Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)

Novel carbocyclic scaffolds with a 6,5+5,5 ring system, named nor-allodammarane, from the enzymatic reactions of 27-nor-(oxido)squalenes with hopene synthase

Chiaki Nakano, Takumi Watanabe, Mai Minamino and Tsutomu Hoshino*

Department of Applied Biological Chemistry, Faculty of Agriculture, and Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata, Japan, 950-2181

*Corresponding author: <u>hoshitsu@agr.niigata-u.ac.jp</u>

Contents

1.	Enzymatic reaction of racemic mixture of $(3R, S)$ -27-nor	
	-2,3-oxidosqualenes (27-norOXSQ, 18 and 19) with the native SHC.	page S3-S4
2.	Enzymatic reaction of 13a(b) with SHC.	page S5.
3.	NMR spectra of product 21 in CDCl ₃	page S6-S9.
4.	NMR spectra of product 21 in C_6D_6 .	page S10-S14
5.	NMR spectra of product 23 in C ₆ D ₆ .	page S15-S19
6.	NMR spectra of product 25 in C ₆ D ₆ .	page S20-S24
7.	EIMS and NMR data of product 26	page S25-S29
8.	EIMS and NMR data of product 27.	page S30-S34
9.	EIMS and NMR data of product 28	page S35-S39
10	EIMS and NMR data of product 29 .	page S40-S44
11	EIMS and NMR data of product 30 .	page S45-S49
12	EIMS and NMR data of product 31 .	page S50-S55

1. Enzymatic reaction of racemic mixture of (*3R*, *S*)-27-nor-2,3-oxidosqualenes (27-norOXSQ, 18 and 19) with the native SHC.

Fig. S1.1. GCMS profile (TIC) of Products 20-25 from 18 and 19

GC-TOFF MS conditions: Inject temp : 280°C; Column temp: 150-280°C (3°C /min); Flow : 1.0 mL/min Product structures are shown below.

Compound names are as follows: **20**, 3α -hydroxy-(8*R*,10*S*,14*R*,20*R*)-30-nor-allodammara-13(17),24-diene; **21**, 3 β -hydroxy-(8*R*,10*S*,14*R*,20*R*)-30-nor-allodammara-13(17),24-diene; **22**, 3 α -hydroxy-(8*R*,10*S*,13*S*,14*S*,17*S*)-30-nor-allodammara-20(21),24-diene; **23**, 3 β -hydroxy-(8*R*,10*S*, 13*S*,14*S*, 17*S*)-30-nor-allodammara-20(21),24-diene; **24**, 3 α -hydroxy-(8*R*,10*S*,13*R*, 14*R*)-30-nor-allodammara-(*E*)-17(20),24-diene; and **25**, 3 β -hydroxy-(8*R*,10*S*,13*R*,14*R*)-30-nor-allodammara-(*E*)-17(20),24-diene; and **25**, 3 β -hydroxy-(8*R*,10*S*,13*R*,14*R*)-30-nor-allodammara-(*E*)-17(20),24-diene; and **25**, 3 β -hydroxy-(8*R*,10*S*,13*R*,14*R*)-30-nor-allodammara-(*E*)-17(20),24-diene.

Fig. S1.2. EI-MS spectra of products 20-25

2. Enzymatic reaction of 13a(b) with SHC.

Fig. S2. GC-MS trace (TIC) of the hexane-extract of the incubation mixture of 13a(13b). GC-Q-MS conditions: Inject temp : 280°C; Column temp: 150-280°C (3°C /min); Flow : 1.0 mL/min. Structures of products 14, 15, 16 and 17 were reported in our previous paper (T. Hoshino and S. Ohashi, *Org. Let.*, 2002, *4*, 2553-2556). However, the stereochemistry at C-20 of 14 and 15 has remained ambiguous. In addition to 14 and 15, many enzymatic products 26–31 were newly found from the incubation mixture of 13a and 13b with the native SHC. Notably, product 29, which is a key intermediate for predicting the configurations at C-20 of 14 and 15, was detected in a substantial amount. Product structures are shown below.

