Supporting Information

Catalytic Asymmetric Synthesis of 2,5-Dihydrofurans Using

Synergistic Bifunctional Ag Catalysis

Taoda Shi,^{a,b} Shenghan Teng,^a Alavala Gopi Krishna Reddy,^d Xin Guo,^c Yueteng Zhang,^b Kohlson T. Moore,^b Thomas Buckley,^b Damian J. Mason,^b Wei Wang, ^b Eli Chapman,^{b*} and Wenhao Hu^{d*}

- a. Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, Shanghai, China, 200062.
- b. College of Pharmacy, Department of Pharmacology and Toxicology, the University of Arizona, Tucson, Arizona 85721.
- c. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China, 325035.
- d. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China, 510006.

Table of contents

A. General information	3
B. Preparation of substrates	3
C. Primarily screening with [Pd(allyl)Cl] ₂ as catalyst	3-4
D. Synthesis and characterization of 2,5-dihydrofurans	5-19
E. Mechanistic experiments	21-26
F. Derivatization of enantiopure 2,5-dihydrofuran 3k	27
G. References	28
H. NMR spectra	29-77
I. HPLC	78-136
J. Structural determination of 7k by X-ray	137

A. General information

All reactions were carried out under nitrogen atmosphere with magnetic stirring. Anhydrous DCM was purified by distillation over calcium hydride after elimination of alcohol stabilizer. Powdered 4Å molecular sieves were dried in a Muffle furnace at 400°C for 5 h prior to use. All other commercially obtained reagents were used as received unless specifically indicated. Flash column chromatography was performed over H silica gel purchased from Qindao Haiyang Chemical Co., China or Agela Technologies USA.

All ¹H NMR and ¹³C NMR spectra were recorded using a Brucker-400 MHz and Brucker-500 MHz spectrometer in CDCl₃ unless otherwise noted. Residue solvent peaks were chosen as an internal standard (¹H NMR: CDCl₃ at 7.26 ppm, ¹³C NMR: CDCl₃ at 77.0 ppm). Data of ¹H NMR spectra were reported as follows: chemical shift, integration, multiplicity. (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). HRMS (ESI) were recorded on lonSpec FT-ICR mass spectrometer. HPLC analyses was performed on Dalian Elite (UV230+ UV/Vis Detector and P230P High Pressure Pump) and Agilent 1100. Chiralpak IA column was purchased from Daicel Chemical Industries, LTD. Single crystal Xray diffraction data (**7k**) were recorded on Bruker-AXS SMART APEX II single crystal X-ray diffractometer.

General procedure for the synthesis of aryl propargyl alcohols: All aryl propargyl alcohols were prepared using reported procedures.¹ Pd(PPh₃)₂Cl₂ (0.05 mmol, 0.01 equiv) and Cul (0.5 mmol. 0.1 equiv) were added to the flask. To this mixture were added iodoarene (5 mmol, 1 equiv) and Et₃N (10 mL) under nitrogen atmosphere. After 10 minutes, the propargyl alcohol (5.5 mmol, 1.1 equiv) was injected into the mixture. After stirring at 25°C for 10 hours, the solution was then quenched by aqueous NH₄Cl, and extracted with Et₂O 3 times. The combined organic phase was washed with 1M HCl and brine and dried with anhydrous Na₂SO₄. After filtration, the solvent was removed to give the crude product, which was then purified by flash chromatography on silica gel (PE/EA =10:1~5:1) to give the pure product.

Scheme S2. preparation of methyl aryldiazoacetates

General procedure for the synthesis of diazoacetates: All the diazoacetates were prepared by reported procedures.² Methyl arylacetates (10 mmol, 1.0 equiv) and *p*-ABSA (11 mmol, 1.1equiv) was dissolved in a 100 mL flask with 40 mL CH₃CN. After stirring for 10 min in an ice bath, DBU (1.1 mmol, 1.1 equiv) in 20 mL of CH₃CN was added dropwise. After stirring for 12 hours at 25°C, the reaction mixture was quenched with saturated aqueous NH₄Cl at 0°C. The mixture was then extracted with diethyl ether 3 times. The combined organic phase was washed with 60 mL brine and dried with anhydrous Na₂SO₄. After

filtration, the solvent was removed to give the crude product. It was then purified by flash chromatography on silica gel with petroleum ether to give the pure product.

C. Preliminary screening with [Pd(allyl)Cl]₂ as catalyst

General procedure for evaluation of ligands of $[Pd(allyl)Cl]_2$ in formal [4+1] cycloaddition of diazoacetates and propargyl alcohol: The mixture of 100 mg 4Å MS, $[Pd(allyl)Cl]_2$ (0.01 mmol, 0.1 equiv) and ligand (0.02 mmol, 0.1 equiv) was dissolved in 0.5 mL of anhydrous dichloromethane at 25°C. The reaction mixture was stirred for 2 h. Then aryl propargyl alcohol **2** (0.1 mmol) dissolved in 1 mL of anhydrous dichloromethane was added. After stirring for five minutes, diazoacetate **1** (0.15 mmol, 1.5 equiv) dissolved in 4 mL anhydrous dichloromethane was added via a syringe pump over 1 h. After stirring for 24 h, the 4Å MS were filtered and the solvent was removed to give the crude product. The crude product was then purified by microgram scale preparative TLC (PE/EA = 40:1-20:1) to give the pure product for chiral HPLC analysis. All the ligands presented in Table S1 showed minimal enantioselectivity.

Table S1. Evaluation of ligands of [Pd(allyl)Cl]₂ in formal [4+1] cycloaddition of diazoacetates and propargyl alcohol.^a

Entry	L	M:L	con. ^{<i>b</i>} (%)	ee ^c of 3a (%)
1	L8	2:1	>90	54
2	L14	1:1	>90	0
3	L15	1:1	>90	0
4	L16	1:1	>90	0
5	L17	1:1	>90	0
6	L18	1:1	>90	0
7	L19	1:1	>90	0
8	L20	1:1	>90	0

9	L21	1:1	>90	0
10	L22	1:1	>90	0

^aReaction conditions: **1a** (0.1 mmol) in DCM (1.0 mL) was added to a solution of **2a** (0.15 mmol, 1.0 equiv), [Pd(allyl)Cl]₂ (0.002 mmol, 0.02 equiv), 100 mg 4Å MS and **L** (0.002 or 0.001 mmol, 0.002 or 0.001 equiv) in 1.0 mL of DCM, 25°C. ^bDetermined by ¹H NMR of the reaction mixture. ^cDetermined by chiral HPLC analysis.

D. Synthesis and characterization of 2,5-dihydrofurans

Scheme S3 preparation of *rac*-3

General procedure for the synthesis of racemic 2,5-dihydrofuran: A mixture of 200 mg 4Å MS, AgSbF₆ (0.04 mmol, 0.2 equiv) and *rac*-BINAP (0.02 mmol, 0.1 equiv) or $[Pd(allyl)Cl]_2$ (0.002 mmol, 0.02 equiv) was dissolved in 1 mL of anhydrous dichloromethane at 25°C. The reaction mixture was stirred for 2 h. Then aryl propargyl alcohol **2** (0.2mmol) dissolved in 1 mL of anhydrous dichloromethane was added. After stirring for five minutes, diazoacetate **1** (0.3 mmol, 1.5 equiv) dissolved in 4 mL anhydrous dichloromethane was added via a syringe pump over 1 h. After stirring for 24 h, 4Å MS were filtered and the solvent was removed to give the crude product. The crude product was then purified by flash chromatography on silica gel (PE/EA = 40:1~20:1) to give the pure product.

Scheme S4. preparation of (S)-3

General procedure for the synthesis of (*S*)-3 with optimal conditions from first-round screening: The glassware was wrapped with aluminum foil to protect sliver catalyst from light. The mixture of 200 mg 4Å MS, AgSbF₆ (0.04 mmol, 0.2 equiv) and (*R*)-3,5-DM-BINAP (0.02 mmol, 0.1 equiv) was dissolved in 1 mL of anhydrous dichloromethane at 25°C. The reaction mixture was stirred for 2 h. Then aryl propargyl alcohol 2 (0.2mmol) dissolved in 1 mL of anhydrous dichloromethane was added. After stirring for 1 h, diazoacetate **1** (0.3mmol, 1.5 equiv) dissolved in 4 mL anhydrous dichloromethane was added via a syringe pump over 1 h. After stirring for 48 h, 4Å MS were filtered and the solvent was removed to give the crude product. The crude product was then purified by flash chromatography on silica gel (PE/EA = 40:1~20:1) to give the pure product.

