Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Synthesis of benzoazepine derivatives via Rh(III)-catalyzed inert C(sp²)-H

functionalization and [4 + 3] annulation

Yuanshuang Xu, Linghua Zhang, Mengyang Liu, Xiaopeng Zhang, Xinying Zhang,* and Xuesen Fan*

Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green

Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province

for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan

Normal University, Xinxiang, Henan 453007, China

E-mail: xinyingzhang@htu.cn; xuesen.fan@htu.cn

Ι	General experimental information	S2
Π	Experimental procedures and spectroscopic data	S3-S17
III	Mechanism studies	S18-S20
IV	Copies of NMR spectra of 3a-3kk	S21-S66
V	Copies of NMR spectra of 5 and 6	S67-S68
VI	X-ray crystal structures and data of 3g , 3k , 3bb and 5	S69-S76
VII	References	S77

Table of Contents

I. General experimental information

Commercial reagents were used without further purification. 2-Arylimidazoles (1),^[1,2,3] methyleneoxetanones (2),^[4,5] and [RhCp*Cl₂]₂^[6] were prepared based on literature procedures. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. Chemical shifts were expressed in parts per million (δ), and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet), br s (broad singlet), etc. The coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were obtained *via* ESI mode by using a MicrOTOF mass spectrometer. All reactions were monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

II. Experimental procedures and spectroscopic data

1. Typical procedure for the synthesis of 3a and spectroscopic data of 3a-3kk

To a reaction tube equipped with a stir bar were added 2-phenyl-1*H*-imidazole (**1a**, 43.3 mg, 0.3 mmol), DCM (3 mL), 3-methylene-4-phenethyloxetan-2-one (**2a**, 84.7 mg, 0.45 mmol), [RhCp*Cl₂]₂ (4.7 mg, 0.0075 mmol) and AgOAc (100.1 mg, 0.6 mmol) with stirring. The mixture was stirred at 100 °C for 10 h under air. Upon completion, the resulting mixture was cooled to room temperature, filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using DCM/CH₃OH/HOAc (30:1:0.1) as eluent to afford **3a** in a yield of 73%. **3b-3kk** were obtained in a similar manner.

5-Phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3a)

White solid (72.4 mg, 73%), mp: 250-252 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.78-1.87 (m, 2H), 2.18-2.23 (m, 1H), 2.41-2.46 (m, 1H), 5.62 (t, J = 6.6 Hz, 1H), 6.96 (d, J = 7.2 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 7.17-7.18 (m, 3H), 7.45-7.48 (m, 2H), 7.54 (t, J = 7.8 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.87 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 13.28 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.2, 34.4, 54.7, 124.0, 126.4, 128.4, 128.8, 128.9, 129.6, 130.3, 130.48, 130.51, 132.7, 133.4, 139.6, 140.8, 144.3, 167.3. HRMS calcd for C₂₁H₁₇N₂O₂: 329.1296 [M–H]⁻, found: 329.1296.

9-Methyl-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3b)

White solid (70.3 mg, 68%), mp: 306-308 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.73-1.85 (m, 2H), 2.15-2.19 (m, 1H), 2.36 (s, 3H), 2.39-2.44 (m, 1H), 5.55-5.57 (m, 1H), 6.95 (d, *J* = 7.2 Hz, 2H), 7.10-7.12 (m, 2H), 7.18 (t, *J* = 7.8 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.39-7.41 (m, 2H), 7.78 (s, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 13.13 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 21.0, 32.2, 34.4, 54.6, 123.8, 126.4, 128.0, 128.4, 128.8, 129.4, 130.3, 131.3, 132.9, 133.1, 138.5, 139.8, 140.8, 144.4, 167.3. HRMS calcd for C₂₂H₁₉N₂O₂: 343.1452 [M–H]⁻, found: 343.1450.

9-(*tert*-Butyl)-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3c)

White solid (77.7 mg, 67%), mp: 287-289 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.33 (s, 9H), 1.75-1.85 (m, 2H), 2.16-2.21 (m, 1H), 2.39-2.44 (m, 1H), 5.54-5.57 (m, 1H), 6.97 (d, *J* = 7.2 Hz, 2H), 7.10-7.13 (m, 2H), 7.19 (t, *J* = 7.2 Hz, 2H), 7.38 (s, 1H), 7.56 (dd, *J*₁ = 7.8 Hz, *J*₂= 1.8 Hz, 1H), 7.61 (d, *J* = 1.8 Hz, 1H), 7.87 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 13.09 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 31.4, 32.2, 34.4, 34.9, 54.6, 123.8, 126.5, 127.6, 128.0, 128.5, 128.7, 128.8, 129.4, 129.5, 130.1, 132.7, 140.3, 140.8, 144.3, 151.5, 167.4. HRMS calcd for C₂₅H₂₅N₂O₂: 385.1922 [M–H]⁻, 385.1920.

9-Methoxy-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3d)

White solid (68.1 mg, 63%), mp: 229-231 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.77-1.85 (m, 2H), 2.17-2.22 (m, 1H), 2.41-2.46 (m, 1H), 3.84 (s, 3H), 5.55-5.58 (m, 1H), 6.96 (d, *J* = 7.2 Hz, 2H), 7.11-7.13 (m, 3H), 7.19 (t, *J* = 7.2 Hz, 2H), 7.22 (d, *J* = 1.8 Hz, 1H), 7.39 (s, 1H), 7.84 (s, 1H), 8.05 (d, *J* = 9.0 Hz, 1H), 13.24 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.2, 34.2, 54.6, 55.9, 116.4, 117.1, 123.1, 123.5, 126.4, 128.4, 128.7, 128.8, 130.5, 132.0, 133.4, 139.7, 140.8, 144.2, 159.6, 167.3. HRMS calcd for C₂₂H₁₉N₂O₃: 359.1401 [M–H]⁻, found: 359.1401.

9-Fluoro-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3e)

White solid (57.5 mg, 55%), mp: 239-240 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 1.76-1.90 (m, 2H), 2.19-2.24 (m, 1H), 2.42-2.48 (m, 1H), 5.61-5.64 (m, 1H), 6.97 (d, *J* = 7.2 Hz, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 7.17-7.21 (m, 3H), 7.40 (td, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 7.45 (s, 1H), 7.56 (dd, *J*₁ = 9.6 Hz, *J*₂ = 2.4 Hz, 1H), 7.86 (s, 1H), 8.17-8.20 (m, 1H), 13.38 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 32.2, 34.4, 54.6, 117.6 (d, ²*J*_{C-F} = 21.5 Hz), 118.4 (d, ²*J*_{C-F} = 23.6 Hz), 124.0, 126.4, 127.2 (d, ⁴*J*_{C-F} = 2.6 Hz), 128.4, 128.8, 129.6, 131.3 (d, ³*J*_{C-F} = 8.0 Hz), 132.6 (d, ³*J*_{C-F} = 9.3 Hz), 134.6, 138.4, 140.7, 143.6, 162.0 (d, ¹*J*_{C-F} = 244.5 Hz), 167.1. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ : -113.43. HRMS calcd for C₂₁H₁₆FN₂O₂: 347.1207 [M-H]⁻, found: 347.1197.