Compound names are as follows: **14**, (8*R*,10*S*,14*R*,20*R*)-30-nor-allodammara-13(17),24-diene; **15**, (8*R*,10*S*,14*R*,20*S*)-30-nor-allogammacer-13(17)-ene; **16**, 27-nor-isohopene (21-*epi*-hop-22(29)-ene; **17**, 27-nor-hopene; **26**, (20*S*)-30-nor-isodammara-12(13),24-diene (30-nor-17-*epi*-dammara-12(13),24-diene); **27**, 30-nor-dammara-20(21),24-diene; **28**, 30-nor-isodammara-20(21),24-diene (30-nor-17-*epi*-dammara-20(21),24-diene); **29**, (8*R*,10*S*, 13*S*, 14*S*, 17*S*)-30-nor-allodammara-20(21),24-diene; **30**, 30-nor-20-hydroxy-isodammar-24-ene (17-*epi*-20-hydroxy-dammarene); and **31**, 27-nor-isohopanol (21-*epi*-27-norhopanol).

3. NMR spectra of product 21 in CDCl₃.

Fig. S3.1. ¹H-NMR spectrum of product **21** in CDCl₃ (600 MHz).

Fig. S3.2. ¹³C NMR spectrum of product **21** in CDCl₃ (600 MHz) (150 MHz).

Fig. S3.3. ¹H-¹H COSY spectrum of product 21 in CDCl₃.

Fig. S3.4. TOCSY spectrum of product 21 in CDCl₃.

Fig. S3.5. NOESY spectrum of product 21 in CDCl₃.

Fig. S3.6. HSQC spectrum of product 21 in CDCl₃.

Fig. S3.7. HMBC spectrum of product 21 in CDCl₃.

Product 21 from (3S)-27-norOXSQ 21

600 MHz, in CDCl_3; the residula solvent peak: $\delta_{\!H}$ 7.26; δ_{C} 77.0 ppm

NC). ¹ H ¹³	³ C	NO	¹ H	¹³ C	NO.	. ¹ H	¹³ C	NO.	1H	¹³ C
1	1.07(m,1H);1.77(m,1H)	38.02(t)	9		37.01(s)	17		133.4(s)	25		130.9(s)
2	1.55(m);1.62(m)	27.67(t)	10	1.12(m, 1H)	48.20(d)	18	0.846(s, 3H)	18.50(q)	26	4.075(.011)	22 72(a)
3	3.23 (dd, J=11.7 Hz;4.2	79.18(d)	11	0.90(m, 1H); 1.70(m,1H)	26.11(t)	19	0.783(s,3H)	14.35(q)	20	1.675(s,3H)	22.72(q)
4	HZ, TH)	38.95(s)	12	1.70(m,1H); 2.32(m,1H	22.71(t)	20	2.42(m, 1H)	31.59(d)	27	1.578 (s, 3H)	17.67(q)
5	0.81(m, 1H)	54.61(d)	13		141.6(s)	21	0.912(d, 6.85Hz, 3	⊣) 19.66(q)	28	0.985(s,3H)	28.42(q)
6	1.26(m,1H); 1.60(m, 1H)	21.42(t)	14		50.32(s)	22	1.31(m, 2H)	35.61(t)	29	0.793(s,3H)	15.79(q)
7	1.12(m, 1H); 1.63(m, 1H)	28.63(t)	15	1.45(m,1H); 1.63(m, 1H)	38.26(t)	23	1.80(m,1H); 1.89(m	1H) 26.58(t)			
8	1.00 (m, 1H)	50.30(d)	16	2.08(m,1H); 2.19(m,1H)	28.17(t)	24	5.11(brs, 1H)	125.1(d)			

Fig. S3.8. Assignments of NMR data of product 21 in CDCl₃, HR-EIMS and optical rotation.

4. NMR spectra of product 21 in C₆D₆.

Fig. S4.1. ¹H NMR spectra of product **21** in C_6D_6 (600 MHz).

Fig. S4.2. Comparison of ¹H NMR spectra of product **21** between $CDCl_3$ and C_6D_6 solutions (600 MHz).

