121.5	C(20)-C(19)-C(24)	120.4(3)
N(2)-C(9)-C(8)	129.5(3)	C(20)-C(19)-S(1)	119.4(3)
N(2)-C(9)-C(4)	107.5(3)	C(24)-C(19)-S(1)	120.0(3)
C(8)-C(9)-C(4)	123.0(3)	C(19)-C(20)-C(21)	119.4(3)
C(3)-C(10)-N(2)	110.4(3)	C(19)-C(20)-H(20)	120.3
C(3)-C(10)-C(11)	126.8(3)	C(21)-C(20)-H(20)	120.3
N(2)-C(10)-C(11)	122.6(3)	C(20)-C(21)-C(22)	121.2(3)
N(1)-C(11)-C(10)	108.0(2)	C(20)-C(21)-H(21)	119.4
N(1)-C(11)-C(13)	112.7(2)	C(22)-C(21)-H(21)	119.4
C(10)-C(11)-C(13)	114.3(3)	C(21)-C(22)-C(23)	118.2(3)
N(1)-C(11)-H(11)	107.2	C(21)-C(22)-C(25)	120.3(3)
C(10)-C(11)-H(11)	107.2	C(23)-C(22)-C(25)	121.5(3)
C(13)-C(11)-H(11)	107.2	C(24)-C(23)-C(22)	121.5(3)
C(1)-C(12)-H(12A)	109.5	C(24)-C(23)-H(23)	119.3
C(1)-C(12)-H(12B)	109.5	C(22)-C(23)-H(23)	119.3
H(12A)-C(12)-H(12B)	109.5	C(23)-C(24)-C(19)	119.3(3)
C(1)-C(12)-H(12C)	109.5	C(23)-C(24)-H(24)	120.3
H(12A)-C(12)-H(12C)	109.5	C(19)-C(24)-H(24)	120.3

C(22)-C(25)-H(25A)	109.5	C(10)-N(2)-C(9)	108.3(3)
C(22)-C(25)-H(25B)	109.5	C(10)-N(2)-H(2)	125.8
H(25A)-C(25)-H(25B)	109.5	C(9)-N(2)-H(2)	125.8
C(22)-C(25)-H(25C)	109.5	O(2)-S(1)-O(1)	118.74(14)
H(25A)-C(25)-H(25C)	109.5	O(2)-S(1)-N(1)	108.52(14)
H(25B)-C(25)-H(25C)	109.5	O(1)-S(1)-N(1)	106.97(14)
C(1)-N(1)-C(11)	121.1(3)	O(2)-S(1)-C(19)	106.62(15)
C(1)-N(1)-S(1)	115.8(2)	O(1)-S(1)-C(19)	108.96(15)
C(11)-N(1)-S(1)	120.0(2)	N(1)-S(1)-C(19)	106.43(14)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	21(2)	19(2)	17(2)	5(1)	-2(1)	-1(1)
C(2)	21(2)	16(2)	19(2)	4(1)	-1(1)	-2(1)
C(3)	19(2)	16(2)	19(2)	1(1)	0(2)	-1(1)
C(4)	16(2)	19(2)	20(2)	-1(1)	1(1)	2(1)
C(5)	23(2)	16(2)	24(2)	0(2)	-1(2)	-1(2)
C(6)	24(2)	18(2)	32(2)	-6(2)	1(2)	0(2)
C(7)	19(2)	23(2)	25(2)	-8(1)	-2(2)	-2(2)
C(8)	22(2)	21(2)	19(2)	-2(1)	1(1)	2(2)
C(9)	15(2)	18(2)	18(2)	-1(1)	5(1)	-1(1)
C(10)	18(2)	19(2)	16(2)	-1(1)	1(1)	1(2)
C(11)	19(2)	17(2)	13(2)	1(1)	-2(1)	-2(1)
C(12)	22(2)	25(2)	22(2)	2(2)	2(2)	-2(2)
C(13)	20(2)	18(2)	12(2)	2(1)	-3(1)	-1(1)
C(14)	27(2)	18(2)	19(2)	0(1)	-5(2)	-2(2)
C(15)	24(2)	29(2)	23(2)	-2(2)	-5(2)	3(2)
C(16)	32(2)	24(2)	24(2)	-4(2)	-8(2)	7(2)
C(17)	35(2)	18(2)	21(2)	-1(2)	-9(2)	-1(2)
C(18)	23(2)	21(2)	20(2)	1(2)	-4(2)	-4(2)
C(19)	17(2)	19(2)	19(2)	-1(2)	-4(2)	-6(1)
C(20)	21(2)	30(2)	20(2)	-1(2)	-2(2)	-1(2)
C(21)	23(2)	31(2)	24(2)	7(2)	-2(2)	-1(2)
C(22)	19(2)	25(2)	30(2)	1(2)	-1(2)	-4(2)
C(23)	24(2)	26(2)	26(2)	-5(2)	6(2)	-4(2)
C(24)	22(2)	23(2)	20(2)	0(2)	-1(2)	-5(2)
C(25)	29(2)	29(2)	42(2)	6(2)	7(2)	3(2)
N(1)	21(2)	18(1)	16(1)	2(1)	-2(1)	-2(1)
N(2)	20(2)	16(1)	17(1)	2(1)	-3(1)	-1(1)
O(1)	26(1)	22(1)	23(1)	4(1)	-2(1)	-6(1)
O(2)	29(1)	24(1)	18(1)	-5(1)	-1(1)	-4(1)
S (1)	21(1)	19(1)	16(1)	-1(1)	-1(1)	-3(1)