General procedure for the synthesis of (S)-3 with optimal conditions from secondround screening: The glassware was dried with heat gun under vacuum and cooled down in an Argon atmosphere. Then it was wrapped with aluminum foil to protect sliver catalyst from light. **1** (0.2 mmol, 1 equiv) in DCM (2 mL) was added to the mixture of **2** (0.4 mmol, 2 equiv), CaH_2 (0.4 mmol, 2 equiv), 200 mg Å MS, $AgSbF_6$ (0.04 mmol, 0.2 equiv), (*R*)-3,5-DM-BINAP (0.02 mmol, 0.1 quiv) and 2 mL DCM, via a syringe pump over 1 h. After stirring for 48 h, 4Å MS and catalyst were filtered off and the solvent was removed to give the crude product. The crude product was then purified by flash chromatography on silica gel (PE/EA = 40:1~20:1) to give the pure product.

3a: colorless liquid, yield 54%, 78% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 50:1; 254 nm; retention time: t_{major} = 11.28 min, t_{minor} = 20.70 min); ¹H NMR(400 MHz, CDCl₃): δ 7.35 – 7.20 (m, 10H), 6.47 (t, *J* = 2.0 Hz, 1H), 4.99 (dd, J_1 = 5.2 Hz, J_2 = 2.0 Hz, 1H), 4.93 (dd, J_1 = 5.2 Hz, J_2 = 2.0 Hz, 1H), 3.78 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 172.0, 141.2, 139.4, 132.6, 128.3, 128.2, 128.0, 127.9, 127.4, 126.8, 94.8, 74.8, 52.5. HRMS: calcd 303.0997 for C₁₈H₁₆O₃Na [M+Na]⁺, found 303.1002.

3b: colorless liquid, yield 46%, 87% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 50:1; 254 nm; retention time: t_{major} = 14.60 min, t_{minor} = 20.55 min); ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.8 Hz, 2H), 7.26 – 7.24 (m, 7H), 6.47 (t, *J* = 2.0 Hz, 1H), 4.96 (dd, *J*₁ = 5.2 Hz, *J*₂ = 2.0 Hz, 1H), 4.92 (dd, *J*₁ = 5.2 Hz, *J*₂ = 2.0 Hz, 1H), 3.78 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 171.7, 141.0, 138.4, 132.3, 131.3, 129.2, 128.2, 128.1, 127.8, 127.1, 122.5, 94.1, 75.0, 52.7. HRMS: calcd 381.0102 for C₁₈H₁₅O₃BrNa [M+Na]⁺, found 381.0083.

3c: colorless liquid, yield 42%, 88% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 60:1; 254 nm; retention time: t_{major} = 14.57 min, t_{minor} = 21.40 min); ¹H NMR(400 MHz, CDCl₃): δ 7.29 (d, *J* = 3.6 Hz, 4H), 7.23 (s, 5H), 6.47 (t, *J* = 1.8 Hz, 1H), 4.99 (dd, J_1 = 5.2 Hz, J_2 = 2.0 Hz, 1H), 4.92 (dd, J_1 = 5.2 Hz, J_2 = 2.0 Hz, 1H), 3.78 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 171.74, 140.98, 137.85, 134.25, 132.29, 128.89, 128.38, 128.17, 128.11, 127.82, 127.04, 94.09, 75.00, 52.72. HRMS: calcd 337.0607 for C₁₈H₁₅O₃CINa [M+Na]⁺, found 337.0608.

3d: colorless liquid, yield 36%, 76% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 50:1; 254 nm; retention time: t_{major} = 15.09 min, t_{minor} = 32.97 min); ¹H NMR(400 MHz, CDCl₃): δ 7.28 (dd, *J* = 6.8, 3.0 Hz, 2H), 7.25 (s, 1H), 7.22 (dd, *J*₁ = 6.6 Hz, *J*₂ = 4.2 Hz, 4H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.49 (t, *J* = 1.8 Hz, 1H), 4.95 (dd, *J*₁ = 8.6 Hz, *J*₂ = 1.8 Hz, 1H), 4.93 (dd, *J*₁ = 8.6 Hz, *J*₂ = 1.8 Hz, 1H), 3.77 (s, 3H), 2.33 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 172.18, 141.07, 138.16, 136.42, 132.64, 129.56, 128.98, 127.99, 127.85, 127.32, 126.79, 94.64, 74.66, 52.52, 21.16 . HRMS: calcd 317.1154 for C₁₉H₁₈O₃Na [M+Na]⁺, found 317.1163.

3e: colorless liquid, yield 42%, 71% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 25:1; 254 nm; retention time: t_{major} = 18.97 min, t_{minor} = 42.16 min); ¹H NMR(400 MHz, CDCl₃): $\overline{0}7.20 - 7.14$ (m, 6H), 6.85-6.38 (m, 3H), 6.38 (t, *J* = 2.0 Hz, 1H), 4.91 (dd, J_1 = 14.0 Hz, J_2 = 2.0 Hz, 1H), 4.86 (dd, J_1 = 14.0 Hz, J_2 = 2.0 Hz, 1H), 3.70 (s, 3H), 3.66 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 171.9, 159.4, 141.3, 140.8, 132.7, 128.0, 127.9, 126.9, 119.7, 113.8, 113.2, 94.7, 74.8, 55.2, 52.6. HRMS: calcd 333.1103 for C₁₉H₁₈O₄Na [M+Na]⁺, found 333.1114.

3f: colorless liquid, yield 36%, 69% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 25:1; 254 nm; retention time: t_{major} = 35.53 min, t_{minor} = 40.26 min); ¹H NMR(400 MHz, CDCl₃): δ 7.24 – 6.79 (m, 8H),6.46 (t, *J* = 2.0 Hz, 1H), 4.98 (dd, *J*₁ = 14.0 Hz, *J*₂ = 2.0 Hz, 1H), 4.92 (dd, *J*₁ = 14.0 Hz, *J*₂ = 2.0 Hz, 1H), 3.86 (s, 3H), 3.78 (s, 3H), 3.74 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 172.2, 149.0, 148.6, 141.3, 132.8, 131.8, 128.0, 127.9, 127.8, 126.8, 119.9, 110.9, 110.6, 94.5, 74.6, 55.8, 55.7, 52.5. HRMS: calcd 363.1208 for C₂₀H₂₀O₅Na [M+Na]⁺, found363.1217.

3g: colorless liquid, yield 50%, 79% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 15:1; 254 nm; retention time: t_{major} = 36.31 min, t_{minor} = 24.36 min); ¹H NMR(400 MHz, CDCl₃): δ 7.28 – 7.25 (m, 5H), 6.57 (s, 2H), 6.41 (t, *J* = 1.6 Hz, 1H), 5.00 (dd, J_1 = 13.8 Hz, J_2 = 1.6 Hz, 1H), 4.92 (dd, J_1 = 13.8 Hz, J_2 = 1.6 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 3.70 (s, 6H).¹³C NMR(100 MHz, CDCl₃): 172.0, 152.8, 141.4, 137.9, 134.5,

132.9, 128.2, 128.0, 127.9, 127.1, 104.7, 94.5, 74.9, 60.8, 56.0, 52.6. HRMS: calcd 393.1314 for $C_{21}H_{22}O_6Na$ [M+Na]⁺, found 393.1328.

3h: colorless liquid, yield 24%, 68% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 6:1; 254 nm; retention time: t_{major} = 75.17 min, t_{minor} = 44.61 min); ¹H NMR(400 MHz, CDCl₃): δ 7.43 – 7.27 (m, 16H), 7.19 (dd, *J* = 10.9, 8.0 Hz, 4H), 6.64 (s, 2H), 6.34 (s, 1H), 5.04 (s, 2H), 4.93 (d, *J* = 4.4 Hz, 4H), 4.87 (d, *J* = 1.4 Hz, 2H), 3.69 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 171.78, 152.44, 141.57, 138.36, 137.85, 137.06, 134.60, 132.90, 128.53, 128.41, 128.17, 128.11, 127.99, 127.95, 127.79, 127.76, 127.46, 126.76, 107.32, 94.51, 75.10, 74.78, 71.21, 58.42, 52.55 .HRMS: calcd 621.2253 for C₃₉H₃₄O₆Na [M+Na]⁺, found 621.2240.

3k: colorless liquid, yield 56%, 88% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 50:1; 254 nm; retention time: t_{major} = 10.87 min, t_{minor} = 14.84 min); ¹H NMR(400 MHz, CDCl₃): δ 7.55 (s, 1H), 7.44 (d, *J* = 7.9 Hz, 1H), 7.29 – 7.20 (m, 6H), 7.17 (t, *J* = 7.9 Hz, 1H), 6.47 (d, *J* = 1.6 Hz, 1H), 5.00 (dd, *J*₁ = 13.9 Hz, *J*₂ = 1.7 Hz, 1H), 4.95 (dd, *J*₁ = 13.9 Hz, *J*₂ = 1.7 Hz, 1H), 3.79 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 171.49, 141.56, 140.94, 132.23, 131.43, 130.46, 129.68, 128.16, 127.89, 127.16, 126.05, 122.38, 94.08, 75.10, 52.78. HRMS: calcd 381.0102 for C₁₈H₁₅O₃BrNa [M+Na]⁺, found 381.0102.

