Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Ruthenium-Catalyzed *meta*-Selective C - H Nitration of various azole

ring-substituted arenes

Dong Zhang, ^a Di Gao, ^a Jinlin Cai, ^a Xiaoyu Wu, ^a Hong Qin, ^a Kai Qiao, ^a Chengkou Liu, ^a Zheng Fang ^a * and Kai Guo^{a, b} *

^aCollege of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd

S., Nanjing, 211816, China

^b State Key Laboratory of Materials-Oriented Chemical Engineering, 30 Puzhu Rd S., Nanjing,

211816, China

Table of Contents

1.	General Information	1
2.	Optimization of Reaction Conditions	2
3.	General procedures for the <i>meta</i> -nitration of various Arenes	4
4.	Gram scale synthesis and further Functional Transformations of	Nitroarenes15
	4.1 Gram scale synthesis of 3a	15
	4.2 further Functional Transformations of 3a	15
5.	Kinetic isotope effect studies	16
	5.1 Synthesis of 4a-D ₅	16
	5.2 Intermolecular Competition Reactions	17
	5.3 Parallel Reactions	
6.	¹ H NMR and ¹³ C NMR spectra	19

1. General Information

All reactions were carried out with magnetic stirring and in dried glassware. Standard syringe techniques were applied for transfer of dry solvents. All reagents and solvents were commercially available and used without any further purification unless specified. Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were recorded at 400 MHz and 100 MHz respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. ¹H NMR chemical shifts were determined relative to internal TMS at δ 0.0 ppm. ¹³C NMR chemical shifts were determined relative to CDCl₃ at δ 77.00 ppm. The following abbreviations were used to explain multiplicities: s =singlet, d =doublet, dd = doublet of doublet, t = triplet, td = triplet of doublet, q = quartet, m = multiplet, and br = broad. Analytical TLC was performed on precoated silica gel plates. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Optimization of Reaction Conditions

Table S1. Screening the catalysts in standard conditions

^a Reaction conditions: **1a** (0.2 mmol), AgNO₂ (1.2 equiv.), Catalysts (10 mol %), HPcy₃⁺·BF₄⁻ (30 mol %), PIFA (1.2 equiv.) and PIV-OH (0.3 equiv.) in DCE (2 mL) for 24 h at 100 °C in a sealed tube.

^b Yield was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

Table S2. Screening loadings of Ru₃(CO)₁₂, AgNO₂ and PIFA

Enter	Catalysta (mal 0/)	PIFA	AgNO ₂	Yield ^b
Enuy	Catalysis (mol %)	(equiv.)	(equiv.)	(%, 3 a)
1	Ru ₃ (CO) ₁₂ (5)	1.2	1.2	61%
2	Ru ₃ (CO) ₁₂ (20)	1.2	1.2	85%
3	$Ru_3(CO)_{12}(10)$	1.0	1.2	77%
4	$Ru_3(CO)_{12}(10)$	1.5	1.2	86%
5	$Ru_3(CO)_{12}(10)$	1.2	1.0	73%
6	$Ru_3(CO)_{12}(10)$	1.2	1.5	85%

^a Reaction conditions: 1a (0.2 mmol), AgNO₂ (equiv.), Ru₃(CO)₁₂ (10 mol %), HPcy₃⁺·BF₄⁻ (30 mol %), PIFA (equiv.) and PIV-OH (0.3 equiv.) in DCE (2 mL) for 24 h at 100 °C in a sealed tube.
^b Yield was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

Ia N	NO2 Source Ru ₃ (CO) ₁₂ (10 mol %) PIFA (1.2 equiv.) HPcy ₃ ⁺ ·BF ₄ (30 mol %) PIV-OH (0.3 equiv.) 2	N_{S} N_{O_2} 3a
Entry	NO ₂ Source	Yield ^b (%, 3a)
1	TBN °	6%
2	NaNO ₂	10%
3	AgNO ₃	78%
4	AgNO ₂	85%
5	Fe(NO ₃) ₃ ·9H ₂ O	13%
6	$Cu(NO_3)_2 \cdot 3H_2O$	28%

Table S3. Screening the nitrating source

^a Reaction conditions: **1a** (0.2 mmol), NO₂ Source (1.2 equiv.), $Ru_3(CO)_{12}$ (10 mol %), $HPcy_3^+ BF_4^-$ (30 mol %), PIFA (1.2 equiv) and PIV-OH (0.3 equiv.) in DCE (2 mL) for 24 h at 100 °C in a sealed tube.

