Hypervalent Iodane Mediated Reactions of *N*-Acetyl Enamines for the Synthesis of Oxazoles and Imidazoles

Supporting Information

Kang Xu, Ruiqi Yang, Shuang Yang, Cheng Jiang* and Zhenhua Ding*

Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China

Pharmaceutical University, Nanjing 211198, China.

Table of Contents

1. General	S2
2. Preparation of Substrate 2a-2y , 4a-4j	S2
3. General Procedure for Intramolecular Cyclization (3a-3y)	S 14
4. Optimization of Reaction Conditions of Intermolecular Cyclocondensation	S23
5. General Procedure for Intermolecular Cyclocondensation (5aa-5ac)	S24
6. X-ray data of Compound 3d	S29
7. X-ray data of Compound 5da	S 32
8. Reference	S35
9. Copies of NMR Spectra	S 36

1. General

General Experimental Methods. Unless otherwise noted, all chemicals were purchased from commercial suppliers and used without further purification. All reactions were performed by standard Schlenk techniques in oven-dried reaction vessels under air. Flash column chromatography was carried out using commercially available 300–400 mesh under pressure unless otherwise indicated. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-300 (300 MHz) or AV-400 (400 MHz) NMR spectrometers. ¹H and ¹³C{¹H} NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm). High Resolution Mass measurement was performed on an Agilent QTOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. Anhydrous acetonitrile (MeCN) was distilled and stored over molecular sieves.

2.Preparation of Substrate 2a-2y, 4a-4j

2. 1 Typical Procedure for the Synthesis of Enamides 2a-2m.¹

The mixture of ketoxime (0.5 mmol), acetic anhydride (1.0 mmol, 102.0 mg),NaHSO₃ (1.5 mmol, 156.2 mg) and CuI (10 mol%, 9.1 mg) was stirred in 1,2-dichloroethane (DCE, 5.0 mL) at 120 °C under Ar, After completion of the reaction (detected by TLC), the reaction mixture was cooled to room temperature, diluted with EtOAc (25 mL) and washed with NaOH (2N, 20 mL) and brine (20 mL). The organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography on silica gel (eluent: EtOAc/Pet. Ether) to afford the corresponding enamides.

N-(1-phenylvinyl)acetamide 2a

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.31 (m, 5H), 6.81 (br s, 1H), 5.88 (s, 1H), 5.09 (s, 1H), 2.14 (s, 3H).

N-(1-phenylvinyl)acetamide 2b

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (dd, J = 8.5, 5.2 Hz, 2H), 7.10 (dd, J = 9.8, 7.7 Hz, 2H), 6.87 (br s, 1H), 5.84 (s, 1H), 5.09 (s, 1H), 2.18 (s, 3H).

N-(1-(4-chlorophenyl)vinyl)acetamide 2c

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.35 (s, 4H), 6.99 (br s, 1H), 5.78 (s, 1H), 5.10 (s, 1H), 2.12 (s, 3H).

N-(1-(4-bromophenyl)vinyl)acetamide 2d

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, J = 8.3 Hz, 2H), 7.38 – 7.27 (m, 2H), 6.90 (br s, 1H), 5.84 (s, 1H), 5.14 (s, 1H), 2.17 (s, 3H).

N-(1-(4-bromophenyl)vinyl)acetamide 2e

A whive soild; ¹H NMR (300 MHz, CDCl₃) δ 7.35 (d, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 6.81 ((br s, 1H), 5.88 (s, 1H), 5.10 (s, 1H), 2.41 (s, 3H), 2.18 (s, 3H).

N-(1-(4-methoxyphenyl)vinyl)acetamide **2f**

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.35 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.74 (br s, 1H), 5.78 (s, 1H), 5.02 (s, 1H), 3.83 (s, 3H), 2.14 (s, 3H).

N-(1-([1,1'-biphenyl]-4-yl)vinyl)acetamide 2g

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.64 – 7.61 (m, 3H), 7.56 – 7.44 (m, 5H), 7.43 – 7.37 (m, 1H), 6.88 (br s, 1H), 5.91 (s, 1H), 5.19 (s, 1H), 2.19 (s, 3H).

N-(1-(4-(trifluoromethyl)phenyl)vinyl)acetamide 2h

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 6.89 (br s, 1H), 5.85 (s, 1H), 5.17 (s, 1H), 2.14 (s, 3H).

N-(1-(4-cyanophenyl)vinyl)acetamide 2i

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.76 – 7.64 (m, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 6.96 (br s, 1H), 5.82 (s, 1H), 5.24 (s, 1H), 2.17 (s, 3H).

N-(1-(4-cyanophenyl)vinyl)acetamide 2i

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.25 (m, 4H), 6.65 (br s, 1H), 6.11 (s, 1H), 4.75 (s, 1H), 2.40 (s, 3H), 2.10 (s, 3H).

N-(1-(2-bromophenyl)vinyl)acetamide 2k

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.43 – 7.31 (m, 2H), 7.28 – 7.20 (m, 1H), 6.72 (br s, 1H), 6.03 (s, 1H), 4.84 (s, 1H), 2.10 (s, 3H).