3I: colorless liquid, yield 47%, 88% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 50:1; 254 nm; retention time: t_{major} = 10.84 min, t_{minor} = 14.89 min); ¹H NMR(400 MHz, CDCl₃): δ 7.39 (s, 1H), 7.29 – 7.22 (m, 8H), 6.45 (t, *J* = 2 Hz, 1H), 4.99 (dd, J_1 = 13.6 Hz, J_2 = 1.6 Hz, 1H), 4.93 (dd, J_1 = 13.6 Hz, J_2 = 1.6 Hz, 1H), 3.78 (s, 3H).¹³C NMR(100 MHz, CDCl₃): 171.5, 141.3, 141.0, 134.2, 132.3, 129.3, 128.4, 128.1, 128.0, 127.9, 127.6, 127.1, 125.6, 94.1, 75.0, 52.7 . HRMS: calcd 337.0607 for C₁₈H₁₅ClO₃Na[M+Na]⁺, found 337.0616.

3I': colorless liquid, yield 31%, 55% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 18:1; 254 nm; retention time: t_{major} = 5.28 min, t_{minor} = 6.16 min); ¹H NMR(400 MHz, CDCl₃): $\overline{07.42}$ (s, 1H), 7.32 – 7.17 (m, 8H), 6.46 (s, 1H), 4.96 (d, *J* = 13.8 Hz, 1H), 4.90 (d, *J* = 13.8 Hz, 1H), 1.35 (s, 9H).¹³C NMR(100 MHz, CDCl₃): 169.7, 141.8, 141.1, 134.1, 132.8, 129.3, 128.3, 128.0, 127.9, 127.2, 125.8, 94.4, 82.6, 74.9, 27.8.

3I": pale yellow liquid, yield 28%, 81% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 18:1; 254 nm; retention time: t_{major} = 9.61 min, t_{minor} = 14.78 min); ¹H NMR(400 MHz, CDCl₃): δ 7.38 (s, 1H), 7.35 – 7.24 (m, 4H), 7.24 – 7.12 (m, 9H), 6.46 (s, 1H), 5.23 (d, *J* = 13.2 Hz, 1H), 5.20 (d, *J* = 13.2 Hz, 1H), 4.98 (d, *J* = 13.5 Hz, 1H), 4.93 (d, *J* = 13.5 Hz, 1H).¹³C NMR(100 MHz, CDCl₃): 170.7, 141.3, 140.8, 135.2, 134.1, 132.2, 129.3, 128.4, 128.2, 128.1, 128.0, 127.8, 127.7, 127.3, 125.6, 94.1, 75.1, 67.3.

3m: colorless liquid, yield 44%; 81% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 11.22 min, t_{minor} = 15.34 min); ¹H NMR(400 MHz, CDCl₃): δ 7.43 (t, *J* = 4.2 Hz, 1H), 7.38 (s, 2H), 7.36 – 7.27 (m, 2H), 7.22 – 7.17 (m, 1H), 7.08 (s, 2H), 6.48 (t, *J* = 1.9 Hz, 1H), 1H NMR (500 MHz, Chloroform-d) δ 7.48 – 7.43 (m, 1H), 7.40 (dq, J = 5.7, 2.0 Hz, 2H), 7.36 – 7.25 (m, 3H), 7.22 (ddd, J = 7.7, 1.8, 1.2 Hz, 1H), 7.15 – 7.06 (m, 2H), 6.50 (t, J = 1.9 Hz, 1H), 5.02 (dd, *J*₁ = 14.2 Hz, *J*₂ = 2.0 Hz, 1H), 4.98 (dd, *J*₁ = 14.2 Hz, *J*₂ = 2.0 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.25, 140.95, 139.90, 134.39, 131.11, 130.91, 129.61, 129.53, 128.73, 128.42, 127.42, 126.57, 125.36, 109.76, 109.29, 94.08, 75.00, 52.85. HRMS: calcd C₂₀H₁₉O₃NaCl[M+Na]⁺ for 365.0920, found 365.0907.

3n: colorless liquid, yield 49%; 80% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 13.29 min, t_{minor} = 16.83 min); ¹H NMR(400 MHz, CDCl₃): δ 7.40 – 7.33 (m, 3H), 7.32 – 7.28 (m, 1H), 7.24 – 7.14 (m, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.49 (t, *J* = 1.8 Hz, 1H), 5.00 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H), 4.96 (dd, *J*₁ = 14.1 Hz, *J*₂ = 2.0 Hz,1H)., 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.35, 141.02, 139.98, 135.59, 134.40, 131.31, 129.56, 129.50, 128.73, 127.78,

127.49, 125.45, 122.36, 94.08, 75.03, 52.82. HRMS: calcd $C_{18}H_{14}O_3NaClBr[M+Na]^+$ for 414.9713, found 414.9724.

3o: colorless liquid, yield 62%; 82% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 10 : 1; 254 nm; Retention time: t_{major} = 8.42 min, t_{minor} = 11.95 min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.39 (d, *J* = 1.1 Hz, 1H), 7.29 (ddd, *J* = 4.5, 3.5, 1.8 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.19 (d, *J* = 8.9 Hz, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.39 (s, 1H), 4.95 (dd, *J*₁ = 13.7 Hz, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 13.7 Hz, *J*₂ = 1.9 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H); ¹³C NMR(100 MHz, CDCl₃):171.64, 159.34, 141.45, 140.20, 134.20, 129.42, 129.13, 128.49, 127.70, 125.69, 125.31, 124.58, 113.56, 94.10, 75.05, 55.20, 52.75. HRMS: calcd 367.0713 for C₁₉H₁₇O₄NaCl[M+Na]⁺, found 367.0706.

3p: colorless liquid, yield 53%, 49% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/isopropanol = 18:1; 254 nm; retention time: t_{major} = 6.05 min, t_{minor} = 6.80 min); ¹H NMR(400 MHz, CDCl₃): δ 7.42 (s, 1H), 7.35–7.26 (m, 3H), 5.77 (d, *J* = 1.4 Hz, 1H), 4.83 (dd, J_1 = 13.7 Hz, J_2 = 1.9 Hz, 1H), 4.81 (dd, J_1 = 13.7 Hz, J_2 = 1.9 Hz, 1H), 3.82 (s, 3H), 1.82 (d, *J* = 1.4 Hz, 3H).¹³C NMR(100 MHz, CDCl₃): 171.4, 141.4, 137.4, 134.4, 129.5, 128.3, 126.3, 124.2, 124.1, 94.3, 74.8, 52.6, 13.0. HRMS: calcd 276.0553 for C₁₃H₁₃ClO₃Na[M+Na]⁺, found 276.0542.

3q: colorless liquid, yield 64%; 92% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 11.80 min, t_{minor} = 14.97min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.46 (d, *J* = 7.8 Hz, 2H), 7.28 (s, 2H), 7.16 (d, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.46 (t, *J* = 1.9 Hz, 1H), 4.97 (dd, *J*₁ = 8.9 Hz, *J*₂ = 1.9 Hz, 1H), 4.95 (dd, *J*₁ = 8.9 Hz, *J*₂ = 1.9 Hz, 1H), 3.80 (s, 3H), 2.33 (s, 3H).; ¹³C NMR(100 MHz, CDCl₃): 171.77, 140.68, 138.45, 138.05, 131.85, 131.31, 129.26, 128.90, 127.67, 126.18, 122.48, 94.23, 75.00, 52.72, 21.16. HRMS: calcd 395.0259 for C₁₉H₁₇O₃NaBr[M+Na]⁺, found 395.0248.

3r: colorless liquid, yield 71%; 71% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 11.53 min, t_{minor} = 16.43 min) ; ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.34 (m, 2H), 7.28 – 7.24 (m, 4H), 7.03 (t, *J* = 8.7 Hz, 1H), 6.52 (t, *J* = 1.9 Hz, 1H), 5.01 (dd, J_1 = 13.9 Hz, J_2 =1.9 Hz, 1H), 4.95 (dd, J_1 = 13.9 Hz, J_2 =1.9 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.01, 141.11, 135.20, 132.38, 129.40, 129.34, 128.15, 128.08, 127.81, 126.93, 115.21, 115.04, 94.07, 74.80, 52.60. HRMS: calcd 299.1005 for C₁₈H₁₆FO₃[M+H]⁺, found 299.1045.