Table S9. Anisotropic displacement parameters (Å²x 10³) for **28**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

	Х	У	Z	U(eq)
H(1)	5558	4624	2675	22
H(2A)	6627	6163	3318	23
H(2B)	5088	5710	3621	23
H(5)	7353	7635	4454	25
H(6)	8654	8341	5410	29
H(7)	9547	7196	6298	27
H(8)	9214	5277	6238	25
H(11)	5570	2974	4473	20
H(12A)	8539	4362	3122	35
H(12B)	7991	4980	2425	35
H(12C)	7827	3671	2489	35
H(14)	9355	3153	3919	26
H(15)	10972	1665	3850	30
H(16)	10123	-129	4065	32
H(17)	7623	-421	4311	30
H(18)	5991	1064	4344	25
H(20)	3037	4480	2214	28
H(21)	1604	6074	2297	31
H(23)	918	5472	4364	30
H(24)	2458	3943	4307	26
H(25A)	-772	6802	3560	50
H(25B)	140	7322	2919	50
H(25C)	688	7507	3712	50
H(2)	8053	3663	5358	21

Table S10.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **28**.

Figure S2. X-ray crystal structure of 28 with 50% probability ellipsoids.

Quantum chemical calculations

The energies of cis and trans isomers of compounds 14 and 28 were calculated using the using the m062x basis set (1) within Gaussian09 (2). The X-ray structures of each were subjected to optimization within the QM package followed by heat of formation calculations in *vacuo* and in THF using the default solvation model in Gaussian. To check the energetics of the X-ray structures, each structure was also minimized using the default MMFF94 forcefield in MOE (3) and resubmitted to Gaussian for energy calculations. The resulting heats of formation were identical, indicating the optimization procedure within the QM calculations had allowed the X-ray and molecular mechanics minimized conformations to settle into the same minimum energy conformation. The chirality of the 3-aryl groups was then switched to generate a *trans*-1,3-disubstitution on the piperidine ring, followed by minimization in MOE to relieve any steric contacts. Heats of formation were then calculated on the QM-optimized versions of these isomers in vacuo and THF. Results are shown in Table S1. The cis-cyclopropyl analog 14 proved to be 3.6 - 4 kcal/mol more stable than the *trans* version, both *in vacuo* and in THF, consistent with the NMR and X-ray structure findings. The *cis*-tolyl analog 28 showed the *cis* and *trans* isomers to be essentially equienergetic. A steric contact between the SO2 oxygens and the pendant 3-aryl ring in the *trans* version of 28 was offset by an aryl-aryl stacking stabilization produced by the QM geometry optimization algorithm, coupled with a slight change in the sulfonyl nitrogen hybridization.

