Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

An Easily Accessible Isospiropyran Switch

Taylor A. Neal,^[a] Jennifer F. Neal,^[a] Allyson B. Eippert,^[a] Curtis Moore,^[a] Heather C. Allen,^[a] Jovica D. Badjić*^[a]

^[a]Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus Ohio 43210 (USA) E-mail: badjic.1@osu.edu

SUPPORTING INFORMATION

Table of Contents

1.	General Information	S3
2.	Synthesis and Characterization	S3-S4
3.	Spectroscopic and Spectrometric data	.S5-S20
4.	Crystallographic Data	.S21-S26

General Information

All chemicals were purchased from commercial sources and used as received unless stated otherwise. All solvents were dried prior to use according to standard literature procedures. Chromatographic purifications were performed with silica gel 60 (SiO₂, Sorbent Technologies 40-75µm, 200 x 400 mesh). Thin-layer chromatography (TLC) was performed on silica-gel plate w/UV254 (200 µm). Chromatograms were visualized by UV-light or stained with I₂ in SiO₂. All NMR samples were contained in class B glass NMR tubes (Wilmad Lab Glass). NMR experiments were performed with Bruker 600 and 700 MHz spectrometers. Chemical shifts are expressed in parts per million (δ , ppm) while coupling constant values (*J*) are given in Hertz (Hz). Residual solvent protons were used as internal standards: for ¹H NMR spectra CDCl₃ = 7.26 ppm and (CD₃)₂SO = 2.50 ppm, while for ¹³C NMR spectra CDCl₃ = 77.16 ppm and (CD₃)₂SO = 39.52 ppm; CDCl₃ and (CD₃)₂SO were purchased from Cambridge Isotope Laboratories. HRMS was measured on a Bruker ESI-TOF instrument. UV-vis experiments were performed with a Perkin Elmer Lambda 950 UV-vis spectrometer. All UV-vis samples were contained in Starna Cells Inc. UV quartz windows with a useable range of 170-2700 nm.

Synthetic Procedures

Isospiropyran 1: To a 100 mL round-bottom flask under an atmosphere of nitrogen, was added 5'bromo-2'-hydroxyacetophenone (1.6 g, 7.4 mmol) and 30 mL of anhydrous ethanol. To the resulting solution was added SiCl₄ (4.2 mL, 36.6 mmol) dropwise with stirring over the course of 5 minutes, which was accompanied by a temporary inconsequential warming of the reaction mixture. During the addition, the solution gradually transitioned from colorless to dark red. After the addition, the reaction mixture was allowed to stir at room temperature overnight. The system was then diluted with 30 mL of CH_2Cl_2 and washed with 30 mL of cold water. The aqueous layer was further extracted with 2 x 30 mL CH₂Cl₂. The combined organic layers were then washed once with saturated NaHCO₃ (aq) and once with brine before being dried over Na₂SO₄. After vacuum filtration, the solvent was removed under reduced pressure to provide the crude product mixture. The crude mixture was then re-dissolved in minimal acetonitrile and stirred vigorously to induce the precipitation of 1.0 g (69%) of compound 1 as a light blue solid. M.p. decomposing at higher (rapid at >100 °C) temperatures. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.790 (1H, d; J = 2.4 Hz), 7.523 (1H, d; J = 2.4 Hz), 7.499 (1H, dd; J = 8.4 Hz, J = 2.4 Hz), 7.370 (1H, dd; J = 9.0 Hz, J = 2.4 Hz), 7.360 (1H, d; J = 2.4 Hz), 7.286 (1H, dd; J = 8.4 Hz, J = 2.4 Hz), 7.076 (1H, d; J = 9.0 Hz), 6.833 (1H, d; J = 8.4 Hz), 6.645 (1H, d; J = 8.4 Hz), 6.561 (1H, s), 5.784 (1H, s), 5.545 (1H, d; J = 1.8 Hz), 2.117 (3H, d; J = 1.8 Hz). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 153.6, 149.9, 148.2, 146.5, 134.2, 133.2, 132.9, 132.3, 130.8, 128.3, 126.7, 125.0, 124.2, 123.6, 120.8, 119.4, 118.5, 118.3, 117.4, 113.8, 112.7, 102.8, 72.2, 18.1. HRMS (ESI): m/z calcd for $C_{24}H_{15}O_{3}Br_{3}$ 588.8644 [M + H]⁺, found 588.8643. For 2D NMR characterization of isospiropyran 1, see Figures S4-S8. For X-ray characterization of 1, see Figure 2C.