3s: colorless liquid, yield 70%; 92% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane/isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 17.13 min, t_{minor} = 23.83 min) ; ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.49 (m, 2H), 7.27 (m, 4H), 7.16 – 7.11 (m, 2H), 6.50 (t, *J* = 1.9 Hz, 1H), 5.02 (dd, *J*₁ = 13.8 Hz, *J*₂ = 1.9 Hz, 1H), 4.95 (dd, *J*₁ = 13.8 Hz, *J*₂ = 1.9 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.76, 140.88, 139.08, 137.34, 132.27, 129.39, 128.20, 128.15, 127.84, 127.13, 94.38, 94.20, 74.97, 52.64. HRMS: calcd 407.0066 for C₁₈H₁₆IO₃[M+H]⁺, found 407.0036.

3t: colorless liquid, yield 78%; 88% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 12.97 min, t_{minor} = 17.01 min) ; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 2.2 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 2.3 Hz, 1H), 7.29 – 7.27 (m, 2H), 7.27 – 7.23 (m, 2H), 7.21 (dd, J = 8.4, 2.2 Hz, 1H), 6.49 (t, J = 1.9 Hz, 1H), 5.04 (dd, J_1 = 13.9 Hz, J_2 = 1.9 Hz, 1H), 4.97 (dd, J_1 = 13.9 Hz, J_2 = 1.9 Hz, 1H), 3.82 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 171.41, 140.83, 139.55, 132.46, 132.40, 132.04, 130.06, 129.55, 128.73, 128.32, 127.83, 127.31, 126.89, 93.54, 75.19, 52.80. HRMS: calcd 349.0320 for C₁₈H₁₅Cl₂O₃[M+H]⁺, found 349.0360.

3u: colorless liquid, yield 40%; 76% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 7.80 min, t_{minor} = 8.75 min) ; ¹H NMR(400 MHz, CDCl₃): 7.69 (dq, J_1 = 1.8 Hz, J_2 = 0.9 Hz, 1H), 7.63 – 7.53 (m, 2H), 7.45 (dt, J_1 = 7.8 Hz, J_2 = 0.7 Hz, 1H), 7.32 – 7.19 (m, 5H), 6.50 (s, 1H), 5.06 (dd, J_1 = 13.8 Hz, J_2 = 1.9 Hz, 1H), 4.99 (dd, J_1 = 13.8 Hz, J_2 = 1.9 Hz, 1H), 3.84 (s, 3H).; ¹³C NMR

(125 MHz, CDCl₃) δ 171.64, 141.03, 140.32, 132.23, 130.80, 128.55, 128.25, 127.89, 127.33, 125.12, 125.09, 124.33, 124.30, 109.79, 94.04, 75.19, 52.75. HRMS: calcd 349.0973 for C₁₉H₁₆F₃O₃[M+H]⁺, found 349.0943.

3v^{cl}: colorless liquid, yield 64%; 80% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 11.41 min, t_{minor} = 15.73 min) ; ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.38 (m, 1H), 7.34 – 7.31 (m, 1H), 7.29 (d, J = 2.0 Hz, 1H), 7.25 – 7.20 (m, 3H), 7.00 – 6.87 (m, 2H), 6.44 (t, J = 1.9 Hz, 1H), 5.01 (dd, $J_1 = 13.9$ Hz, $J_2 = 1.9$ Hz, 1H), 4.97 (dd, $J_1 = 13.9$ Hz, $J_2 = 1.9$ Hz, 1H), 3.82 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.51, 141.18, 140.07, 134.37, 129.81, 129.75, 129.53, 128.66, 128.36, 127.51, 127.10, 127.08, 125.47, 115.22, 115.05, 94.12, 74.96, 52.69. HRMS: calcd 333.0616 for C₁₈H₁₅CIFO₃[M+H]⁺, found 333.0666.

3v[!]: colorless liquid, yield 68%; 88% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 16.51 min, t_{minor} = 22.77 min) ; ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.65 (m, 2H), 7.27 – 7.20 (m, 2H), 7.14 – 7.08 (m, 2H), 6.98 – 6.91 (m, 2H), 6.44 (t, *J* = 1.9 Hz, 1H), 5.00 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.0 Hz, 1H), 4.94 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.67, 139.97, 138.90, 137.45, 129.77, 129.70, 129.25, 127.05, 115.24, 115.06, 94.51, 94.23, 74.91, 52.67. HRMS: calcd 424.9972 for C₁₈H₁₅FlO₃[M+H]⁺, found 424.9932.

3w^{cl}: colorless liquid, yield 59%; 80% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 11.41 min, t_{minor} = 15.53 min) ; ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.37 (m, 1H), 7.33 (ddd, *J* = 7.9, 2.1, 1.2 Hz, 1H), 7.31 – 7.21 (m, 5H), 7.21 – 7.16 (m, 2H), 6.50 (t, *J* = 1.9 Hz, 1H), 5.01 (dd, *J*₁ = 14.1 Hz, *J*₂ = 2.0 Hz, 1H), 4.97 (dd, *J*₁ = 14.1 Hz, *J*₂ = 2.0 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.46, 141.09, 139.96, 134.42, 134.13, 130.69, 129.58, 129.24, 128.74, 128.38, 127.72, 127.52, 125.48, 94.08, 74.96, 52.72. HRMS: calcd 349.0320 for C₁₈H₁₅Cl₂O₃[M+H]⁺,

found 349.0350.

3w¹: colorless liquid, yield 67%; 88% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 15.80 min, t_{minor} = 22.06 min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.46 (d, *J* = 7.8 Hz, 2H), 7.28 (s, 2H), 7.16 (d, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.46 (s, 1H), 5.00 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H), 4.94 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H)., 3.80 (s, 3H), 2.33 (s, 3H).; ¹³C NMR(100 MHz, CDCl₃): 171.77, 140.68, 138.45, 138.05, 131.85, 131.31, 129.26, 128.90, 127.67, 126.18, 122.48, 94.23, 75.00, 52.72, 21.16. HRMS: calcd 440.9676 for C₁₈H₁₄CllO₃[M+H]⁺, found 440.9696.

3x^l: colorless liquid, yield 72%; 91% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 16.38 min, t_{minor} = 23.11 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.72 – 7.65 (m, 2H), 7.41 – 7.35 (m, 2H), 7.17 – 7.07 (m, 4H), 6.51 (t, *J* = 1.9 Hz, 1H), 4.99 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H), 3.81 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 171.60, 139.92, 138.78, 137.51, 131.36, 131.18, 129.50, 129.26, 127.81, 122.37, 94.61, 94.16, 74.94, 52.71. HRMS: calcd 484.9171 for C₁₈H₁₅BrlO₃[M+H]⁺, found 484.9201.

3y^{cl}: colorless liquid, yield 56%; 78% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 12.32 min, t_{minor} = 16.50min) ; ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.39 (t, *J* = 1.9 Hz, 1H), 7.36 – 7.24 (m, 3H), 7.22 (dd, *J* = 1.9, 1.2 Hz, 1H), 7.02 – 6.96 (m, 2H), 6.53 (t, *J* = 1.9 Hz, 1H), δ 4.99 (dd, *J*₁ = 14.2 Hz, *J*₂ = 1.9 Hz, 1H), 4.95 (dd, *J*₁ = 14.2 Hz, *J*₂ = 1.9 Hz, 1H)., 3.82 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 171.44, 141.08, 140.07, 137.32, 134.43, 131.72, 129.66, 129.60, 128.76, 127.88, 127.53, 125.50, 94.10, 94.02, 74.98, 52.74. HRMS: calcd 440.9676 for C₁₈H₁₅CIIO₃[M+H]⁺, found 440.9696.

3y^I: colorless liquid, yield 61%; 87% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 17.43 min, t_{minor} = 24.84 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.71 – 7.65 (m, 2H), 7.61 – 7.55 (m, 2H), 7.13 – 7.07 (m, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 6.53 (t, *J* = 1.9 Hz, 1H), δ 4.98 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 14.1 Hz, *J*₂ = 1.9 Hz, 1H), 3.81 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 171.60, 140.00, 138.77, 137.51, 137.33, 131.73, 129.62, 129.26, 127.84, 94.61, 94.13, 94.07, 74.93, 52.71. HRMS: calcd 532.9032 for C₁₈H₁₄I₂O₃[M+H]⁺, found 532.9052.

3z^{cl}: colorless liquid, yield 53%; 78% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 10.28 min, t_{minor} = 12.71 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.54 – 7.48 (m, 2H), 7.39 – 7.26 (m, 5H), 7.22 (ddd, *J* = 7.8, 1.8, 1.2 Hz, 1H), 6.60 (t, *J* = 1.9 Hz, 1H), 5.08 – 4.97 (m, 2H), 3.83 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 171.33, 140.95, 140.04, 135.84, 134.53, 129.67, 129.25, 128.87, 128.22, 127.46, 125.39, 125.13, 125.10, 125.08, 125.04, 94.14, 74.99, 52.76. HRMS: calcd 383.0584 for C₁₉H₁₄ClF₃O₃[M+H]⁺, found 383.0574.

