The synthesis of solasodine F-homo-analogues

Urszula Kiełczewska, ${ }^{\text {a }}$ Jacek W. Morzycki, ${ }^{\text {a }}$ Lucie Rárová, ${ }^{\text {b }}$ and Agnieszka Wojtkielewicz*a
${ }^{\text {a }}$ Institute of Chemistry, University of Biatystok, K. Ciołkowskiego 1K, 15-245 Biatystok, Poland
${ }^{b}$ Laboratory of Growth Regulators, Faculty of Science, Palacky University, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic

*Corresponding author e-mail address: a.wojtkielewicz@uwb.edu.pl

Table of Contents

1. Table S1. The optimization of 26-bromopseudodiosgenin $\mathbf{4}$ substitution
reaction by cyanide 2
2. Characterization of compound $\mathbf{3}$ S3
3. X-ray diffraction analysis of compounds $\mathbf{3}$ and $\mathbf{1 0}$ S4
4. Spectra (${ }^{1} \mathrm{H}$ NMR, $\left.{ }^{13} \mathrm{CNMR}\right)$ of compounds $\mathbf{1 - 1 1}$ S6-S28

Table S1. The optimization of 26-bromopseudodiosgenin 4 substitution reaction by cyanide

Characterization compound 3

(22R,25R)-3 β-benzoyloxy-22-cyanofurost-5-en-26-yl mesylate (3)
To the cooled to $0^{\circ} \mathrm{C}$ solution of nitrile $2(95 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.04 \mathrm{~mL}, 0.26 \mathrm{mmol})$ in dry $\mathrm{DCM}(10 \mathrm{~mL})$ solution of $\mathrm{MsCl}(0.02 \mathrm{~mL}, 0.209 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ was added dropwise. After 30 min the reaction mixture was removed from the ice bath and stirred at ambient temperature for 16 h . Next the reaction mixture was poured into aq. NaHCO_{3} and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. DFC chromatography on silica gel (elution with hexane/ethyl acetate $7: 3$) gave $\mathbf{3}(83 \mathrm{mg}, 0.133 \mathrm{mmol}, 97 \%)$ as a white solid, mp 197-199 ${ }^{\circ} \mathrm{C}$ (hexane/ethyl acetate); ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.05(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.44(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}$, $2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.8(\mathrm{C}), 139.6$ (C), 132.7 (CH), 130.6 (C), 129.4 (2 xCH), 128.2 $(2 x C H), 122.1(\mathrm{CH}), 118.3(\mathrm{C}), 88.7(\mathrm{C}), 84.1(\mathrm{CH}), 74.2(\mathrm{CH}), 73.5\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 56.6$ $(\mathrm{CH}), 49.6(\mathrm{CH}), 41.9(\mathrm{CH}), 40.6(\mathrm{C}), 39.1\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{3}\right), 36.8\left(\mathrm{CH}_{2}\right), 36.6$ (C), $34.3\left(\mathrm{CH}_{2}\right)$, $32.7(\mathrm{CH}), 31.8\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 31.3(\mathrm{CH}), 27.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 20.5$ $\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right) 16.3\left(\mathrm{CH}_{3}\right)$; ESI-MS: $597[\mathrm{M}-\mathrm{CN}]^{+}, 683$ $[\mathrm{M}+\mathrm{AcOH}]^{+}, 1269[2 \mathrm{M}+\mathrm{Na}]^{+} ;$IR ATR, $\boldsymbol{v}_{\max }\left(\mathrm{cm}^{-1}\right) 2921,2854,1705,1454,1344,1273,1172$, 1109, 969, 822, 711.

X-ray diffraction analysis of compound 3 and 10

Figure 2. X-ray structure of 26-mesyloxy-22-nitrile 3. Displacement ellipsoids are drawn at the 30% probability level [1].

Figure 3. X-ray structures of N -acylated 26a-homosolasodine analogue 10. Displacement ellipsoids are drawn at the 30% probability level [1].

X-ray diffraction analysis of 3 and 10. Crystals suitable for X-ray diffraction study were obtained at room temperature by slow evaporation from a mixture of AcOEt-DCM (3) and MeOH-DCM (10). The X-ray diffraction data were measured at 100(2) K on SuperNova diffractometer (Rigaku) with CCD detector and $\mathrm{Cu}_{\mathrm{K} \alpha}$ radiation. The crystal structures were solved using direct methods with SHELXT [2] and refined with SHELXL [3]. All hydrogen atoms were initially located in electron-density difference maps and were constrained to idealized positions, with C-H $=0.95-1.00 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl hydrogen atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for others. The PLATON software [4] was used to validate the crystallographic data.

Crystal data for 3: $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{6} \mathrm{~N}, M_{\mathrm{r}}=623.82$, colourless prism, $0.45 \times 0.22 \times 0.06 \mathrm{~mm}^{3}$, monoclinic space group $P 2_{1}, a=6.4115(1) \AA, b=9.6586(1) \AA, c=26.3967(1) \AA, \beta=$ $91.615(1)^{\circ}, V=1633.99(2) \AA^{3}, Z=2, \rho_{\text {calcd }}=1.268 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=1.253 \mathrm{~mm}^{-1}, F(000)=672, R_{l}$ $=0.033, w R^{2}=0.091,6829$ independent reflections, $\theta_{\max }=76.7^{\circ}, \theta_{\min }=3.3^{\circ}, 403$ parameters. CCDC 1901930 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for 10: $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{6} \mathrm{~N}, M_{\mathrm{r}}=623.82$, colourless prism, $0.45 \times 0.22 \times 0.06 \mathrm{~mm}^{3}$, monoclinic space group $P 2_{1}, a=6.4115(1) \AA, b=9.6586(1) \AA, c=26.3967(1) \AA, \beta=$ $91.615(1)^{\circ}, V=1633.99(2) \AA^{3}, Z=2, \rho_{\text {calcd }}=1.268 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=1.253 \mathrm{~mm}^{-1}, F(000)=672, R_{l}$ $=0.033, w R^{2}=0.091,6829$ independent reflections, $\theta_{\max }=76.7^{\circ}, \theta_{\min }=3.3^{\circ}, 403$ parameters. CCDC 1901930 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann. (2009). J. Appl. Cryst. 42, 339-341.
[2] G. M. Sheldrick. (2015) Acta Crystallogr. Sect. A (2015) 71, 3-8.
[3] G. M. Sheldrick. (2015) Acta Crystallogr. Sect. C (2015) 71, 3-8.
[4] Spek, A. L. (2009). Acta Crystallogr. Sect. D: Biol. Crystallogr. 65, 148-155.

Spectra (${ }^{\mathbf{1}} \mathrm{H}$ NMR, ${ }^{13} \mathrm{CNMR}$) of compounds $\mathbf{1 - 1 1}$

	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