The coupling constants of H-3 were compared between the solutions of C₆D₆ and CDCl₃. $\delta_{\rm H}$ in C₆D₆: 3.18 (br t, *J*=8.0 Hz); $\delta_{\rm H}$ in CDCl₃: 3.23 ((dd, *J*=11.7 Hz and 4.2 Hz). The coupling constants (splitting pattern) in CDCl₃ solution clearly demonstrated that the OH group is β -oriented, although the splitting pattern (triplet) in C₆D₆ suggests that the OH group is α -oriented. This contradictory argument was resolved by the definitive NOE between H-3 and H-5 in the C₆D₆ solution. Consequently, the OH at C-3 of product **1** was credibly determined to be β -oriented. The ¹H-NMR spectra of products **23** and **25** in C₆D₆ solution also showed triplet splitting pattern, but dd splitting in the CDCl₃ solution.

Fig. S4.3. ¹³C NMR spectrum of product 21 in C_6D_6 (150 MHz).

Fig. S4.4. 1 H- 1 H COSY spectrum of product **21** in C₆D₆.

Fig. S4.5. TOCSY spectrum of product 21 in C_6D_6 .

Fig. S4.6. NOESY spectrum of product 21 in C_6D_6 .

Fig. S4.8. HMBC spectrum of product 21 in C_6D_6 .

600 MHz, in $C_6D_6;$ the residula solvent peak: δ_{H} 7.26; δ_{C} 77.0 ppm

NO	. ¹ H 1:	³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.00(m,1H) ;1.68(m,1H)	38.21(t)	9		37.20(s)	17		133.8(s)	25		130.9(s)
2	1.54(m, 2H)	28.16(t)	10	1.29(m, 1H)	48.60(d)	18	1.068(s, 3H)	18.88(q)	26	1 833(s.3H)	25.80(q)
3	3.18 (bt, J=6.7 Hz, 1H)	78.71(d)	11	1.26(m, 1H); 1.74(m,1H)	29.03(t)	19	0.851(s, 3H)	14.46(q)	27	1 745 (c. 3H)	47.80(~)
4		39.15(s)	12	1.93(m,1H); 2.56(bd, J=13.2Hz,1H)	23.14(t)	20	2.67(m, 1H)	32.01(d)	21	1.745 (5, 5H)	17.80(q)
5	0.81(m, 1H)	54.93(d)	13		142.1(s)	21	1.14 (d, J=7.2 Hz, 3	^{3H)} 19.93(q)	28	1.151(S,3H) 0.935(s.3H)	20.04(q) 16.07(a)
6	1.31(m,1H); 1.67(m, 1H)	21.73(t)	14		50.65 (s)	22	1.55(m, 2H)	36.02(t)	29	0.955(8,511)	10.07(q)
7	1.09(m, 1H); 1.78(m, 1H)	26.51(t)	15	1.57(m,1H); 1.85(m, 1H)	38.58(t)	23	2.08(m,1H); 2.20(m	,1H) 27.06(t)			
8	1.07 (m, 1H)	50.65(d)	16	2.32(m,1H); 2.44(m,1H)	28.59(t)	24	5.40(bt, <i>J</i> =6.7 Hz,1	H) 125.5(d)			

Fig. S4.9. Assignments of NMR data of product 21 in C_6D_6 , HR-EIMS and optical rotation.

5. NMR spectra of product 23 in C₆D₆.

Fig. S5.1. ¹H NMR spectrum of product 23.

Fig. S5.2. ¹³C NMR spectrum of product **23**.

Fig. S5.3. COSY spectrum of product 23.

Fig. S5.4. TOCSY spectrum of product 23

Fig. S5.5. NOESY spectrum of product 23.

Fig. S5.6. HSQC spectrum of product 23.

Fig. S5.7. HMBC spectrum of product 23.