Conformer	Energy, kcal/mol			
	Compound 14		Comp	ound 28
	In vacuo	In THF	In vacuo	In THF
cis-3-aryl, Xray	-1019606.426		-1019497.471	
<i>cis</i> -3-aryl, Xray, minimized in MOE	-1019606.426	-1019615.467	-1019497.471	-1019506.201
<i>trans</i> -3-aryl, minimized in MOE	-1019602.401	-1019611.895	-1019498.689	-1019506.869
Δ cis-trans	4.02	3.57	-1.22	-0.67

Table S11. Energetics of cis and trans isomers of compounds 14 and 28 after QM geometry optimization

Figure S3. Conformations of Xray and QM-optimized structures used in the energy calculations

(1) Y. Zhao and D. G. Truhlar, "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals," *Theor. Chem. Acc.*, 120 (2008) 215-41.

(2) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian* 09 (Gaussian, Inc., Wallingford CT, 2009).

(3) Version 2018.0101, available from Chemical Computing Group (http://www.chemcomp.com), was used for the modeling and minimizations.

S51

Parameter	Value
Data File Name	Z:/ marzen400/ data/ luos17/ nmr/ 71465-148/ 13/ ser
Sample ID	71465-148
Origin	Bruker BioSpin GmbH
Owner	chemnmr
Solvent	CDCI3
Pulse Sequence	noesygpphpp
Acquisition Date	2016-08-31T20:18:05
Temperature	300.0
Number of Scans	64
Spectrometer Frequency	(400.33, 400.33)
Spectral Width	(3731.3, 3731.3)
Lowest Frequency	(-42.4, -42.4)
Nucleus	(1H, 1H)
Acquired Size	(1024, 200)
Spectral Size	(1024, 1024)
Digital Resolution	(3.64, 3.64)

NOE observed between H14 and H15

11b

S57

f1 (ppm)

11b

Sequence	cosygpmfqf
er of Scans	4
Width	7.7500
uration Frequency	
ition Date	2016-08-05T17:24:00
ometer Frequency	(500.26, 500.26)
al Width	(6329.1, 6329.1)
t Frequency	(-373.1, -373.1)
ls	(1H, 1H)
ed Size	(1024, 256)
al Size	(1024, 1024)

Value

	Parameter	Value
1	Data File Name	81872499/ 13/ ser
2	Origin	Bruker BioSpin GmbH
3	Owner	smapchemist
4	Solvent	DMSO
5	Pulse Sequence	cosygpmfqf
6	Number of Scans	4
7	Pulse Width	7.7500
8	Presaturation Frequency	
9	Acquisition Date	2016-08-19T20:51:00
10	Spectrometer Frequency	(500.26, 500.26)
11	Spectral Width	(6329.1, 6329.1)
12	Lowest Frequency	(-408.8, -408.8)
13	Nucleus	(1H, 1H)
14	Acquired Size	(1024, 256)
15	Spectral Size	(1024, 1024)

	Parameter	Value
1	Data File Name	81872499/ 15/ ser
2	Origin	Bruker BioSpin GmbH
3	Owner	smapchemist
4	Solvent	DMSO
5	Pulse Sequence	hmbcgplpndqf
6	Number of Scans	16
7	Pulse Width	7.7500
8	Presaturation Frequency	
9	Acquisition Date	2016-08-19T21:33:00
10	Spectrometer Frequency	(500.26, 125.80)
11	Spectral Width	(6329.1, 30120.5)
12	Lowest Frequency	(-408.8, -1226.6)
13	Nucleus	(1H, 13C)
14	Acquired Size	(512, 256)
15	Spectral Size	(512, 512)

	Parameter	Value
1	Data File Name	81872499/ 16/ ser
2	Origin	Bruker BioSpin GmbH
3	Owner	smapchemist
4	Solvent	DMSO
5	Pulse Sequence	roesyphpp.2
6	Number of Scans	16
7	Pulse Width	7.7500
8	Presaturation Frequency	
9	Acquisition Date	2016-08-19T22:56:00
0	Spectrometer Frequency	(500.26, 500.26)
11	Spectral Width	(6329.1, 6329.1)
12	Lowest Frequency	(-408.8, -408.8)
13	Nucleus	(1H, 1H)
14	Acquired Size	(1024, 256)
15	Spectral Size	(1024, 1024)