N-(1-(naphthalen-2-yl)vinyl)acetamide 2l

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 7.7 Hz, 4H), 7.62-7.49 (m, 3H), 6.96 (br s, 1H), 5.99 (s, 1H), 5.27 (s, 1H), 2.22 (s, 3H).

N-(3,4-dihydronaphthalen-1-yl)acetamide 2m

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.24 – 7.16 (m, 4H), 6.79 (br s, 1H), 6.47 (t, *J* = 4.9 Hz, 1H), 2.79 (t, *J* = 7.9 Hz, 2H), 2.41 (dd, *J* = 8.1, 5.1 Hz, 2H), 2.20 (s, 3H).

2.2 Typical Procedure for the Synthesis of Enamides 2n-2y.²

The mixture of 1,3-diketones (50 mmol), acetamide (250 mmol), and p-TsOH (10 mmol) was stirred in toluenen (150 mL) in a Dean-Stark apparatus for 24h. The reaction mixture was then cooled to room temperature, the solvent was evaporated, and the residue was purified by flash column chromatography on silica gel (eluent: EtOAc/Pet. Ether) to afford the corresponding β -ketoenamides.

(Z)-N-(4-oxopent-2-en-2-yl)acetamide 2n

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.33 (s, 1H), 5.33 (s, 1H), 2.38 (s, 3H), 2.16 (s, 3H), 2.15 (s, 3H).

(Z)-N-(4-oxo-4-phenylbut-2-en-2-yl)acetamide **20**

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.83 (br s, 1H), 8.07 – 7.79 (m, 2H), 7.74 – 7.37 (m, 3H), 6.06 (s, 1H), 2.54 (s, 3H), 2.25 (s, 3H).

(Z)-N-(4-oxo-4-(p-tolyl)but-2-en-2-yl)acetamide **2p**

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.85 (br s, 1H), 8.01 – 7.69 (m, 2H), 7.41 – 7.17 (m, 2H), 6.05 (q, J = 1.0 Hz, 1H), 2.53 (s, 3H), 2.44 (s, 3H), 2.24 (s, 3H).

(Z)-N-(4-(4-methoxyphenyl)-4-oxobut-2-en-2-yl)acetamide **2q**

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.86 (br s, 1H), 8.04 – 7.81 (m, 2H), 7.09 – 6.88 (m, 2H), 6.03 (q, J = 1.0 Hz, 1H), 3.90 (s, 3H), 2.53 (s, 3H), 2.24 (s, 3H).

(Z)-N-(4-(4-fluorophenyl)-4-oxobut-2-en-2-yl)acetamide 2r

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.78 (br s, 1H), 8.06 – 7.89 (m, 2H), 7.23 – 7.03 (m, 2H), 6.01 (q, J = 1.0 Hz, 1H), 2.54 (s, 3H), 2.25 (s, 3H).

(Z)-N-(4-(4-chlorophenyl)-4-oxobut-2-en-2-yl)acetamide 2s

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.78 (br s, 1H), 8.00 – 7.74 (m, 2H), 7.63 – 7.40 (m, 2H), 6.01 (d, J = 2.0 Hz, 1H), 2.54 (s, 3H), 2.25 (s, 3H).

(Z)-N-(4-(4-bromophenyl)-4-oxobut-2-en-2-yl)acetamide 2t

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 12.78 (br s, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.69 – 7.49 (m, 2H), 6.00 (s, 1H), 2.54 (s, 3H), 2.25 (s, 3H).

(Z)-N-(4-oxo-4-(o-tolyl)but-2-en-2-yl)acetamide **2u**

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.68 (br s, 1H), 7.47 (dd, J = 7.9, 1.5 Hz, 1H), 7.35 (td, J = 7.4, 1.5 Hz, 1H), 7.25 (tdd, J = 5.6, 3.1, 1.2 Hz, 2H), 5.73 (q, J = 1.0 Hz, 1H), 2.54 – 2.43 (m, 6H), 2.26 (s, 3H)

(Z)-N-(4-(2-bromophenyl)-4-oxobut-2-en-2-yl)acetamide 2v

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 12.49 (br s, 1H), 7.63 (dd, J = 7.9, 1.3 Hz, 1H), 7.46 – 7.35 (m, 2H), 7.35 – 7.29 (m, 1H), 5.71 (d, J = 1.1 Hz, 1H), 2.51 (s, 3H), 2.27 (s, 3H).

(Z)-N-(4-(naphthalen-2-yl)-4-oxobut-2-en-2-yl)acetamide 2w

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 12.92 (br s, 1H), 8.45 (s, 1H), 8.01 (td, J = 8.3, 1.8 Hz, 2H), 7.97 – 7.88 (m, 2H), 7.66 – 7.54 (m, 2H), 6.24 (d, J = 1.1 Hz, 1H), 2.59 (s, 3H), 2.28 (s, 3H).

(Z)-N-(4-oxo-4-(thiophen-2-yl)but-2-en-2-yl)acetamide 2x

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 12.65 (br s, 1H), 7.77 (d, J = 3.8 Hz, 1H), 7.74 – 7.66 (m, 1H), 7.22 (t, J = 4.4 Hz, 1H), 5.98 (s, 1H), 2.59 (s, 3H), 2.29 (s, 3H).