9-Chloro-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3f)

White solid (69.0 mg, 63%), mp: 270-271 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.73-1.87 (m, 2H), 2.14-2.21 (m, 1H), 2.39-2.47 (m, 1H), 5.58-5.62 (m, 1H), 6.96 (d, *J* = 7.2 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 7.17-7.21 (m, 3H), 7.47 (s, 1H), 7.57 (d, *J* = 6.4 Hz, 1H), 7.77 (d, *J* = 2.0 Hz, 1H), 7.82 (s, 1H), 8.12 (d, *J* = 6.0 Hz, 1H), 13.24 (br s, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 30.6, 31.2, 57.8, 119.0, 120.4, 124.0, 126.6, 127.5, 128.4, 127.9, 131.6, 132.2, 132.8, 132.9, 137.9, 140.7, 140.8, 141.5, 169.0. HRMS calcd for C₂₁H₁₆ClN₂O₂: 363.0906 [M–H]⁻, found: 363.0904.

9-Bromo-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3g)

White solid (83.5 mg, 68%), mp: 292-293 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.74-1.88 (m, 2H), 2.14-2.22 (m, 1H), 2.39-2.47 (m, 1H), 5.57-5.61 (m, 1H), 6.97 (d, *J* = 7.2 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 7.17-7.21 (m, 3H), 7.46 (s, 1H), 7.70 (dd, *J*₁ = 8.4 Hz, *J*₂= 2.0 Hz, 1H), 7.82 (s, 1H), 7.90 (d, *J* = 2.0 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 13.26 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.1, 34.6, 54.7, 121.8, 124.4, 126.5, 128.4, 128.8, 129.6, 129.9, 130.7, 132.4, 133.0, 134.5, 134.8, 138.3, 140.7, 143.5, 167.1. HRMS calcd for C₂₁H₁₆BrN₂O₂: 407.0401 [M–H]⁻, found: 407.0397.

5-Phenethyl-9-(trifluoromethyl)-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3h)

White solid (61.0 mg, 51%), mp: 265-267 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.75-1.78 (m, 1H), 1.85-1.89 (m, 1H), 2.18-2.21 (m, 1H), 2.42-2.47 (m, 1H), 5.64-5.66 (m, 1H), 6.97 (d, J = 7.2 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 7.19 (t, J = 7.2 Hz, 2H), 7.24 (s, 1H), 7.54 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.96 (s, 1H), 8.07 (s, 1H), 8.33 (d, J = 7.8 Hz, 1H), 13.33 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.1, 34.8, 54.9, 124.3 (q, ¹ $J_{C-F} = 270.9$ Hz), 125.0, 126.5, 128.4, 128.8, 128.9 (q, ² $J_{C-F} = 29.6$ Hz), 129.7, 130.4, 131.0, 133.8, 134.8, 138.3, 140.6, 143.1, 167.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ: -61.19. HRMS calcd for C₂₂H₁₆F₃N₂O₂: 397.1169 [M-H]⁻, found: 397.1169.

10-Methyl-5-phenethyl-5H-benzo[c]imidazo[1,2-a]azepine-6-carboxylic acid (3i)

White solid (48.6 mg, 47%), mp: 291-292 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.76-1.86 (m, 2H), 2.17-2.24 (m, 1H), 2.37-2.44 (m, 4H), 5.57 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 2H), 7.10-7.13 (m, 2H), 7.19 (t, *J* = 7.2 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.41 (s, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.81 (s, 1H), 7.96 (s, 1H), 13.07 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 21.5, 32.2, 34.4, 54.7, 123.9, 126.4, 127.9, 128.4, 128.8, 129.2, 129.5, 129.8, 130.4, 132.8, 139.6, 140.2, 140.8, 144.3, 167.4. HRMS calcd for C₂₂H₁₉N₂O₂: 343.1452 [M-H]⁻, found: 343.1445.

10-Methoxy-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3j)

White solid (29.2 mg, 27%), mp: 230-232 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.77-1.84 (m, 2H), 2.16-2.24 (m, 1H), 2.37-2.45 (m, 1H), 3.87 (s, 3H), 5.55-5.59 (m, 1H), 6.97 (d, *J* = 7.2 Hz, 2H), 7.04 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.8 Hz, 1H), 7.10-7.14 (m, 2H), 7.19 (t, *J* = 7.2 Hz, 2H), 7.42 (s, 1H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.64 (d, *J* = 2.8 Hz, 1H), 7.80 (s, 1H), 12.95 (br s, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 30.5, 31.3, 55.2, 58.0, 114.2, 118.5, 120.1, 122.4, 123.9, 124.2, 126.5, 127.5, 127.7, 128.4, 135.7, 138.2, 141.9, 142.3, 169.7. HRMS calcd for C₂₂H₁₉N₂O₃: 359.1401 [M–H]⁻, found: 359.1402.

8-Methoxy-5-phenethyl-5H-benzo[c]imidazo[1,2-a]azepine-6-carboxylic acid (3j')

White solid (30.3 mg, 28%), mp: 259-261 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.78-1.87 (m, 2H), 2.15-2.23 (m, 1H), 2.39-2.47 (m, 1H), 3.92 (s, 3H), 5.58-5.62 (m, 1H), 6.96 (d, *J* = 6.8 Hz, 2H), 7.10-7.20 (m, 5H), 7.43 (d, *J* = 0.8 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 8.12 (s, 1H), 13.11 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.2, 33.7, 54.3, 56.6, 110.9, 119.4, 121.1, 123.9, 126.4, 128.4, 128.8, 129.5, 131.65, 131.69, 132.2, 133.5, 140.8, 144.0, 157.8, 167.4. HRMS calcd for C₂₂H₁₉N₂O₃: 359.1401 [M–H]⁻, found: 359.1401.

8-Fluoro-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3k)

White solid (65.8 mg, 63%), mp: 253-254 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.77-1.92 (m, 2H), 2.18-2.23 (m, 1H), 2.42-2.47 (m, 1H), 5.64-5.67 (m, 1H), 6.97 (d, *J* = 7.8 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 7.18-7.20 (m, 3H), 7.35 (t, J = 9.6 Hz, 1H), 7.49 (s, 1H), 7.57-7.60 (m, 1H), 7.93 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 13.38 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 32.1, 34.2, 54.6, 115.2 (d, ² $J_{C-F} = 22.7$ Hz), 118.7 (d, ² $J_{C-F} = 14.3$ Hz), 124.5, 124.8 (d, ⁴ $J_{C-F} = 3.3$ Hz), 126.5, 128.4, 128.8, 129.9, 130.2 (d, ³ $J_{C-F} = 9.3$ Hz), 132.17 (d, ³ $J_{C-F} = 9.6$ Hz), 132.20, 134.9, 140.7, 143.3 (d, ⁴ $J_{C-F} = 2.1$ Hz), 160.5 (d, ¹ $J_{C-F} = 248.7$ Hz), 166.9. ¹⁹F NMR (565 MHz, DMSO- d_6) δ : -113.75. HRMS calcd for C₂₁H₁₆FN₂O₂: 347.1201 [M–H]⁻, found: 347.1200.