3z[!]: colorless liquid, yield 58%; 90% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 13.63 min, t_{minor} = 17.73 min) ; ¹H NMR (500 MHz, CDCl₃): δ 7.72 – 7.67 (m, 2H), 7.51 (dt, *J* = 8.2, 0.7 Hz, 2H), 7.37 (dd, *J* = 8.5, 1.2 Hz, 2H), 7.29 (s, 1H), 7.13 – 7.08 (m, 2H), 6.60 (d, *J* = 1.9 Hz, 1H), 5.03 (dd, *J*₁ = 14.4 Hz, *J*₂ = 1.9 Hz, 1H), 4.98 (dd, *J*₁ = 14.4 Hz, *J*₂ = 2.0 Hz, 1H)., 3.82 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.49, 139.94, 138.65, 138.08, 137.89, 137.65, 137.59, 131.33, 129.25, 129.16, 128.18, 125.12, 125.09, 125.06, 94.70, 94.25, 74.98, 52.74. HRMS: calcd 474.9940 for C₁₉H₁₅F₃IO₃ [M+H]⁺, found 474.9945.

3aa^{CI}: colorless liquid, yield 43%; 76% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 17.27 min, t_{minor} = 21.58 min) ; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, *J* = 8.8 Hz, 2H), 7.40 (t, *J* = 1.9 Hz, 1H), 7.36 – 7.24 (m, 5H), 7.24 – 7.19 (m, 1H), 6.62 (t, *J* = 1.9 Hz, 1H), 5.03 (dd, *J*₁ = 14.3 Hz, *J*₂ = 1.9 Hz, 1H), 4.99 (dd, *J*₁ = 14.3 Hz, *J*₂ = 2.0 Hz, 1H)., 3.91 (s, 3H), 3.81 (s, 3H).;¹³C NMR (125 MHz, CDCl₃) δ 171.39, 166.73, 141.02, 140.32, 136.73, 134.42, 129.59, 129.41, 129.24, 128.77, 127.85, 127.53, 125.48, 94.11, 75.03, 52.73, 52.05. HRMS: calcd 373.0765 for C₂₀H₁₈ClO₅[M+H]⁺, found 373.0756.

3aa¹: colorless liquid, yield 50%; 90% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 27.76 min, t_{minor} = 34.29 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.95 – 7.89 (m, 2H), 7.68 (d, *J* = 8.8 Hz, 2H), 7.36 – 7.27 (m, 3H), 7.13 – 7.08 (m, 2H), 6.62 (t, *J* = 1.9 Hz, 1H), 5.03 (dd, *J*₁ = 14.3 Hz, *J*₂ = 1.9 Hz, 1H), 4.97 (dd, *J*₁ = 14.3 Hz, *J*₂ = 2.0 Hz, 1H)., 3.92 (s, 3H), 3.81 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 171.54, 166.71, 140.26, 138.72, 137.51, 136.74, 129.58, 129.43, 129.25, 129.21, 127.82, 94.62, 94.22, 77.22, 76.97, 76.71, 74.98, 52.71, 52.06. HRMS: calcd 465.0121 for C₂₀H₁₈IO₅[M+H]⁺, found 465.0128.

3ab^{cl}: colorless liquid, yield 76%; 80% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 10.18 min, t_{minor} = 16.55 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.43 (dt, J = 2.1, 0.9 Hz, 1H), 7.35 – 7.23 (m, 4H), 7.19 – 7.13 (m, 2H), 7.11 – 7.04 (m, 2H), 6.47 (t, J = 1.9 Hz, 1H), δ 5.01 (dd, J_1 = 13.7 Hz, J_2 = 1.9 Hz, 1H), 4.96 (dd, J_1 = 13.7 Hz, J_2 = 2.0 Hz), 1H, 3.82 (s, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 171.67, 141.49, 140.74, 138.09, 134.21, 129.41, 129.28, 128.91, 128.49, 127.73, 127.71, 126.28, 125.70, 94.07, 75.00, 52.65, 21.03. HRMS: calcd 329.0866 for C₁₉H₁₈ClO₃[M+H]⁺, found 329.0855.

3ab¹: colorless liquid, yield 72%; 86% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 15.10 min, t_{minor} = 19.84 min) ; ¹H NMR (500 MHz, CDCl₃): δ 7.70 – 7.63 (m, 2H), 7.20 – 7.11 (m, 4H), 7.10 – 7.04 (m, 2H), 6.47 (t, *J* = 1.9 Hz, 1H), 5.00 (dd, *J* = 13.8, 1.9 Hz, 1H), 5.00 (dd, *J*₁ = 13.8 Hz, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.0 Hz, 1H), 3.80 (s, 3H), 2.33 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 171.84, 140.64, 139.19, 138.09, 137.32, 129.48, 129.30, 128.93, 127.69, 126.24, 94.35, 94.15, 74.96, 52.63, 21.03. HRMS: calcd 421.0222 for C₁₉H₁₈IO₃[M+H]⁺, found 421.0235.

3ac^{CI}: colorless liquid, yield 78%; 87% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 9.10 min, t_{minor} = 14.21 min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.40 (s, 1H), 7.28 (d, *J* = 4.7 Hz, 1H), 7.24 (d, *J* = 4.5 Hz, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 6.45 (s, 1H), 4.97 (dd, *J*₁ = 13.8 Hz, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.0 Hz, 1H), 3.79 (s, 3H), 2.60 (d, *J* = 7.6 Hz, 2H), 1.20 (t, *J* = 7.6 Hz, 3H) ; ¹³C NMR(100 MHz, CDCl₃): 171.58, 144.30, 141.45, 140.72, 134.17, 129.45, 129.39, 128.47, 127.76, 127.70, 127.66, 126.27, 125.68, 94.10, 75.05, 52.74, 29.70, 15.22 HRMS: calcd 343.1023 for C₂₀H₂₀ClO₃[M+H]⁺, found 343.1056.

3ac¹: colorless liquid, yield 76%; 82% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 9.22 min, t_{minor} = 11.27 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.70 – 7.64 (m, 2H), 7.29 (s, 1H), 7.23 – 7.06 (m, 6H), 6.48 (t, *J* = 1.9 Hz, 1H), 5.00 (dd, *J*₁ = 13.8 Hz, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 13.8 Hz, *J*₂ = 1.9 Hz, 1H), 3.80 (s, 3H), 2.63 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 171.85, 144.35, 140.63, 139.20, 137.32, 129.50, 129.48, 127.72, 127.71, 126.26, 94.34, 94.15, 74.96, 52.63, 28.36, 15.07. HRMS: calcd 435.0379 for C₂₀H₂₀IO₃ [M+H]⁺, found 435.0367.

3ad^{CI}: colorless liquid, yield 78%; 67% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 7.64 min, t_{minor} = 10.68 min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.40 (s, 1H), 7.31 – 7.27 (m, 1H), 7.26 – 7.23 (m, 4H), 7.18 (d, *J* = 8.3 Hz, 2H), 6.47 (s, 1H), 5.00 (dd, *J*₁ = 13.8, *J*₂ = 2.0 Hz, 1H), 4.93 (dd, *J*₁ = 13.8, *J*₂ = 2.0 Hz, 1H), 3.79 (s, 3H), 1.28 (s, 9H); ¹³C NMR(100 MHz, CDCl₃): 171.58, 151.14, 141.51, 140.60, 134.17, 129.41, 129.13, 128.47, 127.73, 127.44, 126.30, 125.70, 125.11, 94.09, 75.05, 52.75, 41.99, 31.18. HRMS: calcd 393.1233 for C₂₂H₂₃O₃NaCl[M+Na]⁺, found 393.1220.

3ad^I: colorless liquid, yield 70%; 71% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 12.65 min, t_{minor} = 15.98 min) ; ¹H NMR (500 MHz, CDCl₃): δ 7.71 – 7.65 (m, 2H), 7.31 – 7.25 (m, 2H), 7.25 – 7.20 (m, 2H), 7.19 – 7.13 (m, 2H), 6.51 (t, *J* = 1.9 Hz, 1H), 5.00 (dd, *J*₁ = 13.8, *J*₂ = 1.9 Hz, 1H), 4.93 (dd, *J*₁ = 13.8, *J*₂ = 2.0 Hz, 1H), 3.81 (s, 3H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.87, 151.20, 140.47, 139.26, 137.34, 129.57, 129.15, 127.40, 126.33, 125.16, 94.37, 94.14, 74.96, 52.65, 34.45, 31.07. HRMS: calcd 463.0692 for C₂₂H₂₄IO₃[M+H]⁺, found 463.0703.