Ethyl (Z)-3-acetamidobut-2-enoate 2y

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 11.13 (br s, 1H), 4.89 (q, J = 1.1 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 2.14 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H).

2.3 Typical Procedure for the Synthesis of Enamides 4a-4j.³

To a suspension of N-acylglycine (50 mmol), sodium acetate (50 mmol), and acetic anhydride (30 mL) was added the aromatic aldehyde (50 mmol). The reaction mixture was stirred at room temperature for 1 h and then heated to 80 °C. After 12 h, the reaction mixture was cooled down to room temperature, mixed with water (0.5 L) and stirred at room temperature for 1 h. The insoluble material was separated by filtration. The alcohol (20 mL) solution of the insoluble material (10 mol) and triethylamine (2 mL) was heated under reflux for 3 h. The solvent was evaporated, and the residue was suspended in water and extracted with EtOAc (4 × 30 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated by a rotary evaporator. The crude product was purified by flash column chromatography (EtOAc/PE) to give the desired compounds.

Methyl (Z)-2-acetamido-3-phenylacrylate 4a

A white soild; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 2H), 7.42 – 7.36 (m, 4H), 7.06 (br s, 1H), 3.87 (s, 3H), 2.15 (s, 3H).

Methyl (Z)-2-acetamido-3-(4-fluorophenyl)acrylate 4b

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, J = 19.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 3H), 3.87 (s, 3H), 2.16 (s, 3H).

Methyl (Z)-2-acetamido-3-(4-chlorophenyl)acrylate 4c

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J* = 18.9 Hz, 5H), 7.16 (br s, 1H), 3.87 (s, 3H), 2.15 (s, 3H).

Methyl (Z)-2-acetamido-3-(4-bromophenyl)acrylate 4d

A yellow soild; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 10.5 Hz, 3H), 7.10 (br s, 1H), 3.88 (s, 3H), 2.16 (s, 3H).

Methyl (Z)-2-acetamido-3-(4-(trifluoromethyl)phenyl)acrylate 4e

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, J = 7.9 Hz, 2H), 7.56 (s, 2H), 7.41 (s, 1H), 7.21 (br s, 1H), 3.90 (s, 3H), 2.15 (s, 3H).

Methyl (Z)-2-acetamido-3-(4-nitrophenyl)acrylate 4f

A yellow soild; ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.18 (m, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.44 (br s, 1H), 7.41 (d, J = 3.3 Hz, 1H), 3.92 (s, 3H), 2.15 (s, 3H).

Methyl (Z)-2-acetamido-3-(2-bromophenyl)acrylate 4g

A yellow soild; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 11.3 Hz, 2H), 7.39 – 7.26 (m, 1H), 7.26 – 7.15 (m, 1H), 7.09 (br s, 1H), 3.90 (s, 3H), 2.08 (s, 3H).

Methyl (Z)-2-acetamido-3-(3-bromophenyl)acrylate 4h

A white soild; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.38 (s, 1H), 7.34 (s, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.08 (br s, 1H), 3.89 (s, 3H), 2.17 (s, 3H).

Methyl (Z)-2-acetamido-3-(m-tolyl)acrylate 4i

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (s, 1H), 7.35 – 7.23 (m, 3H), 7.18 (s, 1H), 7.02 (br s, 1H), 3.87 (s, 3H), 2.37 (s, 3H), 2.15 (s, 3H).

Methyl (Z)-2-acetamido-3-(m-tolyl)acrylate 4j

A white soild; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 7.2 Hz, 2H), 7.44 – 7.31 (m, 4H), 7.09 (br s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 2.15 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H).

3. General Procedure for Intramolecular Cyclization (3a-3y)

An ovendried Schlenk tube equipped with a magnetic stir bar was charged with enamide (0.2 mmol, 1.0 equiv), fluorine reagent(0.24mmol, 1.2 equiv), 4 Å MS (60mg), CH₃CN (2 mL), BF₃ Et₂O (2.5 μ l, 0.02 mmol, 10 mol %) was successively added followed by stirring at room temperature for 3h. The solvent was evaporated, and the residue was purified by flash column chromatography (ethyl acetate/hexane) on silica gel and afforded corresponding oxzole **3a-3m**.

Enamide 2m-2y was performed under the temperature of 60 °C to afford corresponding oxazole 3m-3y.

2-Methyl-4-phenyloxazole 3a

A yellow oil; 20.4mg, Yield 64 %; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (s, 1H), 7.77 – 7.69 (m, 2H), 7.47 – 7.38 (m, 2H), 7.37 – 7.29 (m, 1H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 140.7, 133.2, 131.2, 128.7, 127.9, 125.4, 14.0; HRMS (ESI) m/ z [M +]#: cabd for C₁₀H₁₀NO, 160.0762; found, 160.0758.

4-(4-Fluorophenyl)-2-methyloxazole 3b

A yellow solid; mp 41-43 °C; 15.6mg, Yield 44 %;¹H NMR (300 MHz, CDCl₃) δ 7.77 (s, 1H), 7.69 (dd, J = 8.7, 5.4 Hz, 2H), 7.10 (t, J = 8.7 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (d, ¹ $J_{C-F} = 246.9$ Hz), 161.9, 139.9, 132.8 (d, ⁴ $J_{C-F} = 1.6$ Hz), 127.4 (d, ³ $J_{C-F} = 3.3$ Hz), 127.2, 127.0, 115.7 (d, ² $J_{C-F} = 21.8$ Hz), 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₀H₉FNO, 178.0668; found, 178.0662.