5-Phenethyl-10-(trifluoromethyl)-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3l)

White solid (35.9 mg, 30%), mp >300 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.74-1.92 (m, 2H), 2.19-2.26 (m, 1H), 2.41-2.46 (m, 1H), 5.63-5.67 (m, 1H), 6.96 (d, *J* = 7.2 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 7.16-7.20 (m, 3H), 7.52 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.85-7.89 (m, 2H), 8.35 (s, 1H), 13.38 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 32.1, 34.8, 54.9, 124.3 (q, ¹*J*_{C-F} = 270.5 Hz), 124.8, 125.0 (q, ³*J*_{C-F} = 3.6 Hz), 125.1 (q, ³*J*_{C-F} = 2.9 Hz), 126.4, 128.4, 128.8, 130.0 (q, ²*J*_{C-F} = 32.1 Hz), 130.2, 131.0, 133.87, 133.91, 136.0, 137.8, 140.6, 143.1, 167.1. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ : -61.63. HRMS calcd for C₂₂H₁₆F₃N₂O₂: 397.1169 [M-H]⁻, found: 397.1168.

11-Fluoro-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3m)

White solid (63.8 mg, 61%), mp: 229-230 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.77-1.85 (m, 2H), 2.24-2.28 (m, 1H), 2.41-2.46 (m, 1H), 5.58-5.61 (m, 1H), 6.96 (d, J = 7.8 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 7.18-7.21 (m, 3H), 7.39-7.43 (m, 2H), 7.47-7.51 (m, 2H), 7.83 (s, 1H), 13.26 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.2, 33.4, 54.3, 118.1 (d, ²*J*_{C-F} = 22.8 Hz), 118.8 (d, ³*J*_{C-F} = 11.6 Hz), 123.3, 126.5, 128.0, 128.36, 128.39, 128.4, 128.9, 129.7 (d, ³*J*_{C-F} = 7.8 Hz), 130.2, 133.6, 135.7, 138.1 (d, ⁴*J*_{C-F} = 5.3 Hz), 138.4 (d, ²*J*_{C-F} = 14.9 Hz), 140.7, 159.7 (d, ¹*J*_{C-F} = 251.1 Hz), 166.9. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ: -110.76. HRMS calcd for C₂₁H₁₆FN₂O₂: 347.1201 [M-H]⁻, found: 347.1206.

5-Phenethyl-5*H*-imidazo[1,2-*a*]naphtho[1,2-*c*]azepine-6-carboxylic acid (3n)

Yellow solid (62.8 mg, 55%), mp: 151-153 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.76-1.80 (m, 2H), 2.26-2.31 (m, 1H), 2.42-2.47 (m, 1H), 5.69 (t, *J* = 7.8 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 2H), 7.04-7.10 (m, 3H), 7.30 (s, 1H), 7.47 (s, 1H), 7.59-7.64 (m, 2H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.94 (s, 1H), 7.97-7.99 (m, 2H), 8.99 (d, *J* = 8.4 Hz, 1H), 13.17 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.0, 32.3, 54.8, 122.9, 126.4, 127.4, 127.8, 128.0, 128.3, 128.35, 128.38, 128.4, 128.5, 128.8, 129.0, 129.1, 129.3, 129.4, 129.6, 129.7, 131.3, 134.1, 135.8, 139.5, 139.6, 140.8, 142.1, 166.9. HRMS calcd for C₂₅H₁₉N₂O₂: 379.1452 [M-H]⁻, found: 379.1450.

5-Phenethyl-5*H*-imidazo[1,2-*a*]pyrido[4,3-*c*]azepine-6-carboxylic acid (30)

White solid (41.8 mg, 42%), mp: 257-258 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.72-1.79 (m, 1H), 1.84-1.90 (m, 1H), 2.14-2.18 (m, 1H), 2.41-2.46 (m, 1H), 5.66-5.69 (m, 1H), 6.97 (d, *J* = 7.8 Hz, 2H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.19 (t, *J* = 7.2 Hz, 2H), 7.27 (s, 1H), 7.60 (s, 1H), 7.90 (s, 1H), 8.01 (d, *J* = 5.4 Hz, 1H), 8.62 (d, *J* = 4.8 Hz, 1H), 8.82 (s, 1H), 13.31 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.1, 35.3, 55.2, 121.3, 125.3, 125.7, 126.5, 128.4, 128.8, 130.8, 134.8, 136.4, 136.6, 140.6, 142.2, 150.5, 153.7, 167.0. HRMS calcd for C₂₀H₁₆N₃O₂: 330.1248 [M–H]⁻, found: 330.1241.

2-Methyl-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3p)

White solid (67.2 mg, 65%), mp: 164-166 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.73-1.81 (m, 2H), 2.18-2.25 (m, 4H), 2.40-2.47 (m, 1H), 5.48-5.52 (m, 1H), 6.95 (d, *J* = 7.2 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 7.16-7.20 (m, 3H), 7.44-7.53 (m, 2H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.82 (s, 1H), 8.06 (d, *J* = 6.8 Hz, 1H), 13.12 (br s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ: 13.8, 32.2, 34.4, 54.6, 120.8, 126.4, 128.4, 128.7, 128.8, 129.0, 129.9, 130.3, 130.5, 132.8, 133.2, 137.4, 139.5, 140.8, 143.1, 167.2. HRMS calcd for C₂₂H₁₉N₂O₂: 343.1452 [M–H]⁻, found: 343.1447.

5-Phenethyl-2-phenyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3q)

White solid (85.4 mg, 70%), mp: 220-221 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 1.82-1.91 (m, 2H), 2.24-2.31 (m, 1H), 2.45-2.49 (m, 1H), 5.62-5.66 (m, 1H), 6.96-6.98 (m, 2H), 7.09-7.13 (m, 1H), 7.16-7.20 (m, 2H), 7.25 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.50 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.57 (td, $J_1 =$ 7.6 Hz, $J_2 = 1.2$ Hz, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.86-7.89 (m, 3H), 7.95 (s, 1H), 8.24 (dd, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1H), 13.21 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 32.3, 34.4, 55.0, 120.4, 124.9, 126.5, 127.1, 128.4, 128.8, 129.03, 129.06, 129.1, 130.3, 130.4, 130.7, 132.8, 133.1, 134.6, 139.7, 140.7, 141.3, 144.5, 167.3. HRMS calcd for C₂₇H₂₁N₂O₂: 405.1609 [M–H]⁻, found: 405.1600.