600 MHz, in $C_6 D_6;$ the residual solvent peak: δ_{H} 7.28; δ_{C} 128.0 ppm

NO	. ¹ H	¹³ C	NO.	1H	¹³ C	NO.	1H	13	с	NO.	¹ H	¹³ C
1	0.94(m,1H);1.62(m,1	H) 38.05(t)	9		37.05(s)	17 2	2.83(dt, J=9.0) Hz, 1H)	45.16(d)	25		131.3(s)
2	1.56 (m, 2H)	28.19(t)	10	1.08(m, 1H)	48.34(d)	18	0.926(s, 3H)	14.67(q)	26	1.818(s, 3H)	25.80(q)
3	3.15 (br t, J=7.2 Hz,	1H) 78.63(d)	11	1.02(m, 1H); 1.72(m,1	H) 26.36(t)	19	0.901(s,	3H)	14.29(q)	27	1.716 (s, 3H)	17.74(q)
4	0.794(ddl=11.8:2	39.16(s)	12	1.43(m,1H); 1.78(m,1	H) 23.97(t)	20			152.5(s)	28	1.14(s,3H)	28.49(q)
5	Hz, 1H)	55.06(d)	13	1.42 (m, 1H)	53.53(d)	21	5.18 (s, 1H	l,) 5.20(s,	109.3(t)	29	0.964(s,3H)	15.97(q)
6	1.34(m,1H); 1.67(m, 1H) 21.64(t)	14		45.23 (s)	22	2.21(m);	233(m)	38.96(t)			
7	1.22(m, 1H); 1.73(m, 1H	₁₎ 29.08(t)	15	1.20(m,1H); 1.77(m, 1	H) 40.35(t)	23 2	2.36(m,1H); 2	.41(m,1H)	27.76(t)			
8	1.00 (m, 1H)	49.57(d)	16	2.03(m,2H)	28.96(t)	24	5.41(t, <i>J</i> =6.	8 Hz, 1H)	125.0(d)			

Fig. S5.8. Assignments of NMR data of product 23 in C₆D₆, HR-EIMS and optical rotation.

Remark; In the C₆D₆ solution, the H-3 showed br triplet splitting pattern, but in the CDCl₃ solution, H-3 showed the dd splitting pattern ($\delta_{\rm H}$ 3.20, dd, *J*=11.5 and 3.8 Hz, see Fig. S6.1), thus strongly indicating that the OH at C-3 is positioned in a β -orientation. A definitive NOE for H-3/H-5 further supported β -OH orientation at C-3 in the NOESY spectrum (C₆D₆ solution). (See Fig. S6.5).

6. NMR spectra of product 25 in C₆D₆.

Fig. S6.2. Comparison of ¹H NMR spectra of product **25** between $CDCl_3$ and C_6D_6 solutions (600 MHz).

The coupling constants of H-3 were compared between the solutions of C_6D_6 and $CDCl_3$. δ_H in C_6D_6 : 3.17 (br t, *J*=8.0 Hz); δ_H in $CDCl_3$: 3.21 (dd, *J*=11.7 Hz and 4.3 Hz). The coupling constants (splitting pattern) in $CDCl_3$ solution clearly demonstrated that the OH group is β -oriented, although the splitting pattern (triplet) in C_6D_6 suggests that the OH group is α -oriented. This contradictory argument was resolved by the definitive NOE between H-3 and H-5 in the C_6D_6 solution. Consequently, the OH at C-3 of product **25** was credibly determined to be β -oriented. The ⁻¹H-NMR spectra of products **21** and **23** in C_6D_6 solution also triplet splitting pattern, but dd splitting in CDCl₃.

Fig. S6.3. ¹³C NMR spectrum of product 25

Fig. S6.4. COSY spectrum of product 25

Fig. S6.5. TOCSY spectrum of product 25

Fig. S6.6. NOESY spectrum of product 25

Fig. S6.8. HMBC spectrum of product 25

Fig. S6.9. Assignments of NMR data of product 25 in C₆D₆, HR-EIMS and optical rotation.