^b Yield was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

^c TBN= *tert*-Butyl nitrite.

1a N	Ru ₃ (CO) ₁₂ (10 mol %) + AgNO ₂ PIFA (1.2 equiv.) (1.2 equiv.) P.Ligand (30 mol %) PIV-OH (0.3 equiv.) 2a DCE, 100 °C.	NO ₂ 3a
Entry	P.Ligand (30 mmol %)	Yield ^b (%, 3a)
1	PPh ₃	31%
2	PCy ₂	46%
3	PCy ₃	64%
4	$P(4-CH_3C_6H_4)_3$	41%

Table S4. Screening of P.Ligands

^a Reaction conditions: **1a** (0.2 mmol), $AgNO_2$ (1.2 equiv.), $Ru_3(CO)_{12}$ (10 mol %), P.Ligand (30 mol %), PIFA (1.2 equiv) and PIV-OH (0.3 equiv.) in DCE (2 mL) for 24 h at 100 °C in a sealed tube.

^b Yield was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

^c PCy₂= dicyclohexylphosphane, PCy₃= tricyclohexylphosphane.

	N S + AgNO ₂ PIFA (1.2 equiv.) HPcy ³ ·B PIV-OF Solve 1a 2a	12 (10 mmol %) (1.2 equiv.) F4 (0.3 equiv.) nt, Temp. 3a	, s
Entry	Solvent	Temp.	Yield ^b (%, 3a)
1	CH ₃ CN	100 °C	0%
2	PhMe	100 °C	20%
3	PhCl	100 °C	35%
4	dioxane	100 °C	0%
5	DMF	100 °C	0%
6	DMSO	100 °C	0%
7	EtOAc	100 °C	0%
8	DCM	100 °C	58%
9 c	DCE	80 °C	65%
10 ^d	DCE	120 °C	73%

Table S5. Screening of solvents and tempertures

^a Reaction conditions: **1a** (0.2 mmol), AgNO₂ (1.2 equiv.), Ru₃(CO)₁₂ (10 mol %), HPcy₃⁺·BF₄⁻ (30 mol %), PIFA (1.2 equiv) and PIV-OH (0.3 equiv.) in Solvent (2 mL) for 24 h at 100 °C in a sealed tube.

^b Yield was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

3. General procedures for the meta-nitration of various Arenes

In a 15 mL sealed tube the corresponding arenes **1** or **4** (0.2 mmol, 1.0 equiv.), AgNO₂ (0.24mmol, 1.2 equiv.), Ru₃(CO)₁₂ (12.8 mg, 10 mol %), PIFA (103.2 mg, 0.24 mmol, 1.2 equiv.),

 $HPcy_{3}^{+} \cdot BF_{4}^{-}$ (22.1 mg 30 mol %), PIV-OH (6.12 mg, 0.3 equiv.) and 2 mL DCE were added under air. The tube was capped and submerged into a pre-heated 100 °C oil bath. The reaction was stirred for 24h and cooled down to room temperature. Then the reaction mixture was diluted with EtOAc (5 mL) and filtered through a pad of silica gel. The sealed tube and silica gel were washed with an additional of EtOAc (20 mL). The filtrate was concentrated *in vacuo*, and the resulting residue was purified by flash column chromatography using EtOAc/*n*-hexane (1:10) as the eluent to afford the product.

2-(3-Nitrophenyl) thiazole (3a)

¹H NMR (400 MHz, CDCl₃) δ 8.79 (t, *J* = 1.9 Hz, 1H), 8.28 (m, 2H), 7.94 (d, *J* = 3.2 Hz, 1H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 3.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.43 , 148.73 , 144.24 , 135.09 , 132.13 , 130.08 , 124.34 , 121.41 , 120.32. HRMS (ESI-TOF) m/z Calcd for C₉H₆N₂ O₂S [M+H]⁺: 207.0223, found: 207.0221.

2-(2-Methyl-3-nitrophenyl) thiazole (3b)

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 3.3 Hz, 1H), 7.83 (dd, *J* = 12.1, 8.4 Hz, 2H), 7.51 (d, *J* = 3.3 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.28 , 151.76 , 143.39 , 135.83 , 134.12 , 131.22 , 126.47 , 124.79 , 120.78 , 16.61 . HRMS (ESI-TOF) m/z Calcd for C₁₀H₈N₂O₂S [M+H]⁺: 221.0739, found: 221.0733.