5-Phenethyl-2-(p-tolyl)-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3r)

White solid (90.8 mg, 72%), mp: 261-262 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.81-1.90 (m, 2H), 2.23-2.36 (m, 4H), 2.44-2.48 (m, 1H), 5.59-5.63 (m, 1H), 6.96-6.98 (m, 2H), 7.09-7.12 (m, 1H), 7.16-7.22 (m, 4H), 7.49 (td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.56 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.87 (s, 1H), 7.88 (s, 1H), 8.22 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 13.17 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 21.3, 32.3, 34.4, 54.9, 119.9, 124.9, 126.5, 128.4, 128.8, 129.0, 129.1, 129.6, 130.3, 130.4, 130.6, 131.8, 132.8, 133.1, 136.2, 139.7, 140.7, 141.4, 144.3, 167.3. HRMS calcd for C₂₈H₂₃N₂O₂: 419.1765 [M–H]⁻, found: 419.1774.

2-(4-(*tert*-Butyl)phenyl)-5-phenethyl-5H-benzo[c]imidazo[1,2-a]azepine-6-carboxylic acid (3s)

White solid (101.3 mg, 73%), mp: 259-261 °C. ¹H NMR (600 MHz, DMSO- d_6) δ: 1.30 (s, 9H), 1.81-1.89 (m, 2H), 2.24-2.29 (m, 1H), 2.45-2.49 (m, 1H), 5.60-5.63 (m, 1H), 6.97 (d, J = 7.2 Hz, 2H), 7.11 (t, J = 6.6 Hz, 1H), 7.18 (t, J = 7.2 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.87 (s, 1H), 7.88 (s, 1H), 8.23 (d, J = 7.8 Hz, 1H), 13.17 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ: 31.7, 32.2, 34.4, 34.7, 54.9, 120.0, 124.7, 125.8, 126.5, 128.4, 128.8, 129.0, 129.1, 130.3, 130.4, 130.6, 131.8, 132.8, 133.1, 139.7, 140.7, 141.4, 144.4, 149.5, 167.3. HRMS calcd for C₃₁H₂₉N₂O₂: 461.2235 [M-H]⁻, found: 461.2239.

2-(4-Fluorophenyl)-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3t)

White solid (82.8 mg, 65%), mp: 225-226 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.84-1.91 (m, 2H), 2.26-2.33 (m, 1H), 2.46-2.52 (m, 1H), 5.64-5.68 (m, 1H), 6.97 (d, *J* = 6.8 Hz, 2H), 7.10-7.13 (m, 1H), 7.18 (t, *J* = 6.8 Hz, 2H), 7.26 (t, *J* = 8.8 Hz, 2H), 7.51 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 7.58 (td, *J*₁ = 7.2 Hz, *J*₂ = 1.2 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.90-7.95 (m, 4H), 8.26 (d, *J* = 7.6 Hz, 1H), 13.21 (br s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 32.3, 34.3, 55.0, 115.9 (d, ²*J*_{C-F} = 20.6 Hz), 120.1, 126.4, 126.8 (d, ³*J*_{C-F} = 8.1 Hz), 128.4, 128.8, 129.0, 129.1, 130.2, 130.4, 130.7, 131.1 (d, ⁴*J*_{C-F} = 2.7 Hz), 132.8, 133.1, 139.7, 140.4, 140.7, 144.6, 161.7 (d, ¹*J*_{C-F} = 242.1 Hz), 167.3. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ : -115.85. HRMS calcd for C₂₇H₂₀FN₂O₂: 423.1514 [M–H]⁻, found: 423.1520.

2-(4-Chlorophenyl)-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3u)

White solid (97.9 mg, 74%), mp: 250-252 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.80-1.91 (m, 2H), 2.24-2.31 (m, 1H), 2.45-2.49 (m, 1H), 5.61-5.65 (m, 1H), 6.96-6.98 (m, 2H), 7.09-7.12 (m, 1H), 7.16-7.19 (m, 2H), 7.45-7.47 (m, 2H), 7.50 (td, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.57 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.85-7.88 (m, 3H), 8.00 (s, 1H), 8.22 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 13.21 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 32.3, 34.3, 55.1, 120.8, 126.4, 126.6, 128.4, 128.8, 129.0, 129.1, 129.2, 130.1, 130.4, 130.7, 131.4, 132.8, 133.1, 133.5, 139.7, 140.1, 140.7, 144.7, 167.2. HRMS calcd for $C_{27}H_{20}CIN_2O_2$: 439.1219 [M–H]⁻, found: 439.1227.

2-(4-Bromophenyl)-5-phenethyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3v)

White solid (104.8 mg, 72%), mp: 239-240 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.82-1.91 (m, 2H), 2.24-2.32 (m, 1H), 2.45-2.49 (m, 1H), 5.62-5.66 (m, 1H), 6.97 (d, *J* = 7.2 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 6.8 Hz, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.55-7.61 (m, 3H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.89 (s, 1H), 8.01 (s, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 13.26 (br s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ: 32.3, 34.3, 55.1, 119.9, 120.8, 126.4, 126.9, 128.4, 128.8, 129.1, 129.2, 130.1, 130.4, 130.7, 132.0, 132.8, 133.2, 133.8, 139.6, 140.1, 140.7, 144.7, 167.3. HRMS calcd for C₂₇H₂₀BrN₂O₂: 483.0714 [M-H]⁻, found: 483.0723.

5-Butyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3w)

White solid (55.9 mg, 66%), mp: 259-261 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 0.69 (t, *J* = 7.2 Hz, 3H), 0.86-0.91 (m, 1H), 1.03-1.15 (m, 3H), 1.46-1.52 (m, 2H), 5.50 (t, *J* = 8.4 Hz, 1H), 7.11 (s, 1H), 7.44-7.46 (m, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.82 (s, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 13.14 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 14.1, 21.8, 28.3, 32.5, 54.9, 124.1, 128.76, 128.82, 128.9, 129.4, 129.5, 130.3, 130.4, 130.6, 132.70, 132.74, 133.5, 139.4, 139.5, 144.2, 167.4. HRMS calcd for C₁₇H₁₇N₂O₂: 281.1296 [M–H]⁻, found: 281.1301.

5-Pentyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3x)

White solid (60.5 mg, 68%), mp: 239-240 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 0.73 (t, *J* = 6.8 Hz, 3H), 0.90-0.95 (m, 1H), 1.00-1.09 (m, 5H), 1.46-1.51 (m, 2H), 5.51 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 0.4 Hz, 1H), 7.44-7.53 (m, 3H), 7.59-7.61 (m, 1H), 7.82 (s, 1H), 8.11-8.13 (m, 1H), 13.15 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 14.1, 22.2, 25.6, 30.7, 32.7, 54.9, 124.06, 124.10, 128.7, 128.8, 128.9, 129.4, 129.5, 130.3, 130.4, 130.6, 132.7, 133.5, 139.4, 139.5, 144.2, 167.3. HRMS calcd for C₁₈H₁₉N₂O₂: 295.1452 [M–H]⁻, found: 295.1452.