Additional Notes Pertaining to the Preparation Isospiropyran 1: The induced precipitation from acetonitrile seemed to work best when the reaction was worked up sooner rather than later after stirring overnight, despite no apparent change in the crude ¹H NMR spectra. If the homogenous acetonitrile solution does not lead to precipitation, we found that the subsequent addition of an equal volume of hexanes with vigorous stirring could sometimes induce a slower but equally pure appearance of the desired solid. Any product remaining in the filtrate could also be isolated via column chromatography (SiO₂, hexanes:ethyl acetate = 4:1).

Compound 1a: By adding one molar equivalent of CH₃SO₃H to a 60 mM solution of **1** in CDCl₃, compound **1a** become the dominant species. M.p. decomposing at higher (rapid at >100 °C) temperatures. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.963 (1H, br s), 8.429 (1H, d; J = 2.4 Hz), 8.200 (1H, dd; J = 9.0 Hz, J = 2.4 Hz), 8.125 (1H, d; J = 2.4 Hz), 7.955 (1H, d; J = 9.0 Hz), 7.543 (1H, dd; J = 9.0 Hz, J = 1.8 Hz), 7.307 (1H, d; J = 8.4 Hz), 7.232 (1H, dd; J = 8.4 Hz, J = 2.4 Hz), 7.189 (1H, d; J = 9.0 Hz), 7.132 (1H, br s), 6.700 (1H, d; J = 2.4 Hz), 2.522 (3H, br s). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 169.5, 163.7, 163.3, 162.2, 155.5, 154.0, 142.4, 140.9, 133.6, 130.9, 129.5, 128.7, 128.1, 124.0, 123.6, 122.1, 121.9, 121.1, 120.9, 119.0, 115.8, 113.0, 111.0, 28.1. HRMS (ESI): *m/z* calcd for C₂₄H₁₅O₃Br₃ 588.8644 [M + H]⁺, found 588.8645. For 2D NMR characterization of **1a**, see Figures S11-S13. For X-ray characterization of **1a**, see Figure 4.

Compound 5: As described in the main text, heating a d_6 -DMSO solution of **1** at 65 °C led to the formation of **5**. So far, we have been unable to isolate this compound in a pure form. ¹H NMR (600 MHz, d_6 -DMSO): δ (ppm) 10.362 (1H, s), 9.713 (1H, s), 7.992 (1H, d; J = 2.4 Hz), 7.635 (1H, d; J = 2.4 Hz), 7.481 (1H, dd; J = 8.4 Hz, J = 2.4 Hz), 7.345 (1H, dd; J = 8.4 Hz, J = 2.4 Hz), 7.280 (1H, dd; J = 8.4 Hz, J = 2.4 Hz), 7.235 (1H, d; J = 2.4 Hz), 7.220 (1H, d; J = 8.4 Hz), 7.073 (1H, br s), 6.886 (1H, d; J = 8.4 Hz), 6.817 (1H, d; J = 8.4 Hz), 6.565 (1H, br s), 5.581 (1H, m), 5.540 (1H, d; J = 1.8 Hz). HRMS (ESI): m/z calcd for C₂₄H₁₅O₃Br₃ 588.8644 [M + H]⁺, found 588.8579. For 2D NMR characterization of **5**, see Figures S17-S18.