3ae^I: colorless liquid, yield 81%; 82% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: $t_{major} = 25.29$ min, $t_{minor} = 45.43$ min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.70 – 7.64 (m, 2H), 7.25 – 7.19 (m, 2H), 7.17 – 7.11 (m, 2H), 6.82 – 6.76 (m, 2H), 6.41 (t, J = 1.9 Hz, 1H), 4.99 (dd, $J_1 = 13.7$ Hz, $J_2 = 1.9$ Hz, 1H), 4.92 (dd, $J_1 = 13.6$ Hz, $J_2 = 2.0$ Hz 1H), 3.81 (s, 3H), 3.80 (s, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 171.90, 159.46, 140.14, 139.20, 137.35, 129.50, 129.12, 125.27, 124.61, 113.57, 94.37, 94.16, 74.95, 55.11, 52.63. HRMS: calcd 437.0172 for C₁₉H₁₈IO₄[M+H]⁺, found 437.0186.

3af^{CI}: colorless liquid, yield 61%; 80% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 60 : 1; 254 nm; Retention time: t_{major} = 8.46 min, t_{minor} = 11.25 min); ¹H NMR(400 MHz, CDCl₃): δ 7.41 (d, *J* = 1.1 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.25 – 7.21 (m, 2H), 7.05 (s, 1H), 6.98 (d, *J* = 7.9 Hz, 1H), 6.91 (d, *J* = 7.9 Hz, 1H), 6.42 (s, 1H), 4.99 (dd, *J*₁ = 13.7 Hz, *J*₂ = 1.9 Hz, 1H), 4.92 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.0 Hz, 1H), 3.79 (s, 3H), 2.20 (d, *J* = 11.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 171.60, 141.53, 140.84, 136.77, 136.30, 134.11, 129.72, 129.39, 129.32, 128.96, 128.41, 127.70, 126.07, 125.68, 125.30, 94.05, 75.04, 52.73, 19.82, 19.49. HRMS: calcd 365.0920 for C₂₀H₁₉O₃NaCl[M+Na]⁺, found 365.0907.

3af¹: colorless liquid, yield 74%; 85% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 12.64 min, t_{minor} = 16.43 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.69 – 7.63 (m, 2H), 7.29 (s, 1H), 7.17 – 7.08 (m, 3H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.45 (t, *J* = 1.9 Hz, 1H), 4.99 (dd, *J*₁ = 13.7 Hz, *J*₂ = 1.9 Hz, 1H), 4.92 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.0 Hz, 1H), 3.81 (s, 3H), 2.24 (s, 3H), 2.21 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 171.88, 140.75, 139.27, 137.26, 136.84, 136.39, 129.75, 129.50, 129.44, 128.90, 126.06, 125.25, 94.27, 94.09, 74.94, 52.62, 19.70, 19.34.. HRMS: calcd 435.0379 for C₂₀H₂₀IO₃[M+H]⁺, found 435.0398.

3ag^{CI}: colorless liquid, yield 71%; 86% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 15.03 min, t_{minor} = 24.37 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.62 – 7.56 (m, 2H), 7.54 – 7.41 (m, 5H), 7.40 – 7.27 (m, 6H), 6.58 (t, *J* = 1.9 Hz, 1H), 5.05 (dd, *J*₁ = 14.0 Hz, *J*₂ = 1.9 Hz, 1H), 4.99 (dd, *J*₁ = 14.0 Hz, *J*₂ = 2.0 Hz, 1H), 3.85 (s, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 171.66, 141.39, 140.82, 140.48, 140.37, 134.33, 131.07, 129.53, 128.83, 128.63, 128.25, 127.73, 127.53, 127.14, 126.96, 126.82, 125.70, 94.12, 75.04, 52.72. HRMS: calcd 391.1023 for C₂₄H₂₀ClO₃[M+H]⁺, found 391.1049.

3ag¹: colorless liquid, yield 73%; 92% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 24.07 min, t_{minor} = 48.52 min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.46 (d, *J* = 7.8 Hz, 2H), 7.28 (s, 2H), 7.16 (d, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.46 (s, 1H), 5.03 (dd, *J*₁ = 14.0 Hz, *J*₂ = 1.9 Hz, 1H), 4.97 (dd, *J*₁ = 13.9 Hz, *J*₂ = 2.0 Hz, 1H), 3.80 (s, 3H), 2.33 (s, 3H).; ¹³C NMR(100 MHz, CDCl₃): 171.77, 140.68, 138.45, 138.05, 131.85, 131.31, 129.26, 128.90, 127.67, 126.18, 122.48, 94.23, 75.00, 52.72, 21.16. HRMS: calcd 483.0379 for C₂₄H₁₉IO₃[M+H]⁺, found 483.0386.

3ah^I: colorless liquid, yield 80%; 93% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 15.77 min, t_{minor} = 24.45 min) ; ¹H NMR(500 MHz, CDCl₃): δ 7.72 – 7.66 (m, 2H), 7.48 (dt, *J* = 2.1, 0.9 Hz, 1H), 7.40 (ddd, *J* = 6.2, 3.0, 2.0 Hz, 1H), 7.29 (s, 1H), 7.14 – 7.07 (m, 4H), 6.51 (t, *J* = 1.9 Hz, 1H), 5.01 (dd, *J* = 14.2, 1.9 Hz, 1H), 5.01 (dd, *J*₁ = 14.2 Hz, *J*₂ = 1.9 Hz, 1H), 4.95 (dd, *J*₁ = 14.1 Hz, *J*₂ = 2.0 Hz, 1H), 3.82 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 171.51, 139.82, 138.72, 137.48, 134.46, 131.13, 130.85, 129.67, 129.16, 128.46, 126.52, 122.25, 94.58, 94.15, 74.88, 52.73. HRMS: calcd 483.9171 for C₁₈H₁₅BrlO₃[M+H]⁺, found 483.9179.

3ai^{CI}: colorless liquid, yield 73%; 85% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 9.48 min, t_{minor} = 14.60 min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.43 (dt, *J* = 2.1, 0.9 Hz, 1H), 7.34 – 7.23 (m, 4H), 7.18 – 7.11 (m, 1H), 7.11 – 7.07 (m, 2H), 7.04 – 6.98 (m, 1H), 6.47 (t, *J* = 1.9 Hz, 1H), 5.02 (dd, *J* = 13.8, 1.9 Hz, 1H), 5.02 (dd, *J*₁ = 13.8 Hz, *J*₂ = 1.9 Hz, 1H), 4.96 (dd, *J*₁ = 13.8 Hz, *J*₂ = 2.0 Hz, 1H), 3.82 (s, 3H), 2.31 (s, 3H).; ¹³C NMR(125 MHz, CDCl₃): δ 171.63, 141.45, 141.14, 137.74, 134.16, 132.24, 129.35, 128.96, 128.56, 128.46, 128.05, 127.65, 126.93, 125.61, 125.03, 94.06, 75.01, 52.66, 21.29. HRMS: calcd 329.0866 for C₁₉H₁₈ClO₃[M+H]⁺, found 329.0878.

3ail: colorless liquid, yield 75%; 85% ee, determined by HPLC (Daicel Chirapak IA, flow rate:

1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 13.07 min, t_{minor} = 18.14 min) ; ¹H NMR(400 MHz, CDCl₃): δ 7.70 – 7.64 (m, 2H), 7.18 – 7.06 (m, 5H), 7.01 (d, J = 7.5 Hz, 1H), 6.48 (t, J = 1.9 Hz, 1H), 5.01 (dd, $J_1 = 13.8$ Hz, $J_2 = 1.9$ Hz, 1H), 4.93 (dd, $J_1 = 13.8$ Hz, $J_2 = 1.9$ Hz, 1H), 3.81 (s, 3H), 2.31 (s, 3H).; ¹³C NMR(125 MHz, CDCl₃): δ 171.81, 141.00, 139.18, 137.79, 137.27, 132.25, 129.43, 128.97, 128.47, 128.08, 126.94, 124.94, 94.31, 94.14, 74.96, 52.64, 21.32. HRMS: calcd 421.0222 for C₁₉H₁₈IO₃[M+H]⁺, found 421.0249.

3aj^{CI}: colorless liquid, yield 40%; 72% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 11.39 min, t_{minor} = 19.98 min) ; ¹H NMR (500 MHz, CDCl₃): δ 7.46 – 7.41 (m, 1H), 7.36 – 7.27 (m, 4H), 7.21 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.92 – 6.82 (m, 2H), 6.46 (t, *J* = 2.0 Hz, 1H), 5.00 (*J*₁ = 14.1 Hz, *J*₂ = 2.0 Hz, 1H), 4.95 (dd, *J*₁ = 14.1 Hz, *J*₂ = 2.1 Hz, 1H), 3.85 (s, 3H).; ¹³C NMR (125 MHz, CDCl₃) δ 171.31, 140.92, 134.92, 134.76, 134.27, 129.51, 128.79, 127.90, 127.46, 127.35, 126.33, 125.81, 125.52, 94.09, 75.01, 52.72. HRMS: calcd 321.0274 for C₁₆H₁₄ClO₃S[M+H]⁺, found 321.0292.