5-Hexyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3y)

White solid (62.4 mg, 67%), mp: 194-196 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 0.76 (t, *J* = 7.2 Hz, 3H), 0.89-0.91 (m, 1H), 1.04-1.14 (m, 7H), 1.46-1.50 (m, 2H), 5.50 (t, *J* = 7.8 Hz, 1H), 7.11 (s, 1H), 7.44-7.47 (m, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.81 (s, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 13.15 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 14.3, 22.2, 25.9, 28.2, 31.4, 32.7, 54.9, 124.0, 128.78, 128.84, 129.4, 130.2, 130.5, 130.6, 132.7, 133.6, 139.4, 144.2, 167.4. HRMS calcd for C₁₉H₂₁N₂O₂: 309.1609 [M–H]⁻, found: 309.1600.

5-Octyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3z)

White solid (67.0 mg, 66%), mp: 209-210 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 0.81 (t, *J* = 6.8 Hz, 3H), 0.90-0.91 (m, 1H), 1.06-1.20 (m, 11H), 1.46-1.49 (m, 2H), 5.50 (t, *J* = 7.6 Hz, 1H), 7.11 (s, 1H), 7.44-7.53 (m, 3H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.81 (s, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 13.15 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 14.4, 22.5, 25.9, 28.5, 28.8, 29.0, 31.6, 32.7, 54.9, 124.1, 128.8, 129.4, 129.5, 130.3, 130.4, 130.6, 132.7, 133.5, 139.4, 139.5, 144.2, 167.3. HRMS calcd for C₂₁H₂₅N₂O₂: 337.1922 [M–H]⁻, found: 337.1922.

5-Undecyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3aa)

White solid (74.2 mg, 65%), mp: 150-152 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 0.82-0.91 (m, 4H), 1.05-1.25 (m, 17H), 1.45-1.49 (m, 2H), 5.50 (t, *J* = 7.6 Hz, 1H), 7.10 (s, 1H), 7.43-7.52 (m, 3H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.81 (s, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 13.15 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 14.4, 22.5, 25.9, 28.5, 29.06, 29.14, 29.4, 31.7, 32.6, 54.9, 124.0, 128.7, 128.8, 129.4, 129.5, 130.2, 130.4, 130.6, 132.7, 133.5, 139.4, 139.5, 144.2, 167.3. HRMS calcd for C₂₄H₃₁N₂O₂: 379.2391 [M–H]⁻, found: 379.2391.

5-(1-(4-Isopropylphenyl)propan-2-yl)-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3bb)

White solid (71.9 mg, 62%), mp: 181-183 °C. ¹H NMR (600 MHz, DMSO- d_6) δ: 0.33 (d, J = 6.6 Hz, 1.5H), 0.63 (d, J = 6.6 Hz, 1.5H), 1.09-1.12 (m, 6H), 1.78-1.86 (m, 1H), 1.91-1.93 (m, 0.5H), 2.03-2.07 (m, 0.5H), 2.13-2.17 (m, 0.5H), 2.60-2.63 (m, 0.5H), 2.71-2.79 (m, 1H), 5.33-5.36 (m, 1H), 6.58 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 7.11 (s, 0.5H), 7.15 (s, 0.5H), 7.46-7.52 (m, 2H), 7.55-7.58 (m, 1H), 7.60 (d, J = 7.8 Hz, 0.5H), 7.67-7.69 (m, 0.5H), 7.88 (s, 0.5H), 7.95 (s, 0.5H), 8.07-8.09 (m, 0.5H), 8.17 (d, J = 7.8 Hz, 0.5H), 13.19 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ: 15.8, 16.1, 24.29, 24.31, 24.34, 33.37, 33.40, 38.3, 38.6, 38.7, 39.2, 59.6, 59.7, 124.6, 124.7, 126.6, 126.7, 128.6, 128.7, 128.8, 128.90, 128.93, 129.3, 129.5, 130.3, 130.6, 130.68,

130.74, 130.8, 132.3, 132.4, 133.2, 133.4, 137.2, 137.5, 139.3, 139.6, 146.4, 146.5, 167.7, 167.8. HRMS calcd for C₂₅H₂₅N₂O₂: 385.1922 [M–H]⁻, found: 385.1922.

5-Cyclopentyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3cc)

White solid (58.3 mg, 66%), mp: >300 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.01-1.05 (m, 1H), 1.12-1.18 (m, 1H), 1.24-1.43 (m, 4H), 1.52-1.58 (m, 2H), 2.04-2.10 (m, 1H), 5.31 (d, *J* = 10.8 Hz, 1H), 7.12 (s, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.50-7.53 (m, 2H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.88 (s, 1H), 8.13 (d, *J* = 7.2 Hz, 1H), 13.20 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 24.4, 24.9, 29.2, 30.1, 42.9, 58.8, 124.2, 128.78, 128.82, 129.2, 130.3, 130.6, 130.7, 132.7, 133.2, 139.5, 144.2, 167.8. HRMS calcd for C₁₈H₁₇N₂O₂: 293.1296 [M-H]⁻, found: 293.1293.

5-Benzyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3dd)

White solid (52.2 mg, 55%), mp: 261-262 °C. ¹H NMR (400 MHz, DMSO- d_6) δ: 2.72 (dd, $J_1 = 13.2$ Hz, $J_2 = 9.2$ Hz, 1H), 2.81 (dd, $J_1 = 13.2$ Hz, $J_2 = 6.4$ Hz, 1H), 5.70-5.74 (m, 1H), 6.82 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 2H), 6.93 (d, J = 0.8 Hz, 1H), 7.03 (d, J = 0.8 Hz, 1H), 7.12-7.19 (m, 3H), 7.51 (td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.58 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.88 (s, 1H), 8.20 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 13.04 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ: 38.6, 56.5, 123.8, 127.1, 128.7, 128.9, 129.0, 129.2, 130.47, 130.50, 130.9, 132.8, 136.9, 139.7, 144.3, 167.1. HRMS calcd for $C_{20}H_{15}N_2O_2$: 315.1139 [M–H]⁻, found: 315.1121.

5-(4-Cyanophenyl)-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3ee)

White solid (40.3 mg, 41%), mp: 180-181 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 6.90 (d, J = 8.0 Hz, 2H), 7.02 (s, 1H), 7.25 (d, J = 1.2 Hz, 1H), 7.36 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.43 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.53 (d, J = 6.8 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 1.2 Hz, 1H), 8.02-8.05 (m, 2H), 13.52 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 56.3, 110.9, 118.8, 124.5, 126.8, 128.8, 129.0, 130.2, 130.3, 130.7, 132.1, 132.8, 132.9, 141.5, 144.6, 145.1, 167.7. HRMS calcd for C₂₀H₁₂N₃O₂: 326.0935 [M-H]⁻, found: 326.0930.