2-(3-Methyl-5-nitrophenyl) thiazole (3c)

¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.10 (d, *J* = 19.1 Hz, 2H), 7.92 (d, *J* = 3.2 Hz, 1H), 7.44 (d, *J* = 3.2 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.66 , 148.65 , 144.06 , 140.72 ,

134.72 , 132.67 , 124.80 , 120.10 , 118.73 , 21.27 . HRMS (ESI-TOF) m/z Calcd for $C_{10}H_8N_2O_2S$ [M+H]⁺: 221.0739, found: 221.0737.

Ethyl 3-nitro-5-(thiazol-2-yl) benzoate (3d)

¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.36 (s, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 8.20 (d, *J* = 6.7 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.33, 165.48, 157.07, 132.53, 131.98, 131.74, 130.72, 129.48, 127.69, 121.14, 61.58, 14.32. HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₀N₂O₄S [M+H]⁺: 279.0434, found: 279.0432.

2-(4-Methyl-3-nitrophenyl) thiazole (3e)

¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.09 (d, J = 9.8 Hz, 1H), 7.90 (d, J = 3.2 Hz, 1H), 7.46 – 7.38 (m, 2H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.45 , 149.47 , 143.97 , 134.97 , 133.46 , 132.69 , 130.33 , 122.46 , 119.79 , 20.41. HRMS (ESI-TOF) m/z Calcd for C₁₀H₈N₂O₂S [M+H]⁺: 221.0739, found: 221.0736.

2-(4-(tert-butyl)-3-nitrophenyl) thiazole (3f)

¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.4, 2.0 Hz, 1H), 7.93 (d, J = 2.0 Hz, 1H), 7.88 (d, J = 3.2 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 3.2 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.14, 151.49, 144.02, 142.66, 132.44, 129.39, 128.16, 121.62, 119.73, 35.76, 30.50. HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₄N₂O₂S [M+H]⁺: 263.0849, found: 263.0847.

2-(4-Methoxy-3-nitrophenyl) thiazole (3g)

¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.16 (dd, J = 8.8, 2.3 Hz, 1H), 7.87 (d, J = 3.3 Hz, 1H), 7.37 (d, J = 3.3 Hz, 1H), 7.18 (d, J = 8.8 Hz, 1H), 4.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.39 , 153.85 , 143.88 , 139.71, 131.81 , 126.47 , 123.82 , 119.28 , 113.89 , 56.77. HRMS (ESI-TOF) m/z Calcd for C₁₀H₈N₂O₃S [M+H]⁺:237.0328, found: 237.0327.

2-(4-Chloro-3-nitrophenyl) thiazole (3h)

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 3.0 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.38 (d, *J* = 3.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.19, 144.44, 133.50, 132.52, 130.43, 129.60, 127.99, 123.24, 120.60. HRMS (ESI-TOF) m/z Calcd for C₉H₅N₂O₂SCl [M+H]⁺:240.9833, found: 240.9834.

2-(4-Fluoro-3-nitrophenyl) thiazole (3i)

¹H NMR (400 MHz, CDCl₃) δ 8.65 (dd, J = 7.0, 2.3 Hz, 1H), 8.25 (m, 1H), 7.92 (d, J = 3.2 Hz, 1H), 7.45 (d, J = 3.2 Hz, 1H), 7.40 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.47. ¹³C NMR (101 MHz, CDCl₃) δ 164.23, 156.03 (d, J = 268.6 Hz), 144.26, 133.02 (d, J = 8.8 Hz), 130.70 (d, J = 4.3 Hz), 124.02 (d, J = 2.6 Hz), 120.34, 119.34, 119.12. HRMS (ESI-TOF) m/z Calcd for C₉H₅N₂O₂SF [M+H]⁺:225.0129, found: 225.0126.