4-(4-Chlorophenyl)-2-methyloxazole 3c

A light yellow solid; mp 87-88 °C; 36.4mg, Yield 94 %; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.0, 139.7, 133.5, 133.3, 129.7, 128.9, 126.7, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₀H₉CINO, 194.0373; found, 194.0366.

4-(4-Bromophenyl)-2-methyloxazole 3d

A white solid; mp 95-97 °C; 37.6mg, Yield 79%; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.55 (dd, J = 19.7, 8.5 Hz, 4H), 2.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.0, 139.8, 133.4, 131.9, 130.1, 126.9, 121.7, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₀H₉BrNO, 237.9868; found, 237.9862.

2-Methyl-4-(p-tolyl)oxazole 3e

A yellow oil; 20.1mg, Yield 58 %; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.64 – 7.59 (m, 2H), 7.25 – 7.21 (m, 2H), 2.53 (s, 3H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 140.7, 137.7, 132.7, 129.4, 128.3, 125.3, 21.3, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₁H₁₂NO, 174.0919; found, 174.0916.

4-(4-Methoxyphenyl)-2-methyloxazole 3f

A yellow oil; 26.1mg, Yield 69 %; ¹H NMR (300 MHz, CDCl₃) δ 7.74 (s, 1H), 7.68 – 7.62 (m, 2H), 6.99 – 6.91 (m, 2H), 3.85 (s, 3H), 2.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 159.4, 140.5, 132.1, 126.7, 123.8, 114.1, 55.3, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₁H₁₂NO₂, 190.0868; found, 190.0864.

4-([1,1'-Biphenyl]-4-yl)-2-methyloxazole 3g

A yellow solid; mp 132-134 °C; 22.6mg, Yield 48 %; ¹H NMR (300 MHz, CDCl₃) δ 7.88 (s, 1H), 7.81 (d, J = 8.5 Hz, 2H), 7.71 – 7.62 (m, 4H), 7.48 (t, J = 7.5 Hz, 2H), 7.39 (d, J = 7.6 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 140.6, 140.4, 133.3, 130.1, 128.8, 127.4, 127.4, 127.0, 125.8, 14.1; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₆H₁₄NO, 236.1075; found, 236.1072.

2-Methyl-4-(4-(trifluoromethyl)phenyl)oxazole **3h**

A white solid; mp 112-114 °C; 25.0mg, Yield 55 %; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (s, 1H), 7.83 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 7.8 Hz, 3H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.3, 139.5, 134.6 (q, ⁴ $J_{C-F} = 1.5$ Hz), 134.3, 129.7 (q, ² $J_{C-F} =$ 32.5 Hz), 125.7 (q, ³ $J_{C-F} = 3.9$ Hz), 125.5, 124.1 (q, ¹ $J_{C-F} = 271.9$ Hz), 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₁H₉F₃NO, 228.0636; found, 228.0634.

4-(2-Methyloxazol-4-yl)benzonitrile 3i

A light yellow solid; mp 102-104 °C; 33.2mg, Yield 90 %; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (s, 1H), 7.85 – 7.79 (m, 2H), 7.72 – 7.66 (m, 2H), 2.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 139.2, 135.6, 135.0, 132.6, 125.8, 118.9, 111.1, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₁H₉N₂O, 185.0715; found, 185.0710.

2-Methyl-4-(o-tolyl)oxazole 3j

A yellow oil; 26.0mg, Yield 75 %; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dt, J = 6.9, 1.5 Hz, 1H), 7.69 (s, 1H), 7.33 – 7.23 (m, 3H), 2.55 (s,3H), 2.46 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 139.5, 135.3, 135.0, 130.8, 130.5, 128.4, 127.7, 126.1, 21.8, 13.9; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₁H₁₂NO, 174.0919; found, 174.0916.

4-(2-Bromophenyl)-2-methyloxazole 3k

A yellow oil; 46.2mg, Yield 97 %; ¹H NMR (300 MHz, CDCl₃) δ 8.32 (s, 1H), 8.02 (dd, J = 7.9, 1.8 Hz, 1H), 7.65 (dd, J = 8.0, 1.2 Hz, 1H), 7.39 (td, J = 7.6, 1.3 Hz, 1H), 7.20 – 7.11 (m, 1H), 2.54 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.7, 137.9, 136.7, 133.7, 131.8, 130.3, 128.8, 127.5, 121.0, 13.9; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₀H₉BrNO, 237.9868; found, 237.9866.

2-Methyl-4-(naphthalen-2-yl)oxazole 31

A yellow solid; mp 60-63 °C; 32.2mg, Yield 77 %; ¹H NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 7.94 (s, 1H), 7.93 – 7.82 (m, 3H), 7.75 (d, J = 8.5 Hz, 1H), 7.50 (p, J = 7.2 Hz, 2H), 2.59 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 142.7, 140.7, 133.6, 133.6, 133.1, 128.4, 128.2, 127.7, 126.4, 126.0, 124.2, 123.4, 14.1; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₄H₁₂NO, 210.0919; found, 210.0919.