9-Methyl-5-pentyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3ff)

White solid (56.8 mg, 61%), mp: 258-259 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 0.73 (t, *J* = 6.8 Hz, 3H), 0.88-0.92 (m, 1H), 1.02-1.08 (m, 5H), 1.44-1.48 (m, 2H), 2.37 (s, 3H), 5.47 (t, *J* = 7.6 Hz, 1H), 7.07 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.40-7.42 (m, 2H), 7.75 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 13.02 (br s, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 11.8, 19.6, 21.4, 25.1, 30.1, 30.5, 58.2, 118.0, 119.8, 123.6, 128.1, 130.5, 131.5, 132.5, 133.8, 142.4, 142.7, 145.8, 169.8. HRMS calcd for C₁₉H₂₁N₂O₂: 309.1609 [M–H]⁻, found: 309.1613.

5-Cyclopentyl-9-methyl-5H-benzo[c]imidazo[1,2-a]azepine-6-carboxylic acid (3gg)

White solid (37.0 mg, 40%), mp >300 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 1.01-1.55 (m, 8H), 2.06-2.08 (m, 1H), 2.37 (s, 3H), 5.26 (d, J = 10.8 Hz, 1H), 7.06 (s, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.42 (s, 1H), 7.46 (s, 1H), 7.80 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 13.08 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 21.0, 24.4, 24.9, 29.2, 30.1, 42.8, 58.7, 123.9, 128.3, 128.8, 129.1, 130.5, 131.2, 132.9, 133.0, 138.3, 139.6, 144.3, 167.8. HRMS calcd for C₁₉H₁₉N₂O₂: 307.1452 [M-H]⁻, found: 307.1449.

9-Fluoro-5-pentyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3hh)

White solid (50.0 mg, 53%), mp: 251-252 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ : 0.73 (t, *J* = 7.2 Hz, 3H), 0.90-0.92 (m, 1H), 1.03-1.10 (m, 5H), 1.47-1.50 (m, 2H), 5.50 (t, *J* = 7.8 Hz, 1H), 7.10 (s, 1H), 7.36-7.39 (m, 1H), 7.46 (s, 1H), 7.55 (d, *J* = 9.6 Hz, 1H), 7.80 (s, 1H), 8.12-8.15 (m, 1H), 13.18 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 14.1, 22.2, 25.6, 30.7, 32.7, 54.8, 117.6 (d, ²*J*_{C-F} = 21.5 Hz), 118.4 (d, ²*J*_{C-F} = 22.4 Hz), 124.0, 127.3, 129.5, 131.3 (d, ³*J*_{C-F} = 9.3 Hz), 132.6 (d, ³*J*_{C-F} = 6.9 Hz), 134.7, 138.3, 143.6, 161.9 (d, ¹*J*_{C-F} = 245.1 Hz), 167.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ : -113.63. HRMS calcd for C₁₈H₁₈FN₂O₂: 313.1358 [M–H]⁻, found: 313.1358.

5-Cyclopentyl-9-fluoro-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3ii)

White solid (45.9 mg, 49%), mp >300 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ : 0.99-1.06 (m, 1H), 1.11-1.46 (m, 5H), 1.50-1.62 (m, 2H), 2.03-2.10 (m, 1H), 5.30 (d, *J* = 10.8 Hz, 1H), 7.10 (d, *J* = 0.8 Hz, 1H), 7.37 (td, *J*₁ = 8.4 Hz, *J*₂ = 2.8 Hz, 1H), 7.50 (d, *J* = 0.8 Hz, 1H), 7.56 (dd, *J*₁ = 10.0 Hz, *J*₂ = 2.4 Hz, 1H), 7.85 (s, 1H), 8.13-8.16 (m, 1H), 13.28 (br s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 24.4, 24.9, 29.2, 30.1, 43.0, 58.6, 117.6 (d, ²*J*_{C-F} = 21.4 Hz), 118.4 (d, ²*J*_{C-F} = 22.9 Hz), 124.1, 127.5 (d, ⁴*J*_{C-F} = 2.6 Hz), 129.3, 131.2 (d, ³*J*_{C-F} = 8.4 Hz), 132.7 (d, ³*J*_{C-F} = 9.2 Hz), 134.4, 138.3, 143.6, 161.9 (d, ¹*J*_{C-F} = 243.4 Hz), 167.6. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ : -113.66. HRMS calcd for C₁₈H₁₆FN₂O₂: 311.1201 [M–H]⁻, found: 311.1201.

5-Pentyl-2-phenyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3jj)

White solid (82.7 mg, 74%), mp: 117-119 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 0.72 (t, *J* = 6.4 Hz, 3H), 1.01-1.18 (m, 6H), 1.54-1.57 (m, 2H), 5.61 (t, *J* = 7.2 Hz, 1H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.89-7.92 (m, 3H), 7.98 (s, 1H), 8.30 (d, *J* = 7.6 Hz, 1H), 13.23 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 14.1, 22.2, 25.7, 30.8, 32.6, 55.3, 120.4, 124.9, 127.0, 129.0, 130.3, 130.4, 130.7, 132.8, 133.3, 134.6, 139.5, 141.2, 144.5, 167.4. HRMS calcd for C₂₄H₂₃N₂O₂: 371.1765 [M–H]⁻, found: 371.1765.

5-Cyclopentyl-2-phenyl-5*H*-benzo[*c*]imidazo[1,2-*a*]azepine-6-carboxylic acid (3kk)

White solid (62.2 mg, 56%), mp: 274-275 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.09-1.15 (m, 1H), 1.18-1.45 (m, 5H), 1.54-1.58 (m, 2H), 2.09-2.16 (m, 1H), 5.33 (d, *J* = 11.2 Hz, 1H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.47-7.51 (m, 1H), 7.54-7.58 (m, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 2H), 7.91 (s, 1H), 8.03 (s, 1H), 8.23 (d, *J* = 7.2 Hz, 1H), 13.18 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 24.4, 24.9, 29.3, 30.2, 59.1, 120.6, 124.8, 127.0, 128.98, 129.02, 130.4, 130.5, 130.8, 132.8, 133.0, 134.6, 139.5, 141.1, 144.5, 167.8. HRMS calcd for $C_{24}H_{21}N_2O_2$: 369.1609 [M-H]⁻, found: 369.1608.

2. Structural elaborations of 3a and 3dd

2.1. Synthesis of 5 from the reaction of 3a

To a reaction tube equipped with a stir bar were added **3a** (66.1 mg, 0.2 mmol) and poly(phosphoric acid) (PPA, 1 mL) with stirring. The tube was then sealed, and the mixture was stirred at 160 °C for 12 h. Upon completion, the resulting mixture was diluted with saturated NaHCO₃ solution (5 mL) and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with water (5 mL) and brine (5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with DCM/CH₃OH (100:1) as the eluent to afford **5** in a yield of 90%.