2-Nitro-4-(thiazol-2-yl) benzaldehyde (3j)

¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.63 (s, 1H), 8.26 (d, J = 8.9 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 3.2 Hz, 1H), 7.48 (d, J = 3.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.36 ,

 $163.87\ ,\ 150.21\ ,\ 144.88\ ,\ 138.69\ ,\ 131.01\ ,\ 130.97\ ,\ 130.53\ ,\ 122.12\ ,\ 121.59.\ HRMS\ (ESI-TOF)\ m/z$ Calcd for $C_{10}H_6N_2O_3S\ [M+H]^+:235.0172$, found: 235.0174.

2-(2-Nitro-[1,1'-biphenyl]-4-yl) thiazole (3k)

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 1.8 Hz, 1H), 8.09 (dd, J = 8.1, 1.8 Hz, 1H), 7.85 (d, J = 3.2 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.39 – 7.32 (m, 4H), 7.29 – 7.24 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.07, 149.60, 144.23, 137.12, 136.59, 133.73, 132.58, 129.61, 128.77, 128.55, 127.74, 121.88, 120.16. HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₀N₂O₂S [M+H]⁺:283.0536, found: 283.0539.

2-(4-Nitronaphthalen-2-yl) thiazole (3l)

¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 1.7 Hz, 1H), 8.64 (s, 1H), 8.52 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 3.2 Hz, 1H), 7.77 – 7.70 (m, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 3.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.49 , 147.08 , 144.24 , 134.38 , 131.29 , 130.22 , 129.81 , 129.24 , 128.16 , 125.28 , 123.26 , 121.95 , 120.07 . HRMS (ESI-TOF) m/z Calcd for C₁₃H₈N₂O₂S [M+H]⁺:257.0379, found: 257.0374.

4-Methyl-2-(3-nitrophenyl) thiazole (**3m**)

¹H NMR (400 MHz, CDCl₃) δ 8.78 (t, *J* = 1.9 Hz, 1H), 8.30 (d, *J* = 7.8 Hz, 1H), 8.26 (d, *J* = 8.2 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.01 (s, 1H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.55, 154.42, 148.66, 135.05, 132.04, 129.99, 124.20, 121.26, 114.95, 17.11. HRMS (ESI-TOF) m/z Calcd for C₁₀H₈N₂O₂S [M+H]⁺:221.0379, found: 221.0373.

2-(3-Nitrophenyl) benzo [d] thiazole (3n)

¹H NMR (400 MHz, CDCl₃) δ 8.94 (t, *J* = 1.9 Hz, 1H), 8.43 (d, *J* = 7.8 Hz, 1H), 8.34 (d, *J* = 9.5 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.70 (t, *J* = 8.0 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.46 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.82, 153.82, 148.61, 135.14, 135.07, 132.93, 130.05, 126.78, 125.98, 125.12, 123.65, 122.22, 121.78. HRMS (ESI-TOF) m/z Calcd for C₁₃H₈N₂O₂S [M+H]⁺:257.0379, found: 257.0377.

2-(4-Methyl-3-nitrophenyl) benzo[*d*] thiazole (**30**)

¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 1.7 Hz, 1H), 8.12 (dd, J = 8.0, 1.8 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.41 – 7.31 (m, 2H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.97, 153.84, 149.50, 136.03, 134.98, 133.53, 132.81, 131.18, 126.69 , 125.78 , 123.48 , 123.41 , 121.75 , 20.57 . HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₀N₂O₂S [M+H]⁺:271.0536, found: 271.0536.

2-(4-Methoxy-3-nitrophenyl) benzo [d] thiazole (3p)

¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 2.2 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 8.2 Hz, 1H), 7.34 (t, J = 8.1 Hz, 1H), 7.12 (d, J = 8.8 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.89 , 154.56 , 153.75 , 139.75 , 134.83 , 132.74 , 126.66 , 126.24 , 125.58 , 124.71 , 123.20 , 121.69 , 113.88 , 56.83 . HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₀N₂O₃S [M+H]⁺:287.0485, found: 287.0487.

2-(4-Bromo-3-nitrophenyl) benzo[*d*] thiazole (**3q**)

¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 2.1 Hz, 1H), 8.08 – 8.00 (m, 2H), 7.87 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.39 (t, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.72, 153.75, 150.23, 135.74, 135.07, 134.11, 131.18, 126.97, 126.22, 124.02, 123.73, 121.85, 116.61. HRMS (ESI-TOF) m/z Calcd for C₁₃H₇N₂O₂SBr [M+H]⁺:334.9484, found: 334.9487.