3aj¹: colorless liquid, yield 48%; 77% *ee*, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 50 : 1; 254 nm; Retention time: t_{major} = 19.19 min, t_{minor} = 29.04 min) ; ¹H NMR (500 MHz, CDCl₃): δ 7.72 – 7.66 (m, 2H), 7.23 – 7.14 (m, 3H), 6.91 – 6.81 (m, 2H), 6.45 (t, *J* = 2.0 Hz, 1H), 4.99 (dd, *J*₁ = 14.1 Hz, *J*₂ = 2.0 Hz, 1H), 4.93 (dd, *J*₁ = 14.1 Hz, *J*₂ = 2.1 Hz, 1H), 3.84 (s, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 171.49, 138.63, 137.43, 134.83, 134.81, 129.59, 127.47, 127.37, 126.31, 125.50, 94.69, 94.23, 74.97, 52.70.; HRMS: calcd 411.9630 for C₁₆H₁₄IO₃S[M+H]⁺, found 411.9656.

E. Mechanistic experiments

1. Titration of (*R*)-3,5-DM-BINAP into AgSbF₆ in ¹H NMR analysis

Figure S1: Stacked spectra of ¹H NMR of AgSbF6 and (R)-3,5-DM-BINAP with ratio of 0:1, 1:1, 2:1, 3:1, and 4:1. We observed a stable complex signal when the ratio was increased to 1:2 (Supporting information, Figure S1), suggesting that the complex of (R)-3,5-DM-BINAP and AgSbF₆ adopted a 1:2 coordination in the reaction.

2. Titration of (R)-3,5-DM-BINAP into AgSbF₆ in ³¹P NMR analysis

Figure S2: Stacked spectra of ³¹P NMR of AgSbF₆ and (*R*)-3,5-DM-BINAP with ratio of 0:1, 1:1, 2:1, 3:1, and 4:1. ³¹P NMR for 1:1 shows the presence of fine free phosphine peaks along with broad peaks due to complex formation, whereas, the absence of free phosphine peaks and presence of only broad pattern for remaining ratios (1:2, 1:3, 1:4) also suggest a 1:2 ratio is needed for complete conversion of (*R*)-3,5-DM-BINAP to the active chiral catalytic complex.

3. HMRS analysis of the [(R)-3,5-DM-BINAP](AgSbF₆)₂

Elemental Composition Report

Figure S3: High resolution mass spectrometry (HRMS) of [(R)-3,5-DM-BINAP](AgSbF₆)₂

5. Nonlinear effect of silver catalyst

Scheme S5. Nonlinear effect of [(R)-3,5-DM-BINAP](AgSbF₆)₂

An oven-dried vial was charged with 50 mg 4Å MS, (*R*)-3,5-DM-BINAP (0.01 mmol; 20% ee, 40% ee, 60% ee, 80% ee and 100% ee; Daicel Chirapak OD-H, flow rate: 1.0 mL/ min, hexane: isopropanol= 800:1), AgSbF₆ (0.02 mmol) and anhydrous dichloromethane (0.5 mL) at 25°C. The mixture was stirred for 2 h, and a solution of phenyl propargyl alcohol (0.05 mmol) in anhydrous dichloromethane (0.5 mL) was added. After stirring for 1 h, a solution of diazoacetate (0.075 mmol) in anhydrous dichloromethane (1 mL) was added slowly. An aliquot of the mixture was taken out after stirring for 12 h. For each reaction using different ee value of the catalyst, the ee value of the target product was determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min, hexane/ isopropanol = 50:1; 254 nm; retention time: t_{major} = 10.87 min, t_{minor} = 14.84 min). The template reaction of **11** and **2a** leading to **31** had a positive nonlinear effect (Figure S1). This finding suggests that there is possibly more than one equivalent of chiral silver catalyst binding to the substrate in the key transition state.

6. Control experiment of using Rh₂(OAc)₄ as a cocatalyst

Scheme S6. Control experiment of using $Rh_2(OAc)_4$ as a cocatalyst leads to the decrease in chemoselectivity and enantioselectivity.

An oven-dried vial was charged with 100 mg 4 Å MS, (*R*)-3,5-DM-BINAP (10 mol%), AgSbF₆ (20 mol%), Rh₂(OAc)₄ (5% mol%) and anhydrous dichloromethane (0.5 mL) at 25°C in dark. The mixture was stirred for 2 h, and a solution of phenyl propargyl alcohol (0.1 mmol) in anhydrous dichloromethane (0.5 mL) was added. After stirring for 1 h, a solution of diazoacetate (0.15 mmol) in anhydrous dichloromethane (2 mL) was added slowly. After stirring for 48 h, 4 Å MS were filtered and the solvent was removed to give the crude product. The crude product was then purified by flash chromatography on silica gel (PE/EA = $40:1\sim20:1$) to give the pure product. Then the pure product **3I** was applied to NMR and chiral HPLC analysis.

7. Kinetic Study: determination of the catalyst order

Scheme S7. Kinetic study of [(R)-3,5-DM-BINAP](AgSbF₆)₂-catalyzed formal [4+1] cycloaddition

An oven-dried vial was charged with 100 mg 4Å MS, (*R*)-3,5-DM-BINAP (0.005 mmol, 5 mol%; 0.010 mmol, 10 mol%; 0.015 mmol, 15 mol%; 0.020 mmol, 20 mol%), AgSbF₆ (2 equiv of BINAP ligand) and anhydrous dichloromethane (0.5 mL) at 25°C. The mixture was stirred for 2 h, and a solution of phenyl propargyl alcohol (0.1 mmol) in anhydrous dichloromethane (0.5 mL) was added. After stirring for 1 h, a solution of diazoacetate **11** (0.15 mmol) in anhydrous dichloromethane (2 mL) was added slowly. An aliquot of the reaction mixture (0.2 mL) was taken out in every 30 min. After simple work-up to remove 4Å MS, the conversion of the sample (Figure S5) was measured by HPLC (Waters e2695, Kromasil 100-5C18, flow rate: 1.0 mL / min; water / aceto- nitrile = 1:1).

The initial reaction rate V_0 was obtained for each catalyst loading. Then we found a linear correlation between V_0 and the square of catalyst loading, which indicates second order kinetics of the chiral silver catalyst (Table S2 and Figure S6).

The calculation of initial reaction rate. F(t): correlation of HPLC product yield and time, G(t): correlation of product concentration and time; n: the reaction scale; V: the total volume of the reaction mixture. The initial rate = G(0) = nF(0)/V.

Possible reason to explain why the reaction kinetics contains the induction period. Since the reaction requires the bifunctionality of **9** which coordinates with carbene and alkyne separately. We assume it needs a short time to get to the equilibrium with the bicatalysts coordination model as the major coordination model. This is probably why the reaction rate increases after 10-20% conversion.

Figure S4: Real-time monitoring of conversion of reactions. A) 5 mol% catalyst loading; B) 10 mol% catalyst loading; C) 15 mol% catalyst loading; D) 20 mol% catalyst loading. The initial reaction rate V_0 was obtained for each catalyst loading. Then we found a linear correlation between V_0 and the square of catalyst loading, which indicates second order kinetics of the chiral silver catalyst.

Entry	catalyst loading (mol %)	C*C (mol ² /L ²)	$V_0 \ (mol \cdot L^{-1} \cdot h^{-1})$
A	5	0.00008	0.00526
В	10	0.00033	0.00771
С	15	0.00075	0.01251
D	20	0.00133	0.01758

Table S2: the relationship o	f initial rate and square o	f catalyst concentration
------------------------------	-----------------------------	--------------------------

F. Derivatization of enantiopure 2,5-dihydrofuran 3k

Scheme S8 preparation of lactone 7k

Procedure for PCC oxidation of 2,5-dihydrofuran (S)-3k:³ To a 20 mL flask, (S)-**3k** (0.2 mmol) was added. Then PCC (0.4 mmol, 2.0 equiv) dissolved in DCE and KOAc (0.4 mmol, 2.0 equiv) were added. After refluxing for 2 h, the reaction was cooled to 25°C and quenched with saturated NH₄Cl. The aqueous phase was extracted with ethyl acetate 3 times. The combined organic phase was dried with anhydrous Na₂SO₄. The solvent was removed with vacuum rotator, affording the crude product. Then the crude product was purified by flash chromatography on silica gel (PE/EA = 10:1~5:1) to give the pure product **7k**.