15,15a-dihydrobenzo[c]benzo[5,6]cyclohepta[1,2-f]imidazo[1,2-a]azepin-9(14H)-one (5)

Yellow solid (56.2 mg, 90%), mp: 247-248 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.08-2.18 (m, 1H), 2.28-2.36 (m, 1H), 2.73 (dd, $J_1 = 14.0$ Hz, $J_2 = 5.6$ Hz, 1H), 3.00-3.08 (m, 1H), 5.01-5.06 (m, 1H), 6.83 (d, J = 0.8 Hz, 1H), 7.18 (d, J = 0.8 Hz, 1H), 7.23 (d, J = 7.2 Hz, 1H), 7.39-7.56 (m, 5H), 7.65 (s, 1H), 7.89 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 8.32 (d, J = 8.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 30.4, 32.3, 57.1, 122.1, 127.9, 128.9, 129.4, 129.8, 130.0, 130.1, 130.4, 133.4, 133.7, 136.8, 137.8, 138.4, 138.6, 145.1, 193.3. HRMS calcd for C₂₁H₁₇N₂O: 313.1335 [M+H]⁺, found: 313.1335.

2.2. Synthesis of 6 from the reaction of 3dd

To a reaction tube equipped with a stir bar were added **3dd** (63.3 mg, 0.2 mmol) and poly(phosphoric acid) (PPA, 1 mL) with stirring. The tube was then sealed, and the mixture was stirred at 160 °C for 12 h. Upon completion, the resulting mixture was diluted with saturated NaHCO₃ solution (5 mL) and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with water (5 mL)

and brine (5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with DCM/CH₃OH (100:1) as the eluent to afford **6** in a yield of 85%.

14,14a-dihydro-9*H*-benzo[*c*]imidazo[1,2-*a*]naphtho[2,3-*f*]azepin-9-one (6)

Yellow solid (50.7 mg, 85%), mp: 211-212 °C. ¹H NMR (400 MHz, CDCl₃) δ : 3.59 (dd, $J_1 = 17.2$ Hz, $J_2 = 1.2$ Hz, 1H), 3.70 (dd, $J_1 = 17.2$ Hz, $J_2 = 6.4$ Hz, 1H), 4.93 (d, J = 6.0 Hz, 1H), 6.98 (s, 1H), 7.12 (s, 1H), 7.44-7.66 (m, 6H), 8.04 (d, J = 7.6 Hz, 1H), 8.08 (s, 1H), 8.18 (d, J = 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 29.8, 49.6, 115.7, 128.2, 128.29, 128.32, 128.7, 129.7, 129.9, 130.2, 130.7, 131.7, 131.8, 133.3, 133.9, 134.4, 138.3, 140.9, 146.8, 183.7. HRMS calcd for C₂₀H₁₅N₂O: 299.1179 [M+H]⁺, found: 299.1179.

3. Gram-scale synthesis of 3a

To a reaction tube equipped with a stir bar were added 2-phenyl-1*H*-imidazole (**1a**, 0.72 g, 5 mmol), DCM (30 mL), 3-methylene-4-phenethyloxetan-2-one (**2a**, 1.41 g, 7.5 mmol), $[RhCp*Cl_2]_2$ (77.3 mg, 0.125 mmol) and AgOAc (1.67 g, 10 mmol) with stirring. The mixture was stirred at 100 °C for 10 h under air in an oil bath. Upon completion, it was cooled to room temperature. The resulting mixture was filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using DCM/CH₃OH/HOAc (30:1:0.1) as eluent to afford **3a** in a yield of 52% (859mg).

III. Mechanism studies

1. Study on the reversibility of C-H bond activation

To a reaction tube equipped with a stir bar were added 2-phenyl-1*H*-imidazole (**1a**, 43.3 mg, 0.3 mmol), DCM (3 mL), CD₃OD (0.15 mL, 3.6 mmol), [RhCp*Cl₂]₂ (4.7 mg, 0.0075 mmol) and AgOAc (100.1 mg, 0.6 mmol) with stirring. The mixture was stirred at 100 °C under air for 2 h. Upon completion, the resulting mixture was cooled to room temperature, filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to give a mixture of **1a** and **1a**- d_n . Upon analyzing the ¹H NMR spectrum of the mixture as shown in Figure S1, the deuteration percentage was determined as 26%.

Figure S1. The ¹H NMR spectrum of the products obtained from the reversibility of C–H bond activation experiment

2. Intermolecular kinetic isotope effect study (I)

To a reaction tube equipped with a stir bar were added **1a** (21.6 mg, 0.15 mmol), **1a**- d_5 (22.4 mg, 0.15 mmol), DCM (3 mL), **2a** (56.5 mg, 0.3 mmol), [RhCp*Cl₂]₂ (4.7 mg, 0.0075 mmol) and AgOAc (100.1 mg, 0.6 mmol) with stirring. The mixture was stirred at 100 °C under air for 80 min. Upon completion,

the resulting mixture was cooled to room temperature, filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using DCM/CH₃OH/ HOAc (30:1:0.1) as eluent to afford a mixture of **3a** and **3a**- d_4 . Upon analyzing the ¹H NMR spectrum of the mixture as shown in Figure S2, the ratio of **3a** and **3a**- d_4 was determined as 0.57:0.43. Accordingly, the intermolecular KIE (k_H/k_D) was calculated as 1.33.

Figure S2. The ¹H NMR spectrum of the products obtained from the intermolecular KIE experiment

3. Intermolecular kinetic isotope effect study (II)

To a reaction tube equipped with a stir bar were added **1a** (21.6 mg, 0.15 mmol), **1a**- d_5 (22.4 mg, 0.15 mmol), DCM (3 mL), **2a** (28.2 mg, 0.15 mmol), [RhCp*Cl₂]₂ (4.7 mg, 0.0075 mmol) and AgOAc (100.1 mg, 0.6 mmol) with stirring. The mixture was stirred at 100 °C under air for 10 h. Upon completion, the resulting mixture was cooled to room temperature, filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel chromatography using DCM/CH₃OH/HOAc (30:1:0.1) as eluent to afford a mixture of **3a** and **3a**- d_4 . Upon analyzing the ¹H NMR spectrum of the mixture as shown in Figure S3, the ratio of **3a** and **3a**- d_4 was determined as 0.59:0.41. Accordingly, the intermolecular KIE (k_H/k_D) was calculated as 1.44.