2-(4-Chloro-3-nitrophenyl) benzo [*d*] thiazole (**3r**)

¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 2.1 Hz, 1H), 8.14 (d, J = 10.6 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 8.3 Hz, 1H), 7.39 (t, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.63 , 153.82 , 135.13 , 133.53 , 132.56 , 131.24 , 129.56 , 129.01 , 126.96 , 126.19 , 124.11 , 123.74 , 121.85 . HRMS (ESI-TOF) m/z Calcd for C₁₃H₇N₂O₂SCl [M+H]⁺:290.9990, found: 290.9993.

1-(3-Nitrophenyl)-1*H*-pyrazole (5a)

¹H NMR (400 MHz, CDCl₃) δ 8.56 (t, J = 2.1 Hz, 1H), 8.13 (dd, J = 8.2, 1.3 Hz, 1H), 8.09 (dd, J = 8.6, 1.7 Hz, 1H), 8.03 (d, J = 2.5 Hz, 1H), 7.78 (d, J = 1.5 Hz, 1H), 7.64 (t, J = 8.2 Hz, 1H), 6.57 – 6.51 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.87, 142.11, 140.85, 130.39, 126.81, 124.36, 120.68, 113.64, 108.81. HRMS (ESI-TOF) m/z Calcd for C₉H₇N₃O₂ [M+H]⁺:190.0611, found: 190.0613.

1-(4-(Chloromethyl)-3-nitrophenyl)-1*H*-pyrazole (**5b**)

¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 2.3 Hz, 1H), 7.99 (dd, J = 8.5, 2.3 Hz, 1H), 7.96 (d, J = 2.6 Hz, 1H), 7.72 (d, J = 1.6 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 6.55 – 6.40 (m, 1H), 5.83 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.01 , 142.53 , 140.97 , 130.46 , 126.79 , 126.11 , 123.34 , 115.35 , 109.24 , 70.08 . HRMS (ESI-TOF) m/z Calcd for C₁₀H₈N₃O₂Cl [M+H]⁺:238.0378, found: 238.0373.

1-(4-Bromo-3-nitrophenyl)-1*H*-pyrazole (5c)

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.88 (d, J = 2.5 Hz, 1H), 7.71 (d, J = 1.3 Hz, 2H), 7.67 (d, J = 1.4 Hz, 1H), 6.48 – 6.40 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.10, 142.39, 139.73, 135.91 , 126.69 , 122.63 , 115.66 , 110.85 , 109.17 . HRMS (ESI-TOF) m/z Calcd for C₉H₆N₃O₂Br [M+H]⁺:267.9716, found: 267.9719.

1-(4-Iodo-3-nitrophenyl)-1*H*-pyrazole (5d)

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 2.5 Hz, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 2.6 Hz, 1H), 7.68 (d, J = 1.4 Hz, 1H), 7.58 (dd, J = 8.6, 2.5 Hz, 1H), 6.48 – 6.44 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.34 , 142.64 , 142.36 , 140.60 , 126.64 , 122.85 , 115.47 , 109.15 , 81.67 . HRMS (ESI-TOF) m/z Calcd for C₉H₆N₃O₂I [M+H]⁺:315.9577, found: 315.9577.

3-Methyl-1-(3-nitrophenyl)-1*H*-pyrazole (5e)

¹H NMR (400 MHz, CDCl₃) δ 8.42 (t, J = 2.1 Hz, 1H), 7.98 (dd, J = 17.2, 9.2 Hz, 2H), 7.83 (d, J = 2.4 Hz, 1H), 7.53 (t, J = 8.2 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.77 , 148.87 , 140.82 , 130.29 , 127.40 , 123.90 , 120.11 , 113.12 , 108.89 , 13.67 . HRMS (ESI-TOF) m/z Calcd for C₁₀H₉N₃O₂ [M+H]⁺:207.0768, found: 207.0765.

3,5-Dimethyl-1-(3-nitrophenyl)-1*H*-pyrazole (5f)

¹H NMR (400 MHz, CDCl₃) δ 8.27 (t, J = 2.1 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.56 (t, J = 8.1 Hz, 1H), 5.99 (s, 1H), 2.33 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.24 , 148.40 , 140.84 , 139.59 , 129.91 , 129.71 , 121.39 , 118.78 , 108.41 , 13.43 , 12.66 . HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₁N₃O₂ [M+H]⁺:218.0924, found: 218.0927.