1 9 17 25 131.0(s) 36.93(s) 136.6(s) 1.16 (m, 1H) 2 1.57(m, 2H) 28.19(t) 10 18 0.796(s, 3H) 14.47(q) 42.01(d) 26 1.834 (s, 3H) 25.96(q) 3.17 (bt, J=8.0 Hz, 1H) 78.69(d) 3 11 1.02(m, 1H); 1.72(m,1H) 25.88(t) 19 0.883(s,3H) 14.24(q) 27 1.742(s,3H) 17.65(q) 39.16(s) 1.55(m,1H); 2.35(m,1H) 26.07(t) 4 12 125.9(s) 20 55.09(d) 0.82(m, 1H) 1.90 (bd. J=13.0 Hz. 55.02(d)⁶ 5 13 28 1.489(s,3H) 28.52(q) 21 1.940 (bs, 3H) 17.74(q) 1H) 21.65(t) 0.963(s,3H) 15.93(q) 2.21(m, 1H);2.30(m, 1H) 2.35 (m, 2H) 6 1.33(m,1H); 1.67(m, 1H) 44.85 (s) 29 14 22 37.68(t) 7 1.20(m, 1H); 1.77(m, 1H) 29.06(t) 15 ^{1.20(m,1H); 1.68(m, 1H)} 38.05(t) 23 26.93(t) 5.43(bd, J=6.7 Hz, 1H) 125.2(d) 49.27(d) 2.45(m, 2H) 28.95(t) 8 1.00(m, 1H) 16 24

a) The assignment of C-5 and C-13 may be exchangeable.

Remark. The H-3 showed br triplet splitting patter (Figs. S14.2) in the C₆D₆ solution. However, in the CDCl₃ solution, H-3 showed the dd splitting pattern ($\delta_{\rm H}$ 3.21, d, *J*=11.7 Hz and 4.3 Hz), thus strongly indicating that the OH at C-3 is β -oriented. The finding of a clear NOE in the C₆D₆ solution (Fig. S14.6) further supported the β -orientation of 3-OH.

7. EIMS and NMR data of product 26

Fig. S7.1. EIMS of product 26.

Fig. S7.2.1. ¹H NMR spectrum of product **26** (400 MHz, C₆D₆).

Fig. S7.2.2. ¹H NMR spectrum (expanded region) of product 26 (400 MHz, CDCl₃)

Fig. S7.3. ¹³C NMR of product **26** (100 MHz, C₆D₆).

Fig. S7.4. 1 H- 1 H COSY of product 26 (400 MHz, C₆D₆).

Fig. S7.5. TOCSY of Product 26 (400 MHz, C₆D₆).

Fig. S7.6. NOESY of Product 26 (400 MHz, C_6D_6).

Fig. S7.7. HSQC of Product 26 (400 MHz, C₆D₆).

Fig. S7.8. HMBC of Product 26 (400 MHz, C₆D₆).

400 MHz, in $C_6D_6;$ the residual solvent peak: δ_{H} 7.28; δ_{C} 128.0 ppm

NC). ¹ H	¹³ C	NO.	¹ H	¹³ C	NC). ¹ H	¹³ C	NO	. ¹н	¹³ C
1	0.83(m,1H) ;1.65(m,1H) 40.11(t)	9	1.28 (m, 1H)	55.61(d)	17	2.51 (m, 1H)	49.30(d)	24	5.40(t, J=7.2 Hz, 1H)	125.7(d)
2	1.45(m,1H); 1.64(m, 1H	⁾⁾ 18.89(t) ^a	10		37.49(s)	18	0.916(s,3H)	14.55(q)	25		130 0(c)
3	1.47(m, 2H)	42.30(t)	11 2	2.02(m, 1H); 2.17(m,1H)	23.66(t)	19	1.020(s, 3H)	15.75(q)	25		130.9(5)
4		33.34(s)	12	5.58 (bs,1H)	116.7(d)	20	1.84 (m, 1H)	36.12(d)	26	1.806(s, 3H)	25.84(q)
5	0.91 (m, 1H)	56.84(d)	13		142.2(s)	21	1.130(d, J=6.8Hz, 3I) 17.93(a)	27	1.721 (s, 3H)	17.72(q)
6	1.45(m,1H); 1.64(m, 1H)	19.12(t) ^a	14	2.10 (m, 1H)	58.80 (d)		1.37(m. 1H): 1.77(m		28	1.035(s,3H)	33.67(q)
7	1.23(m, 1H); 1.84(m, 1H)	42.06(t)	15	1.34(m,1H); 1.73(m, 1H) 25.04(t)	22	1H)	33.34(t)	29	0.983(s,3H)	21.91(q)
8		35.01(s)	16	1.47(m,1H);1.82(m,1H)	27.31(t)	23 2	2.17(m,1H); 2.34(m,1	H) 26.92(t)			