2-Methyl-4,5-dihydronaphtho[1,2-d]oxazole **3m**

A light yellow oil; 23.3mg, Yield 53 %; ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, J = 7.5 Hz, 1H), 7.28 – 7.11 (m, 3H), 3.15 (t, J = 7.8 Hz, 2H), 2.97 (t, J = 8.1 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 147.6, 134.0, 133.2, 129.9, 127.9, 127.0, 126.5, 121.0, 29.0, 20.7, 14.2; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂NO, 186.0919; found, 186.0912.

1-(2,4-Dimethyloxazol-5-yl)ethan-1-one 3n

A white solid; mp 55-56 °C; 24.8mg, Yield 89 %; ¹H NMR (300 MHz, CDCl₃) δ 2.50 (s, 3H), 2.45 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 187.5, 162.5, 145.5, 145.2, 27.5, 14.3, 13.7; HRMS (ESI) m/z [M + H]⁺: calcd for C₇H₁₀NO₂, 140.0712; found, 140.0706.

(2,4-Dimethyloxazol-5-yl)(phenyl)methanone 30

A yellow oil; 38.2mg, Yield 95 %; ¹H NMR (300 MHz, CDCl₃) δ 8.01 – 7.95 (m, 2H), 7.64 – 7.56 (m, 1H), 7.50 (t, *J* = 7.3 Hz, 2H), 2.56 (s, 3H), 2.49 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 182.7, 162.7, 147.9, 145.1, 132.7, 129.2, 128.4, 14.4, 14.2; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂NO₂, 202.0868; found, 202.0864.

(2,4-Dimethyloxazol-5-yl)(p-tolyl) methanone 3p

A white solid; mp 71-73 °C; 31.4mg, Yield 73 %; ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H), 2.55 (s, 3H), 2.49 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 182.4, 162.5, 147.5, 145.2, 143.6, 134.6, 129.4, 129.1, 21.7, 14.3, 14.1; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₃H₁₄NO₂, 216.1025; found, 216.1020.

(2,4-Dimethyloxazol-5-yl)(4-methoxyphenyl) methanone 3q

A white solid; mp 109-110 °C; 38.9mg, Yield 84 %; ¹H NMR (300 MHz, CDCl₃) δ 8.07 – 8.01 (m, 2H), 7.02 – 6.96 (m, 2H), 3.90 (s, 3H), 2.56 (s, 3H), 2.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 181.2, 163.4, 162.2, 147.2, 145.2, 131.7, 129.9, 113.7, 55.5, 14.3, 14.1; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₃H₁₄NO₃, 232.0974; found, 232.0970.

(2,4-Dimethyloxazol-5-yl)(4-fluorophenyl)methanone **3r**

A white solid; mp 92-94 °C; 34.6mg, Yield 79 %; ¹H NMR (300 MHz, CDCl₃) δ 8.10 – 8.01 (m, 2H), 7.26 – 7.12 (m, 2H), 2.57 (s, 3H), 2.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.9, 165.5 (d, ¹*J*_{*C*-*F*} = 254.7 Hz), 162.7, 148.2, 144.9, 133.4 (d, ⁴*J*_{*C*-*F*} = 2.9 Hz), 131.9 (d, ³*J*_{*C*-*F*} = 9.4 Hz), 115.6 (d, ²*J*_{*C*-*F*} = 21.8 Hz), 14.4, 14.1; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₁FNO₂, 220.0774; found, 220.0771.

(4-Chlorophenyl)(2,4-dimethyloxazol-5-yl)methanone 3s

A yellow solid; mp 85-86 °C; 36.8mg, Yield 78 %; ¹H NMR (300 MHz, CDCl₃) δ 7.99 - 7.93 (m, 2H), 7.55 - 7.44 (m, 2H), 2.56 (s, 3H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 162.8, 148.5, 144.9, 139.2, 135.5, 130.7, 128.8, 14.4, 14.2; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₁ClNO₂, 236.0478; found, 236.0476.

(4-Bromophenyl)(2,4-dimethyloxazol-5-yl)methanone 3t

A light yellow solid; mp 66-67 °C; 45.9mg, Yield 82 %; ¹H NMR (300 MHz, CDCl₃) δ 7.90 – 7.84 (m, 2H), 7.67 – 7.61 (m, 2H), 2.56 (s, 3H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 162.8, 148.5, 144.9, 135.9, 131.7, 130.8, 127.9, 14.4, 14.2; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₁BrNO₂, 279.9973; found, 279.9972.

(2,4-Dimethyloxazol-5-yl)(o-tolyl)methanone **3u**

A colourless oil; 43.0mg, Yield 100 %; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 7.0 Hz, 2H), 2.51 (s, 3H), 2.38 (s, 3H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.5, 163.7, 147.5, 145.5, 137.9, 131.1, 127.8, 125.6, 19.5, 14.3, 13.9; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₃H₁₄NO₂, 216.1025; found, 216.1020.