4-Bromo-1-(3-nitrophenyl)-1*H*-pyrazole (5g)

¹H NMR (400 MHz, CDCl₃) δ 8.42 (t, J = 2.1 Hz, 1H), 8.07 (d, J = 9.7 Hz, 1H), 7.97 (s, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.63 (s, 1H), 7.57 (t, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.81, 142.54 , 140.12, 130.55, 126.96, 124.01, 121.24, 113.46, 97.04. HRMS (ESI-TOF) m/z Calcd for C $_{9}$ H₆N₃O₂ Br[M+H]⁺:267.9716, found: 267.9717.

1-(3-Nitrophenyl)-1*H*-pyrazole-4-carbaldehyde (**5h**)

¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 8.57 (t, *J* = 2.1 Hz, 1H), 8.50 (s, 1H), 8.19 (d, *J* = 8.2 Hz, 1H), 8.16 (s, 1H), 8.06 (d, *J* = 8.1 Hz, 1H), 7.66 (t, *J* = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 183.78 , 148.95 , 142.24 , 139.85 , 130.84 , 130.13 , 126.33 , 125.00 , 122.34 , 114.58 . HRMS (ESITOF) m/z Calcd for C₁₀H₇N₃O₃ [M+H]⁺:218.0560, found: 218.0563.

1-(5-Methyl-1-(3-nitrophenyl)-1*H*-pyrazol-4-yl) ethan-1-one (5i)

¹H NMR (400 MHz, CDCl₃) δ 8.28 (t, *J* = 2.0 Hz, 1H), 8.26 (d, *J* = 8.2 Hz, 1H), 7.99 (s, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.67 (t, *J* = 8.1 Hz, 1H), 2.59 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.32, 148.46, 143.10, 142.59, 139.41, 130.90, 130.26, 123.25, 121.62, 120.39, 28.79, 12.40. HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₁N₃O₃ [M+H]⁺:246.0873, found: 246.0871.

In a 15 mL sealed tube the corresponding arenes **6** (0.2 mmol, 1.0 equiv.), $AgNO_2$ (0.24 mmol, 1.2 equiv.), $Ru_3(CO)_{12}(25.6 \text{ mg}, 20 \text{ mol }\%)$, PIFA (120.4 mg, 0.28 mmol, 1.4 equiv.), $HPcy_3^+ \cdot BF_4^-$ (22.1 mg 30 mol %), PIV-OH (6.12 mg, 0.3 equiv.) and 2 mL DCE were added under air. The tube was capped and submerged into a pre-heated 110 °C oil bath. The reaction was stirred for 24h and cooled down to room temperature. Then the reaction mixture was diluted with EtOAc (5 mL) and filtered through a pad of silica gel. The sealed tube and silica gel were washed with an additional of EtOAc (20 mL). The filtrate was concentrated *in vacuo*, and the resulting residue was purified by flash column chromatography using EtOAc/*n*-hexane (1:8) as the eluent to afford the product.

4,4-Dimethyl-2-(3-nitrophenyl)-4,5-dihydrooxazole (7a)

¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.24 (dd, J = 14.3, 9.1 Hz, 2H), 7.53 (t, J = 8.0 Hz, 2H), 4.11 (s, 2H), 1.34 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.17, 148.16, 134.00, 129.77, 129.41, 125.73, 123.30, 79.59, 68.07, 28.31. HRMS (ESI-TOF) m/z Calcd for C₁₁H₁₂N₂O₃ [M+H]⁺:221.0921, found: 221.0923.

4,4-Dimethyl-2-(3-methyl-5-nitrophenyl)-4,5-dihydrooxazole (**7b**) ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.16 (d, *J* = 3.6 Hz, 2H), 4.19 (s, 2H), 2.50 (s, 3H), 1.42 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.30 , 148.16 , 140.06 , 134.61 , 129.46 , 126.13 , 120.46 , 79.46 , 67.97 , 28.30 , 21.08 . HRMS (ESI-TOF) m/z Calcd for $C_{12}H_{14}N_2O_3 \ [M+H]^+:235.1077,$ found: 235.1071.