7k: white solid, yield 65%; 91% ee, determined by HPLC (Daicel Chirapak IA, flow rate: 1.0 mL/min; hexane / isopropanol = 80 : 1; 254 nm; Retention time: t_{major} = 41.04 min, t_{minor} = 38.26 min); ¹H NMR(400 MHz, CDCl₃): δ 7.53 (d, *J* = 1.8 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 3H), 7.41 – 7.33 (m, 2H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.23 (t, *J* = 8.1 Hz, 1H), 6.62 (s, 1H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.60, 167.58, 164.64, 136.69, 132.87, 131.66, 131.11, 130.14, 128.94, 128.64, 126.64, 122.69, 122.26, 116.67, 89.98, 53.90. HRMS: calcd 394.9895 for C₁₈H₁₃BrO₄Na[M+Na]⁺, found 394.9881.

G. Reference

1. (a) Liang, Y.; Xie, Y.; Li, J. Modified palladium-catalyzed Sonogashira cross- coupling reactions under copper-, amine-, and solvent-free conditions. *Adv. Synth. Catal.* **2006**, *348*, 545 – 550. (b) Kleinbeck, F.; Toste, F. D. Gold (I)-catalyzed enantioselective ring expansion of allenylcyclopropanols. *J. Am. Chem. Soc.*, **2009**, *131*, 9178–917.

2. (a) Starmans, W. A. J.; Thijs, L.; Zwanenburg, B. Novel chiral dirhodium catalysts derived from aziridine and azetidine carboxylic acid for intermolecular cyclopropana- tion reactions with methyl phenyldiazoacetate. *Tetrahedron*, **1998**, *54*, 629-636. (b) Yu, W. Y.; Tsoi, Y. T.; Zhou, Z.; Chan, A. S. C. Palladium-catalyzed cross coupling reaction of benzyl bromides with diazoesters for stereoselective synthesis of (*E*) - α , β –diarylacrylates. *Org. Lett.* **2009**, *11*, 469-472.

3. Bonadies, F.; Bonini, C. Oxidation of active methylene compounds by pyridinium chlorochromate. *Syn. Comm*, **1988**, *18*, 1573-1580.

std-s3-173

O,CO₂Me

I. HPLC of 2,5-dihydrofurans

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	11.09417	3289.07	89.0713
2	20.78583	403.56	10.9287
total		3692.63	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	15.12167	2700.66	93.4937
2	21.22167	187.94	6.5063
total		2888.61	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area (%)
1	14.56833	8788.07	50.0014
2	21.40417	8787.60	49.9986

total

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	14.74917	1523.67	93.9648
2	21.87333	97.86	6.0352
total		1621.54	100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	14.137	BB	0.5483	1.12307e4	289.69943	50.1026
2	20.605	BB	0.8010	1.11847e4	198.01602	49.8974
Total	ls :			2.24153e4	487.71545	

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	15.0900	1617.22	50.84
2	32.97250	1563.51	49.16
total		3180.74	100

			(%)
1	18.96667	11745.68	49.8801
2	42.15750	11802.16	50.1199
total		23547.84	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	15.26250	12538.32	85.3815
2	37.45500	2146.73	14.6185
total		14685.05	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	35.53000	17204.81	50.2179
2	40.255500	17055.52	49.7821
total		34260.33	100

			(%)
1	34.43917	2547.98	84.3564
2	38.98333	472.51	15.6436
total		3020.49	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	24.36000	7766.39	51.7724
2	36.30833	7234.64	48.2276
total		15001.03	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	23.51667	396.60	10.6443
2	34.21583	3329.32	89.3557
total		3725.92	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area (%)
1	44.60750	21969.15	49.3153
2	75.17250	22579.16	50.6847
total		44548.31	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	10.87000	3628.98	50.0720
2	14.84417	3618.53	49.9280
total		7247.51	100
total		7247.51	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	11.50667	820.22	94.0869
2	15.45250	51.55	5.9131
total		871.77	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	10.84333	693.46	50.0540
2	14.89417	691.96	49.9460
total		1385.96	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	10.85417	679.18	95.2978
2	14.97583	33.51	4.7022
total		712.69	100

5801.32471 168.45918

Totals :

5018.37636 162.88180

			(%)
1	5.28417	1044.22	50.4962
2	6.15917	1023.69	49.5038
total		2067.91	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	5.28333	259.71	77.8760
2	6.16000	73.78	22.1240
total		333.50	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	9.61667	114.19	49.7749
2	14.76250	115.22	50.2251
total		229.41	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	8.42417	421.13	49.4675
2	11.95083	430.19	50.5325
total		851.32	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	11.47167	1152.63	90.5986
2	15.78167	119.61	9.4014
total		1272.23	100

r can no.		1 Gan a Ga (111.000)	i oroontago or aroa
			(%)
1	13.28833	1703.62	49.6799
2	16.83333	1725.57	50.3201
total		3429.19	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	12.15417	2648.59	89.9086
2	15.53167	297.28	10.0914
total		2945.86	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	8.42417	1488.34	50.3907
2	11.95083	1465.26	49.6093
total		1953.60	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	8.77750	3422.79	90.9497
2	12.62750	340.60	9.0503
total		3763.39	100

Totals :

6584.90662 131.48090

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	6.05417	49.81	74.6891
2	6.80583	16.88	25.3109
total		3763.39	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	11.80500	896.50	51.2879
2	14.96833	851.48	48.7121
total		1747.98	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	13.26000	5781.87	95.9735
2	17.01000	242.57	4.0265
total		6024.45	100

Totals :

5.34164e4 1403.18500

1.44922e4 283.08157

Totals :

4415.92029 149.79537

Totals :

6395.17993 147.62393

117

Peak #	[min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.306	MM	0.8455	1042.02454	20.53952	50.1020
2	21.596	MM	1.0974	1037.77991	15.76123	49.8980
Total	ls :			2079.80444	36.30075	

1.75988e4 337.25647

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.179	MM	0.4795	2202.97656	76.57000	90.1863
2	16.551	MM	0.7843	239.71956	5.09402	9.8137
Tota.	ls :			2442.69612	81.66402	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.095	MM	0.7106	1.06773e4	250.44604	92.9965
2	19.842	MM	0.8710	804.10510	15.38731	7.0035
Total	Ls :			1.14814e4	265.83336	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.658	BP BB	0.3877	1.19543e4	433.48761	50.3688
Tota	ls :	DD	0.4302	2.37336e4	802.72498	43.0312

Totals :

1792.83545 70.42584

Totals :

2.27528e4 292.77173

Totals :

5071.81712 108.38427

14.600

[min] [min] [mAU*s] [mAU]

0.4895 390.52911

20

0.3752 4184.53906 159.97960 91.4640

4575.06818 171.21624

Area

25

11.23664

Height

30

Area

----|

8.5360

*

50 25 0

--- |

1

Totals :

Ţ

9.475 BB

2 14.600 PB

Peak RetTime Type

10

Width

132

Height. Peak RetTime Type Width Area Area # [min] [min] [mAU*s] [mAU] 老 1 13.067 MM 0.5983 9364.30176 260.85406 92.2681 0.6452 784.71606 2 18.144 MM 20.27131 7.7319

Totals :

1.01490e4 281.12537

Totals :

6573.27454 107.42036

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	38.25750	4044.27	50.0411
2	41.03667	4037.63	49.9589
total		8081.90	100

Peak NO.	Retention time (min)	Peak area (mV.sec)	Percentage of area
			(%)
1	39.02833	468.68	4.3928
2	41.59917	10200.67	95.6072
total		10669.35	100

J. Structural determination by X-ray

Figure S5 X-ray diffraction parameters and data for 7k (CCDC: 1432486).

Bond precisi	on: 0	-C = 0.0042	A	Wavelength=0.71073
Cell:	a=8.8995(4)	b=12.	.8103(6) c=1	13.9893(6)
	alpha=90	beta=	=90 gan	nma=90
Temperature:	173 K			
	Ca	lculated		Reported
Volume	15	94.85(12)		1594.85(12)
Space group	P	21 21 21		P2(1)2(1)2(
Hall group	P	2ac 2ab		?
Moiety formu	la Cla	8 H13 Br 04		?
Sum formula	C18	8 H13 Br 04		C18 H13 Br 04
Mr	37	3.18		373.19
Dx,g cm-3	1.	554		1.554
Z	4			4
Mu (mm-1)	2.	595		2.595
F000	75	2.0		752.0
F000'	75	.22		
h,k,lmax	10	15,16		10,15,16
Nref	28	1627]		2801
Tmin, Tmax	0.	109,0.509		0.455,0.552
Tmin'	0.1	378		
Correction m AbsCorr = MU	ethod= # Re ULTI-SCAN	ported T Lin	nits: Tmin=0.455	Tmax=0.552
Data complet	eness= 1.72	/1.00	Theta (max) = 25.0	010
R(reflection	s)= 0.0297(2486)	wR2(reflecti	ons)= 0.0679(2801)
S = 1.058		Npar= 208		