Figure S1. Top: full HRMS-ESI spectrum of isospiropyran 1. Second: a view of the $[M+H]^+$ and $[M+Na]^+$ peaks observed for 1. Identical peak-patterns were observed for compounds 1_a (third) and 5 (bottom).

Figure S2. ¹H NMR spectrum (600 MHz, 298 K) of isospiropyran 1 in CDCl₃.

Figure S3. ¹³C NMR spectrum (150 MHz, 298 K) of isospiropyran 1 in CDCl₃.

Figure S4. ¹H-¹H COSY NMR (600 MHz, 298 K) spectrum of isospiropyran 1 in CDCl₃.

Figure S5. ¹H-¹H NOESY NMR (600 MHz, 298 K) spectrum of isospiropyran 1 in CDCl₃. Energyminimized structure (DFT; B3LYP: $6-311+G^{**}$) of 1 with interatomic distances.

Figure S6. Two different regions of ¹H-¹³C HSQC NMR (600 MHz, 298 K) spectrum of isospiropyran **1** in CDCl₃.

Figure S7. Four different regions of ¹H-¹³C HMBC NMR (600 MHz, 298 K) spectrum of isospiropyran **1** in CDCl₃.

Figure S8. Three different regions of ¹³C-¹³C INADEQUATE NMR (700 MHz, 298 K) spectrum of isospiropyran **1** in CDCl₃.

Figure S9. ¹H NMR spectrum (600 MHz, 298 K) of compound 1_a in CDCl₃. The resonance at 2.97 ppm is from the mesylate counterion.

Figure S10. ¹³C NMR spectrum (150 MHz, 298 K) of compound 1_a in CDCl₃. The resonance at 39.65 ppm is from the mesylate counterion.

Figure S11. ¹H-¹H COSY NMR (600 MHz, 298 K) spectrum of compound 1_a in CDCl₃.

Figure S12. Two different regions of ¹H-¹³C HSQC NMR (600 MHz, 298 K) spectrum of compound 1_a in CDCl₃.

Figure S13. Four different regions of ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC NMR (600 MHz, 298 K) spectrum of compound $\mathbf{1}_{a}$ in CDCl₃.

Figure S14. Partial ¹H spectra (600 MHz, 338 K) of isospiropyran **1** in d_6 -DMSO at 65 °C. Spectra were taken at 10-minute intervals for 280 minutes.

Figure S15. ¹H NMR (600 MHz, 298 K) spectrum of isospiropyran 1 in d_6 -DMSO after 5 hours at 65 °C. Only resonances from compound 5 are integrated. A residual acetonitrile resonance appears at 2.10 ppm.

Figure S16. ¹³C NMR (600 MHz, 298 K) spectrum of isospiropyran 1 in d_6 -DMSO after 5 hours at 65 °C. Two residual resonances from acetonitrile appear at 116.6 ppm and 1.9 ppm, while two resonances from sp³ hybridized carbons in 1 are shown with stars.

Figure S17. Partial ¹H-¹H COSY NMR (600 MHz, 338 K) spectrum of **1** in d_6 -DMSO held at 65 °C for 5 hours. The cross-signals from compound **5** are labeled.

Figure S18. Partial ¹H-¹³C HSQC NMR spectrum (600 MHz, 338 K) of **1** in d_6 -DMSO after 5 hours at 65 °C. Only cross-signals from compound **5** are labeled. The cross peaks from diastereotopic and germinal \mathbf{H}_N - \mathbf{H}_O protons of compound **5** are shown.

Figure S19. UV-Vis spectra of 1 (bottom) and 1_a (top), obtained after incremental additions of CH₃SO₃H to 0.1 mM CHCl₃ solution of 1 at room temperature.