(2-Bromophenyl)(2,4-dimethyloxazol-5-yl)methanone 3v

A yellow solid; mp 73-75 °C; 48.7mg, Yield 87 %; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 1H), 7.52 – 7.35 (m, 3H), 2.53 (s, 3H), 2.25 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 183.0, 164.5, 148.5, 144.9, 140.0, 133.4, 131.9, 128.8, 127.7, 119.5, 14.5, 13.8; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₁BrNO₂, 279.9973; found, 279.9970.

(2,4-Dimethyloxazol-5-yl)(naphthalen-2-yl)methanone 3w

A yellow oil; 41.2mg, Yield 82 %; ¹H NMR (300 MHz, CDCl₃) δ 8.53 (s, 1H), 8.06 – 7.86 (m, 4H), 7.60 (t, J = 7.9 Hz, 2H), 2.59 (s, 3H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.6, 162.8, 147.8, 145.3, 135.4, 134.5, 132.4, 131.0, 129.6, 128.5, 128.3, 127.8, 126.8, 125.0, 14.4, 14.3; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₆H₁₄NO₂, 252.1025; found, 252.1020.

(2,4-Dimethyloxazol-5-yl)(thiophen-2-yl)methanone 3x

A yellow solid; mp 119-120 °C; 41.5mg, Yield 86 %; ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, J = 3.8 Hz, 1H), 7.74 (d, J = 4.9 Hz, 1H), 7.21 (t, J = 4.5 Hz, 1H), 2.61 (s, 3H), 2.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.5, 162.3, 148.1, 144.2, 142.9, 134.3, 133.6, 128.3, 14.4, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₀H₁₀NO₂S, 208.0432; found, 208.0427.

Ethyl 2,4-dimethyloxazole-5-carboxylate 3y

A white solid; mp 51-52 °C; 30.5mg, Yield 90 %; ¹H NMR (300 MHz, CDCl₃) δ 4.38 (q, J = 7.3 Hz, 2H), 2.50 (s, 3H), 2.44 (s, 3H), 1.39 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 158.7, 146.0, 137.5, 61.0, 14.3, 14.2, 13.2; HRMS (ESI) m/z [M + H]⁺: calcd for C₈H₁₂NO₃, 170.0817; found, 170.0809.

4. Optimization of Reaction Conditions of Intermolecular

addictive (1.2 equiv) Lewis Acid (10 mol%) CH_3 CH₃CN, T, 3h MeOOC Me MeOOC 4a 5aa hypervalent iodine(III) Entry Lewis Acid T(℃) Yield (%)b regent 1 1 $BF_3 \bullet OEt_2$ 25 <5 2 BF₃•OEt₂ <5 1 60 3 1 AgBF₄ 60 <5 4 ZnBF₄ 1 60 52 5 PIDA ZnBF₄ 60 6 6 PIFA ZnBF₄ 60 46

Cyclocondensation ^a

^a The reactions were carried out using **4a** (0.2 mmol, 1 equiv) and hypervalent iodine(III) regent (1.2 equiv) and lewis acid (10 mol%) in MeCN (0.1 M) for 3h. ^b The yields were determined by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard;

N-acetyl enamine **4a** was used as a model substrate to further optimize the reaction parameters. Initially, the optimized condition of the intramolecular cyclization was used (entry 1), the main product was unstable and gradually turned into **5aa**. The use of a higher temperature (60 °C) did not change the result. The use of other Lewis acids like AgBF₄ (entry 3) still did not change the result but ZnBF₄ resulted in 52% (entry 4). Other hypervalent iodine(III) regents such as PIDA and PIFA (entry 5 and 6) also promoted this reaction, but with lower yields.

5. General Procedure for Intermolecular Cyclocondensation (5aa-5ac)

An ovendried Schlenk tube equipped with a magnetic stir bar was charged with enamide (0.3 mmol, 1.0 equiv), fluorine reagent(0.36mmol, 1.2 equiv), CH₃CN (3 mL), ZnBF₄ xH₂O (0.03 mmol, 10 mol %) was successively added followed by stirring at 60° C for 3h. The solvent was evaporated, and the residue was purified by flash column chromatography (ethyl acetate/hexane) on silica gel and afforded corresponding imidazole.

N-pentanenitrile was used as solvent to afford **5ab**. Phenylacetonitrile was used as solvent to afford **5ac**.

Methyl 2-methyl-5-phenyl-1H-imidazole-4-carboxylate 5aa

A yellow oil; 22.5mg, Yield 52 %; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 5.1 Hz, 2H), 7.45 – 7.31 (m, 3H), 3.79 (s, 3H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.3, 146.4, 142.9, 131.5, 129.1, 128.5, 128.0, 121.4, 51.6, 13.7; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₃N₂O₂, 217.0977; found, 217.0968.

Methyl 5-(4-fluorophenyl)-2-methyl-1H-imidazole-4-carboxylate 5ba

A white solid; mp 160-161 °C; 21.1mg, Yield 45 %; ¹H NMR (300 MHz, CDCl₃) δ 7.84 – 7.66 (m, 2H), 7.06 – 6.92 (m, 2H), 3.76 (s, 3H), 2.35 (s, 3H); ¹³C NMR (75 MHz,

CDCl₃) δ 164.5, 161.5, 161.2, 146.6, 143.7 (d, ${}^{I}J_{C-F} = 143.2$ Hz), 131.0 (d, ${}^{3}J_{C-F} = 8.2$ Hz), 128.3, 114.9 (d, ${}^{2}J_{C-F} = 21.6$ Hz); HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂FN₂O₂, 235.0883; found, 235.0875.