Me-27: $\delta_{H} {=} 0.862$ (d, J=6.8 Hz) in CDCl_3, which is indicative of 18-S stereochemistry.

Fig. S7.9. Assignments of NMR data of product 26 in C₆D₆, HR-EIMS and optical rotation.

8. EIMS and NMR data of product 27.

Fig. S8.1. EIMS of product 27.

Fig. S8.2. ¹H NMR of Product 27 (400 MHz, C₆D₆).

Fig. S8.3. ¹³C NMR of Product 27 (100 MHz, C₆D₆).

Fig. S8.4. $^{1}H^{-1}H$ COSY of product 27 (400 MHz, $C_{6}D_{6}$).

Fig. S8.5. TOCSY of 27 (400 MHz, C₆D₆).

Fig. S8.6. NOESY of 27 (400 MHz, C₆D₆).

Fig. S8.8. HMBC of 27 (400 MHz, C₆D₆).

1 -		•					-	•			
•	0.86(m,1H);1.72(m,1H)	40.39(t)	9	0.86 (m, 1H)	60.66(d)	17	2.14 (m, 1H)	52.85(d)	24	5.41(t, J=6.8 Hz, 1H)	125.0(d)
1	2 1.46(m,1H); 1.73(m, 1H)	19.05(t)	10		37.65(s)	18	0.927(s, 3H)	14.61(q)	25		131.2(s)
:	3 1.27(m, 1H);1.51 (m,1H)	42.51(t)	11	1.26(m, 1H); 1.67(m,1H)	21.07(t)	19	0.953(s,3H)	16.50(a)			.,
4	4 —	33.52(s)	12	0.99(m,1H); 2.18(m,	32.00(t)		(, ,		26	1.812(s,3H)	25.83(q)
Ι.	- 0.01 (m 1H)	57 22(d)		1H)	42.20(4)	20		152.0(s)	27	1.713 (s. 3H)	17.75(a)
1:	5 0.91 (11, 11)	57.22(u)	13	1.50 (III, TH)	43.38(a)	21	5.06(bs, 1H); 5.10(brs	5 108 0/ 1)		- (-/- /	
6	6 1.50(m,1H); 1.64(m, 1H)	18.80(t)	14	1.13 (m, 1H)	60.32 (d)	21	1H)	100.0(1)	28	1.039(s,3H)	33.66(q)
-	7 1.13(m, 1H); 1.68(m, 1H)	41.54(t)	15	1.43(m,1H); 1.63(m, 1H)	22.77(t)	22	2.25(m, 2H)	34.76(t)	29	0.983(s,3H)	21.70(q)
1			15			22	2.41(m.2H)	27.41(t)			
8	3 —	37.19(s)	16	1.65(m,1H);2.05(m,1H)	30.64(t)	23	,)	(0)			

Fig. S8.9. Assignments of NMR data of product 27 in C₆D₆, HR-EIMS and optical rotation.

9. EIMS and NMR data of product 28.

Fig. S9.1. EIMS of product 28.

Fig. S9.2. ¹H NMR of Product 28 (400 MHz, C₆D₆).

Fig. S9.3. ¹³C NMR of Product **28** (100 MHz, C₆D₆).

Fig. S9.4. 1 H- 1 H COSY of product 28 (400 MHz, C₆D₆).

Fig. S9.5. TOCSY of 28 (400 MHz, C₆D₆).

Fig. S9.6. NOESY of 28 (400 MHz, C₆D₆).