Crystallographic Data

 Table S1. Crystal data and structure refinement for isospiropyran 1.

	b = 8.8470(4) Å	β= 90.994(2)°.
	c = 23.5375(11) Å	$\gamma = 90^{\circ}$.
Volume	2451.8(2) Å ³	
Z	4	
Density (calculated)	1.759 Mg/m ³	
Absorption coefficient	4.968 mm ⁻¹	
F(000)	1280	
Crystal size	0.168 x 0.086 x 0.074 mm ³	
Crystal color, habit	Redish Orange Rod	
Theta range for data collection	2.880 to 26.384°.	
Index ranges	-14<=h<=14, -11<=k<=11, -29<=l<=29	
Reflections collected	30295	
Independent reflections	5015 [R(int) = 0.0274, R(sigma	a) = 0.0198]
Completeness to theta = 25.000°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.0932 and 0.0632	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5015 / 0 / 311	
Goodness-of-fit on F ²	1.025	
Final R indices [I>2sigma(I)]	R1 = 0.0285, wR2 = 0.0643	
R indices (all data)	R1 = 0.0404, WR2 = 0.0690	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.685 and -0.694 e.Å ⁻³	

 Table S2. Crystal data and structure refinement for compound 4.

Report date	2019-05-13	
Identification code	TN_2BrHCl	
Empirical formula	C16 H11 Br2 Cl O2	
Molecular formula	C16 H11 Br2 O2, Cl	
Formula weight	430.52	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.6085(8) Å	α= 74.183(3)°.
	b = 9.1123(8) Å	β= 80.293(3)°.
	c = 10.0471(10) Å	$\gamma = 85.184(3)^{\circ}$.
Volume	746.83(12) Å ³	
Ζ	2	
Density (calculated)	1.914 Mg/m ³	
	S23	

Absorption coefficient	5.606 mm ⁻¹	
F(000)	420	
Crystal size	0.152 x 0.144 x 0.088 mm ³	
Crystal color, habit	Light Yellow Block	
Theta range for data collection	3.276 to 26.404°.	
Index ranges	-10<=h<=10, -11<=k<=11, -12<=l<=12	
Reflections collected	45442	
Independent reflections	3058 [R(int) = 0.0424, R(sigma) = 0.0239]	
Completeness to theta = 25.000°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.093175 and 0.060453	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3058 / 0 / 192	
Goodness-of-fit on F ²	1.038	
Final R indices [I>2sigma(I)]	R1 = 0.0217, wR2 = 0.0468	
R indices (all data)	R1 = 0.0292, wR2 = 0.0491	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.404 and -0.331 e.Å ⁻³	

 Table S3. Crystal data and structure refinement for compound 1a.

Report date	2019-05-13	
Identification code	TN_OpenClosed	
Empirical formula	C49 H34 Br6 O9 S	
Molecular formula	C24 H15 Br3 O3, C24 H16 Br3 O3, C H3 O3 S	
Formula weight	1278.28	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.4092(9) Å	α= 109.501(2)°.
	b = 14.1314(10) Å	β= 99.298(3)°.
	c = 15.9669(12) Å	γ = 101.718(2)°.
Volume	2301.5(3) Å ³	
Z	2	
Density (calculated)	1.845 Mg/m ³	
Absorption coefficient	5.336 mm ⁻¹	
	S25	

F(000)	1252
Crystal size	0.105 x 0.093 x 0.017 mm ³
Crystal color, habit	Dark Red Plate
Theta range for data collection	2.780 to 26.391°.
Index ranges	-14<=h<=14, -17<=k<=17, -19<=l<=19
Reflections collected	62357
Independent reflections	9395 [R(int) = 0.0460, R(sigma) = 0.0318]
Completeness to theta = 25.000°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.0932 and 0.0598
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9395 / 0 / 592
Goodness-of-fit on F ²	1.020
Final R indices [I>2sigma(I)]	R1 = 0.0386, wR2 = 0.0939
R indices (all data)	R1 = 0.0572, wR2 = 0.1028
Extinction coefficient	n/a
Largest diff. peak and hole	1.127 and -1.076 e.Å ⁻³