Methyl 5-(4-chlorophenyl)-2-methyl-1H-imidazole-4-carboxylate 5ca

A white solid; mp 145-146 °C; 32.1mg, Yield 64 %; ¹H NMR (300 MHz, CDCl₃) δ 7.77 (s, 2H), 7.40 – 7.31 (m, 2H), 3.83 (s, 3H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 146.8, 143.8, 134.5, 130.8, 130.5, 128.2, 120.4, 51.8, 14.1; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂ClN₂O₂, 251.0587; found, 251.0582.

Methyl 5-(4-bromophenyl)-2-methyl-1H-imidazole-4-carboxylate 5da

A yellow solid; mp 144-145 °C; 34.2mg, Yield 58 %; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.7 Hz, 2H), 3.84 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 150.5, 146.8, 131.1, 131.0, 130.8, 130.7, 122.7, 51.7, 13.9; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂BrN₂O₂, 295.0082; found, 295.0074.

Methyl 2-methyl-5-(4-(trifluoromethyl)phenyl)-1H-imidazole-4-carboxylate 5ea

A yellow oil; 19.9mg, Yield 35 %; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 3.88 (s, 3H), 2.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 147.0, 144.3, 136.1, 130.2 (q, ² J_{C-F} = 32.4 Hz), 129.4, 124.9 (q, ³ J_{C-F} = 27.8

Hz), 124.9 (q, ${}^{4}J_{C-F} = 3.6$ Hz), 124.2 (q, ${}^{1}J_{C-F} = 272.0$ Hz), 51.9, 14.1; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₃H₁₂F₃N₂O₂, 185.0851; found, 285.0843.

Methyl 2-methyl-5-(4-nitrophenyl)-1H-imidazole-4-carboxylate 5fa

A white solid; mp 169-170 °C; 23.0mg, Yield 44 %; ¹H NMR (300 MHz, CDCl₃) δ 8.37 – 8.25 (m, 2H), 8.17 (d, *J* = 8.6 Hz, 2H), 3.91 (s, 3H), 2.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.1, 147.4, 144.9, 139.6, 129.9, 123.4, 123.3, 123.2, 52.0, 14.3; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂N₃O₄, 262.0828; found, 262.0819.

A gelatineous yellow solid; 37.8mg, Yield 64 %; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (dd, J = 7.9, 1.2 Hz, 1H), 7.46 – 7.34 (m, 2H), 7.30 – 7.24 (m, 1H), 3.78 (s, 3H), 2.47 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.1, 146.5, 140.9, 133.4, 132.5, 131.9, 130.0, 126.9, 123.8, 123.4, 51.6, 13.7; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂BrN₂O₂, 295.0082; found, 295.0071.

Methyl 5-(3-bromophenyl)-2-methyl-1H-imidazole-4-carboxylate 5ha

A gelatineous yellow solid; 25.4mg, Yield 43 %; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (s, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.48 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.30 – 7.23 (m,

1H), 3.85 (s, 3H), 2.48 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 146.9, 142.5, 133.9, 132.0, 131.3, 129.4, 127.8, 121.9, 120.6, 51.8, 13.8; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₂H₁₂BrN₂O₂, 295.0082; found, 295.0071.

Methyl 2-methyl-5-(m-tolyl)-1H-imidazole-4-carboxylate 5ia

A yellow oil; 19.8mg, Yield 43 %; ¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.51 (m, 2H), 7.24 (d, J = 7.9 Hz, 1H), 7.18 – 7.10 (m, 1H), 3.80 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.0, 146.2, 144.1, 137.3, 131.6, 129.6, 129.3, 127.8, 126.2, 119.6, 51.6, 21.4, 13.9; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₃H₁₅N₂O₂, 231.1134; found, 231.1124.

Ethyl 2-methyl-5-phenyl-1H-imidazole-4-carboxylate 5ja

A yellow oil; 24.9mg, Yield 54 %; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (dt, J = 7.7, 1.4 Hz, 2H), 7.49 – 7.33 (m, 3H), 4.31 (q, J = 7.1 Hz, 2H), 2.38 (d, J = 2.2 Hz, 3H), 1.32 (d, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 146.4, 142.6, 132.1, 129.2, 128.4, 127.8, 120.7, 60.7, 14.2, 13.8; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₃H₁₅N₂O₂, 231.1134; found, 231.1125.

Methyl 2-butyl-5-phenyl-1H-imidazole-4-carboxylate 5ab

A white solid; mp 117-118 °C; 16.0mg, Yield 31 %; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 7.1 Hz, 2H), 7.48 – 7.36 (m, 3H), 3.87 (s, 3H), 2.77 (t, J = 7.9 Hz, 2H), 1.76 (p, J = 7.9 Hz, 2H), 1.42 (q, J = 8.9, 8.2 Hz, 2H), 1.01 – 0.90 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 150.5, 144.5, 129.1, 128.6, 128.5, 128.0, 126.9, 51.6, 30.4, 28.3, 22.4, 13.7; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₅H₁₉N₂O₂, 259.1447; found, 259.1442.