Fig. S9.7. HSQC of 28 (400 MHz, C_6D_6).

Fig. S9.8. HMBC of 28 (400 MHz, C₆D₆).

400 MHz, in $C_6D_6;$ the residual solvent peak: δ_{H} 7.28; δ_{C} 128.0 ppm

N). ¹ Н	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	0.78(m,1H);1.70(m,1H	H) 40.18(t)	9	0.82 (m, 1H)	60.14(d)	17	2.68 (dt, <i>J</i> =3.2,	47.03(d)	24	5.42(t, <i>J</i> =6.8 Hz, 1H)	125.0(d)
2	1.47(m,1H); 1.69(m, 1H	ⁱ⁾ 19.02(t)	10		37.56(s)	18	0.932(s,3H)	14.65(q)	25		131.3(s)
3	1.27(m, 1H);1.49 (m,1H	42.42(t)	11	1.26(m, 1H); 1.67(m,1H)	21.29(t)	19	0.968(s,3H)	16.54(q)	26	1 912(c 21)	25 84(a)
4		33.49(s)	12	1.22(m,1H); 1.91(m 1H)	^{1,} 29.92(t)	20		153 7(e)	27	1.013(S, 31)	23.04(q)
5	0.93 (m, 1H)	56.83(d)	13	1.62 (m, 1H)	43.31(d)	20	4 97/bs 1H): 5 17/b	· 400.0(4)	21	1.712 (5, 511)	17.74(q)
6	1.43(m,1H); 1.57(m, 1H)	18.78(t)	14	1.47 (m, 1H)	56.31 (d)	21	1H)	^{109.0(t)}	28	1.022(s,3H)	33.57(q)
7	1.16(m, 1H); 1.69(m, 1H	41.82(t)	15	1.43(m,1H); 1.76(m, 1H)	23.84(t)	22	2.17(m, 1H);2.32(m, 1H)	38.90(t)	29	0.979(s,3H)	21.70(q)
8		37.11(s)	16	1.68(m,1H);1.98(m, 1H)	30.56(t)	23	2.38(m,2H)	27.42(t)			

Fig. S9.9. Assignments of NMR data of product 28 in C₆D₆, HR-EIMS and optical rotation.

10. EIMS and NMR data of product 29.

Fig. S10.1. EIMS of product 29.

Fig. S10.2. ¹H NMR of Product 29 (400 MHz, C₆D₆).

Fig. S10.3. ¹³C NMR of Product 29 (100 MHz, C₆D₆).

Fig. S10.4. 1 H- 1 H COSY of product 29 (400 MHz, C₆D₆).

Fig. S10.5. TOCSY of 29 (400 MHz, C₆D₆).

Fig. S10.6. NOESY of 29 (400 MHz, C₆D₆).

Fig. S10.8. HMBC of $29 (400 \text{ MHz}, C_6 D_6)$.

Product 29 from 27-norSQ 13a

 $[\alpha]_D^{25}$ = - 5.6 (c= 0.149, CHCl₃)