2-(3-Methoxy-5-nitrophenyl)-4,4-dimethyl-4,5-dihydrooxazole (7c)

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.76 (t, *J* = 2.3 Hz, 1H), 7.73 (s, 1H), 4.10 (s, 2H), 3.86 (s, 3H), 1.34 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.15 , 160.01 , 149.05 , 130.54 , 119.54 , 115.49 , 111.47 , 79.51 , 68.08 , 56.19 , 28.32 . HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₄N₂O₄ [M+H]⁺:251.1026, found: 251.1025.

4,4-Dimethyl-2-(4-methyl-3-nitrophenyl)-4,5-dihydrooxazole (7d)

¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 4.17 (s, 2H), 2.64 (s, 3H), 1.41 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.11 , 149.08 , 136.36 , 132.81 , 132.15 , 127.35 , 124.36 , 79.41 , 67.93 , 28.30 , 20.46 . HRMS (ESI-TOF) m/z Calcd for C₁₂H₁₄N₂O₃ [M+H]⁺:235.1077, found: 235.1071.

4,4-Dimethyl-2-(2-nitro-[1,1'-biphenyl]-4-yl)-4,5-dihydrooxazole (7e)

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.23 (dd, J = 7.1, 2.2 Hz, 2H), 4.09 (s, 2H), 1.32 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.02, 149.10, 138.55, 136.57, 131.99, 131.54, 128.93, 128.77, 128.63, 127.73, 123.85, 79.53, 68.01, 28.31. HRMS (ESI-TOF) m/z Calcd for C₁₇H₁₆N₂O₃ [M+H]⁺:297.1234, found: 297.1232.

4,4-Dimethyl-2-(4-nitronaphthalen-2-yl)-4,5-dihydrooxazole (**7f**) ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.59 (s, 1H), 8.44 (d, *J* = 8.7 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.68 (t, *J* = 8.2 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 4.12 (s, 2H), 1.35 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.24 , 146.58 , 134.20 , 133.81 , 130.74 , 129.52 , 127.97 , 125.93 , 124.30 , 123.17 , 122.97 , 79.58 , 68.08 , 28.37 . HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₄N₂O₃ [M+H]⁺:271.1077, found: 271.1073.

4. Gram scale synthesis and further Functional Transformations of Nitroarenes

4.1 Gram scale synthesis of 3a

In a 100 mL sealed flask substrate **1a** (10 mmol, 1.0 equiv.), AgNO₂ (12 mmol, 1.2 equiv.), Ru₃(CO)₁₂ (10 mol %), PIFA (12 mmol, 1.2 equiv.), HPcy₃⁺·BF₄⁻ (30 mol %), PIV-OH (0.3 equiv.) and 20 mL DCE were added under air. The tube was capped and submerged into a pre-heated 100 °C oil bath. The reaction was stirred for 24h and cooled down to room temperature quenched with 20 mL water. Then the reaction mixture was extracted with EtOAc (3×20 mL). Combined organic phase dried over anhydrous Na₂SO₄ and concentrated *in vacuo*, and the resulting residue was purified by flash column chromatography using EtOAc/*n*-hexane (1:10) as the eluent to afford the product **3a** in 75% yield.

4.2 further Functional Transformations of 3a

In a 35mL tube, the compound **3a** (0.5 mmol, 1.0 eq), Pd/C (20% wt%) and 4 mL ethyl acetate were added under H2 atmosphere. The tube was sealed, the resulting solution was then placed under an atmosphere of hydrogen (1 atm, balloon) and stirred for 18 h at room temperature. When the reaction was complete, the reaction mixture was filtered through celite with ethyl acetate. The solvent was evaporated under vacuum to afford the product without further purification.

3-(Thiazol-2-yl) aniline (3ab)

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 3.3 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.28 (d, *J* = 3.3 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 1H), 6.74 – 6.68 (m, 1H), 3.73 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.74, 147.04, 143.48, 134.47, 129.95, 118.74, 117.05, 116.75, 112.69. HRMS (ESI-TOF) m/z Calcd for C₉H₈N₂S [M+H]⁺:177.0481, found: 177.0495.

5. Kinetic isotope effect studies

5.1 Synthesis of 4a-D₅

In an oven dried round bottom flask (15 mL), pyrazole (1.2 mmol, 82 mg), D₅-phylboronic acid (1 mmol, 127 mg) and Cu₂O (0.06 mmol, 8.6 mg) were taken and then MeOH (5 mL) was added and stirred at room temperature for 12 h. The solvent was removed under reduced pressure and the crude was purified by silica gel column chromatography using PE and EA (7:3) as eluent.