Figure S3. The ¹H NMR spectrum of the products obtained from the intermolecular KIE experiment

4. Control experiment with 3-hydroxy-2-methylene-5-phenylpentanoic acid (4) as possible coupling partner

To a reaction tube equipped with a stir bar were added **1a** (14.4 mg, 0.1 mmol), DCM (1 mL), 3-hydroxy-2-methylene-5-phenylpentanoic acid (**4**, 30.9 mg, 0.15 mmol), [RhCp*Cl₂]₂ (1.6 mg, 0.0025 mmol) and AgOAc (33.4 mg, 0.2 mmol) with stirring. The mixture was stirred at 100 °C under air for 10 h. TLC analysis of the resulting mixture showed that the formation of **3a** was not observed, and most of the starting materials remained intact.

IV. Copies of NMR spectra of 3a-3kk

S32

0 PPI

S49

PPI

S51

50

150

0 PPI

V. Copies of NMR spectra of 5 and 6

S67

VI. X-ray crystal structures and data of 3g, 3k, 3bb and 5

1. X-ray crystal structure and data of 3g

Figure S3. X-ray structure of 3g with 30% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a dimethyl sulfoxide/ethyl acetate (1:1) solution of 3g. Crystal data collection and refinement parameters of 3g are summarized in Table S1. Intensity data were collected at 170 K on a SuperNova Dual diffractometer using mirror-monochromated Mo K α radiation, $\lambda = 0.71073$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. The structure was solved by a combination of direct methods in SHELXTL and the difference Fourier technique, and refined by full-matrix least-squares procedures. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{23}H_{23}BrN_2O_3S$
Formula weight	487.40
Temp, K	169.99 (10)
Crystal system	Monoclinic
Space group	P21/c
<i>a</i> , Å	8.7087(6)
b, Å	24.8530(16)
<i>c</i> , Å	10.4060(8)
α (°)	90
β (°)	110.876(8)
γ (°)	90
Volume, Å ³	2104.4(3)
Ζ	4
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.538
λ, Å	0.71073
μ , mm ⁻¹	2.081
No. of data collected	13912
No. of unique data	4931
R _{int}	0.0304
Goodness-of-fit on F^2	1.056
$R_1, wR_2 (I > 2\sigma(I))$	0.0402, 0.0884
R_1 , w R_2 (all data)	0.0532, 0.0936

Table S1 Crystallographic data and structure refinement results of 3g

2. X-ray crystal structure and data of 3k

Figure S4. X-ray structure of 3k with 30% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a methanol solution of **3k**. Crystal data collection and refinement parameters of **3k** are summarized in Table S2. Intensity data were collected at 297 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. The structure was solved by a combination of direct methods in SHELXTL and the difference Fourier technique, and refined by full-matrix least-squares procedures. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{21}H_{17}FN_2O_2$
Formula weight	348.36
Temp, K	296.93(13)
Crystal system	orthorhombic
Space group	P212121
<i>a</i> , Å	8.7924(3)
<i>b</i> , Å	10.9272(3)
<i>c</i> , Å	18.0980(7)
α (°)	90
β (°)	90
γ (°)	90
Volume, Å ³	1738.79(10)
Ζ	4
$d_{\rm calc}, {\rm g}{\rm cm}^{-3}$	1.331
λ, Å	1.54184
μ , mm ⁻¹	0.771
No. of data collected	5171
No. of unique data	3045
R _{int}	0.0238
Goodness-of-fit on F^2	1.019
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0334, 0.0774
R_1 , w R_2 (all data)	0.0412, 0.0822
Flack parameter	0.08 (11)

 Table S2 Crystallographic data and structure refinement results of 3k
3. X-ray crystal structure and data of 3bb

Figure S5. X-ray structure of 3bb with 30% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a dimethyl sulfoxide solution of **3bb**. Crystal data collection and refinement parameters of **3bb** are summarized in Table S3. Intensity data were collected at 289 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. The structure was solved by a combination of direct methods in SHELXTL and the difference Fourier technique, and refined by full-matrix least-squares procedures. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{50}H_{52}N_4O_4$
Formula weight	772.95
Temp, K	289(3)
Crystal system	triclinic
Space group	P-1
<i>a</i> , Å	12.8963(5)
<i>b</i> , Å	13.1501(3)
<i>c</i> , Å	17.1010(5)
α (°)	92.305(2)
β (°)	111.817(3)
γ (°)	103.594(3)
Volume, Å ³	2590.69(15)
Ζ	2
$d_{\rm calc}, {\rm g \ cm}^{-3}$	0.991
λ, Å	1.54184
μ , mm ⁻¹	0.497
No. of data collected	24264
No. of unique data	9887
R _{int}	0.0210
Goodness-of-fit on F^2	1.067
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0537, 0.1524
R_1 , w R_2 (all data)	0.0637, 0.1603

Table S3 Crystallographic data and structure refinement results of 3bb

4. X-ray crystal structure and data of 5

Figure S6. X-ray structure of 5 with 30% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a methanol solution of **5**. Crystal data collection and refinement parameters of **5** are summarized in Table S4. Intensity data were collected at 295 K on a SuperNova Dual diffractometer using mirror-monochromated Mo K α radiation, $\lambda = 0.71073$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. The structure was solved by a combination of direct methods in SHELXTL and the difference Fourier technique, and refined by full-matrix least-squares procedures. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

able S4	Crystall	ographic	data	and	structu	re rei	inement	results	s of	5

Empirical formula	$C_{21}H_{16}N_2O$
Formula weight	312.36
Temp, K	295.01 (13)
Crystal system	orthorhombic
Space group	Pbca

<i>a</i> , Å	11.2543(4)
b, Å	11.6498(3)
<i>c</i> , Å	23.6897(7)
α (°)	90
β (°)	90
γ (°)	90
Volume, Å ³	3105.97(16)
Ζ	8
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.336
λ, Å	0.71073
μ , mm ⁻¹	0.083
No. of data collected	14916
No. of unique data	3768
R _{int}	0.0384
Goodness-of-fit on F^2	1.059
$R_1, wR_2 (I > 2\sigma(I))$	0.0522, 0.1143
R_1 , w R_2 (all data)	0.0828, 0.1336

VII. References

- (1) X. P. Wu, S. Song, S. B. Xu, C. Jiang, Adv. Synth. Catal., 2018, 360, 1111.
- (2) M. E. Voss, C. M. Beer, S. A. Mitchell, P. A. Blomgren, P. E. Zhichkin, Tetrahedron, 2008, 64, 645.
- (3) N. Naresh Kumar Reddy, S. N. Rao, C. Ravi, S. Adimurthy, ACS Omega, 2017, 2, 5235.
- (4) C. A. Malapit, D. R. Caldwell, N. Sassu, S. Milbin, A. R. Howell, Org. Lett., 2017, 19, 1966.
- (5) Z. Zhou, M. Y. Bian, L. X. Zhao, H. Gao, J. J. Huang, X. Liu, X. Yu, X. Li, W. Yi, *Org. Lett.*, 2018, 20, 3892.
- (6) K.-i. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto, R. Yamaguchi, Org. Lett., 2004, 6, 2785.