Methyl 2-benzyl-5-phenyl-1*H*-imidazole-4-carboxylate 5ac

A gelatineous yellow solid; 23.4mg, Yield 40 %; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.61 (m, 2H), 7.48 – 7.29 (m, 6H), 7.24 (d, J = 6.4 Hz, 2H), 4.09 (s, 2H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 148.8, 136.1, 129.1, 129.0, 129.0, 128.9, 128.8, 128.6, 128.0, 127.3, 127.3, 51.7, 35.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₇H₁₀NO₂, 293.1290; found, 293.1285.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: mo_1211_3_0m

Bond precision: C-C = 0.0108 A Wavelength=0.71073 Cell: a=5.6468(5) b=12.0159(10) c=14.1013(13)alpha=81.991(5) beta=89.552(5) qamma = 82.145(5)Temperature: 150 K Calculated Reported Volume 938.51(14) 938.51(14) Space group P -1 P -1 Hall group -P 1 -P 1 Moiety formula C10 H8 Br N O C10 H8 Br N O Sum formula C10 H8 Br N O C10 H8 Br N O Mr 238.07 238.08 1.685 1.685 Dx,g cm-3 Ζ 4 4 Mu (mm-1) 4.335 4.335 F000 472.0 472.0 F000′ 471.06 h,k,lmax 6,14,17 6,14,17 Nref 3688 3641 0.541,0.707 0.434,0.745 Tmin,Tmax Tmin' 0.434 Correction method= # Reported T Limits: Tmin=0.434 Tmax=0.745 AbsCorr = MULTI-SCAN Data completeness= 0.987 Theta(max) = 26.021R(reflections) = 0.0631(2849) wR2(reflections) = 0.1658(3641) S = 1.182Npar= 237

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

) A PLAT:	lert 341_ALI	level ERT_3_C	C Low Bond Precision on C-C Bonds	0.01083	Ang.
⊖ A	lert	level	G		
PLAT	005_ALH	ERT_5_G	No Embedded Refinement Details Found in the CIF	Please	Do !
PLAT	083_ALE	ERT_2_G	SHELXL Second Parameter in WGHT Unusually Large	10.42	Why ?
PLAT	154_ALE	ERT_1_G	The s.u.'s on the Cell Angles are Equal(Note)	0.005	Degree
PLAT	398_ALH	ERT_2_G	Deviating C-O-C Angle From 120 for O1	104.7	Degree
PLAT	398_ALH	ERT_2_G	Deviating C-O-C Angle From 120 for O2	104.1	Degree
0	ALERT	level 2	\mathbf{A} = Most likely a serious problem - resolve or expla	ain	
0	ALERT	level 1	B = A potentially serious problem, consider careful	ly	
1	ALERT	level (${f C}$ = Check. Ensure it is not caused by an omission of	r oversigł	ıt
5	ALERT	level (${f G}$ = General information/check it is not something un	nexpected	
1	ALERT	type 1	CIF construction/syntax error, inconsistent or miss	sing data	
3	ALERT	type 2	Indicator that the structure model may be wrong or	deficient	2
1	ALERT	type 3	Indicator that the structure quality may be low		
0	ALERT	type 4	Improvement, methodology, query or suggestion		
1	ALERT	type 5	Informative message, check		

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/10/2018; check.def file version of 15/10/2018

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 22019358xj_0m

Bond precision: C-C = 0.0058 AWavelength=0.71073 Cell: a=9.930(3) b=9.524(3) c=24.977(8) alpha=90 beta=90 gamma=90 Temperature: 100 K Calculated Reported Volume 2362.2(13)2362.0(13)Space group Рbса РЬса Hall group -P 2ac 2ab -P 2ac 2ab Moiety formula C12 H11 Br N2 O2 C12 H11 Br N2 O2 Sum formula C12 H11 Br N2 O2 C12 H11 Br N2 O2 Mr 295.13 295.14 1.660 1.660 Dx,g cm-3 Ζ 8 8 Mu (mm-1) 3.471 3.471 F000 1184.0 1184.0 F000′ 1182.20 h,k,lmax 12,12,32 12,12,32 Nref 2719 2701 0.812,0.870 0.606,0.746 Tmin,Tmax Tmin' 0.758 Correction method= # Reported T Limits: Tmin=0.606 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 0.993 Theta(max) = 27.533R(reflections) = 0.0451(1887) wR2(reflections) = 0.1142(2701) S = 1.058Npar= 160

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

2	Note
Please	Check
1	Report
1	Note
	2 Please 1 1

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 17/03/2019; check.def file version of 04/03/2019

8. Reference

1. Z. -H. Guan, Z. -Y. Zhang, Z. -H. Ren, Y. -Y. Wang and X. Zhang, J. Org. Chem., 2011, 76, 339-341.

2. H. Geng, W. Zhang, J. Chen, G. Hou, L. Zhou, Y. Zou, W. Wu and X. Zhang, *Angew. Chem. Int. Ed.*, 2009, **48**, 6052–6054.

3. Y. Zheng, X. Li, C. Ren, D. Zhang-Negrerie, Y. Du and K. Zhao, J. Org. Chem., 2012, 77, 10353-10361.

S36