1-(Phenyl-d5)-1*H*-pyrazole (4a-D₅)

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 2.1 Hz, 1H), 7.73 (d, J = 1.4 Hz, 1H), 6.49 – 6.42 (m, 1H). HRMS (ESI-TOF) m/z Calcd for C₉H₃D₅N₂ [M+H]⁺: 150.1074, found: 150.1056.

00-

024

In a 15 mL sealed tube substrate **4a** (0.2 mmol) and **4a-D**₅ (0.2 mmol), AgNO₂ (0.24 mmol, 1.2 equiv.), Ru₃(CO)₁₂ (12.8 mg, 10 mol %), PIFA (103.2 mg, 0.24 mmol, 1.2 equiv.), HPcy₃^{+·}BF₄⁻ (22.1 mg, 30 mol %), PIV-OH (6.12 mg, 0.3 equiv.) and 2 mL DCE were added under air. The tube was capped and submerged into a pre-heated 100 °C oil bath. The reaction was stirred for 8h and cooled down to room temperature. Then the reaction mixture was diluted with EtOAc (5 mL) and filtered through a pad of silica gel. The sealed tube and silica gel were washed with an additional of EtOAc (20 mL). The filtrate was concentrated *in vacuo*, and the resulting residue was purified by flash column chromatography using EtOAc/*n*-hexane (1:10) as the eluent to afford the product. The

ratio of H/D was determined by ¹H NMR spectra. The KIE value was calculated as $k_H/k_D = 1.5$.

5.3 Parallel Reactions

In a 15 mL sealed tube substrate **4a** (0.2 mmol) or **4a-D**₅ (0.2 mmol), AgNO₂ (0.24 mmol, 1.2 equiv.), Ru₃(CO)₁₂ (12.8 mg, 10 mol %), PIFA (103.2 mg, 0.24 mmol, 1.2 equiv.), HPcy₃^{+·}BF₄⁻ (22.1 mg , 30 mol %), PIV-OH (6.12 mg, 0.3 equiv.) and 2 mL DCE were added under air. The tubes were capped with rubber plugs and submerged into a pre-heated 100 °C oil bath. A periodic aliquot (100 μ l) was removed by a syringe and concentrated, ¹H NMR analysis using dibromomethane as an internal standard to provide the following conversions:

Time /(min)	180	195	210	225	240
Yield of 5a/(%)	17.2	17.8	18.3	20.1	22.4
Yield of $5a-D_4/(\%)$	15.7	16.0	16.9	18.3	19.4

The KIE value was calculated as $k_{\text{H}}/k_{\text{D}} = 1.3$.

6. ¹H NMR and ¹³C NMR spectra

2-(3-Nitrophenyl) thiazole (3a)

20

2-(2-Methyl-3-nitrophenyl) thiazole (3b)

2-(3-Methyl-5-nitrophenyl) thiazole (3c)

2-(4-Methyl-3-nitrophenyl) thiazole (3e)

2-(4-(*tert*-butyl)-3-nitrophenyl) thiazole (3f)

2-(4-Methoxy-3-nitrophenyl) thiazole (3g)

2-(4-Chloro-3-nitrophenyl) thiazole (3h)

f1 (ppm)

2-(4-Fluoro-3-nitrophenyl) thiazole (3i)

00.0-

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

1-(3-Nitrophenyl)-1*H*-pyrazole (**5**a)

-0.00

1-(4-Iodo-3-nitrophenyl)-1*H*-pyrazole (**5d**)

4-Bromo-1-(3-nitrophenyl)-1*H*-pyrazole (**5**g)

-0.00

1-(3-Nitrophenyl)-1*H*-pyrazole-4-carbaldehyde (**5h**)

1-(5-Methyl-1-(3-nitrophenyl)-1*H*-pyrazol-4-yl) ethan-1-one (5i)

4,4-Dimethyl-2-(3-methyl-5-nitrophenyl)-4,5-dihydrooxazole (7b)

2-(3-Methoxy-5-nitrophenyl)-4,4-dimethyl-4,5-dihydrooxazole (7c)

4,4-Dimethyl-2-(4-nitronaphthalen-2-yl)-4,5-dihydrooxazole (7f)