HREIMS (C₂₉H₄₈O), Cald: 396.3756; Found 396.3713

400 MHz, in $C_6D_6;$ the residual solvent peak: $\delta_{\!H}$ 7.28; δ_C 128.0 ppm

N). ¹ H ¹	³ C	NO.	¹ H	¹³ C	NO	. ¹ H	13	с	NO.	¹ H	¹³ C
1	0.94(m,1H);1.71(m,1H)	39.89(t)	9	—	37.28(s)	17	2.83(dt, J=9.0	Hz, 1H)	45.06(d)	25		131.3(s)
2	1.54 (m, 1H);1.67(m, 1H)	19.38(t)	10	1.14(m, 1H)	48.47(d)	18	0.954(s	,3H)	14.66(q)	26	1.817(s,3H)	25.85(q)
3	1.27 (m, 1H); 1.52(m,1H)	42.42(t)	11	1.07(m, 1H); 1.78(m,1H	¹⁾ 26.31(t)	19	0.978(s	,3H)	14.37(q)	27	1.715 (s,	17.75(q)
4		33.38(s)	12	1.45(m,1H); 1.80(m,1	H) 23.98(t)	20			152.5(s)	20	3H)	33 80(a)
5	0.91(m, 1H)	55.70(d)	13	1.45 (m, 1H)	53.43(d)	21	5.18 (1H, s);	5.20(s,	109.3(t)	20	1.022(5,5H)	55.00(q)
6	1.34(m,1H); 1.71(m, 1H)	21.98(t)	14		45.35(s)	22	1H) 2 21(m): 2	34(m)	28 00/4)	29	1.010(s,3H)	22.20(q)
7	1.30(m, 1H); 1.75(m, 1H)	29.07(t)	15	1.22(m,1H); 1.77(m, 1	H) 40.32(t)	22	2.36(m.2	2H)	27 74(t)			
8	1.10 (m, 1H)	49.64(d)	16	2.03(m,2H)	28.88(t)	24	5.41(t, <i>J</i> =6.8	Hz, 1H)	125.0(d)			

Fig. S10.9. Assignments of NMR data of product 29 in C₆D₆, HR-EIMS and optical rotation.

11. EIMS and NMR data of product 30.

Fig. S11.1. EIMS of product 30.

Fig. S11.2. ¹H NMR of Product 30 (400 MHz, C₆D₆).

Fig. S11.3. ¹³C NMR of Product 30 (100 MHz, C₆D₆).

Fig. S11.4. 1 H- 1 H COSY of product 30 (400 MHz, C₆D₆).

Fig. S11.5. TOCSY of $30 (400 \text{ MHz}, C_6D_6)$.

Fig. S11.6. NOESY of $30 (400 \text{ MHz}, C_6D_6)$.

Fig. S11.8. HMBC of 30 (400 MHz, C₆D₆).

NC). ¹ H ^{1;}	³ C	NO.	¹ H ¹	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	0.82(m,1H) ;1.72(m,1H)	40.23(t)	9	0.86 (m, 1H)	60.00(d)	17	2.12 (m, 1H)	49.12(d)	25		131.1(s)
2	1.47(m,1H); 1.73(m,1H)	19.03(t)	10		37.55(s)	18	0.917(s,3H)	14.49(q)	26	1.790(s.3H)	25.85(a)
3	1.27(m, 1H);1.49 (m,1H)	42.43(t)	11	1.23(m, 1H); 1.70(m,1H)	22.14(t)	19	0.964(s, 3H)	16.61(q)	27	1 748 (c. 3H)	47.72(*)
4		33.50(s)	12	1.70(m,1H); 2.18(m	31.24(t)	20		75.50(s)	21	1.740 (5, 511)	17.73(q)
5	0.86 (m, 1H)	56.84(d)	13	1.63(m, 1H)	41.99(d)	21	1.301 (s, 3H)	26.54(t)	28	1.020(s,3H)	33.56(q)
6	1.43(m,1H); 1.60(m, 1H)	18.83(t)	14	1.36 (m, 1H)	59.57 (d)	22	1.72 (m, 2H)	41.73(t)	29	0.980(s,3H)	21.72(q)
7	1.16(m, 1H); 1.69(m, 1H)	42.07(t)	15	1.21(m,1H); 1.65(m, 1H)	24.55(t)	23	2.23(m,2H);2.34(m 1H)	23.25(t)			
8		37.42(s)	16	1.67(m,1H);1.83(m,1H)	27.02(t)	24	5.40(t, <i>J</i> =7.2 Hz, 1H	H) 125.6(d)			

Fig. S11.9. Assignments of the NMR data of product 30 in C₆D₆, HR-EIMS and optical rotation.

12. EIMS and NMR data of product 31.

Fig. S12.1. EIMS of product 31.

Fig. S12.2. ¹H NMR (whole spectrum) of Product 31 (400 MHz, THF d₈).

Fig. S12.3. ¹H NMR (expanded region) of Product 31 (400 MHz, THF d₈).

Fig. S12.4. ¹³C NMR of Product **31** (400 MHz, THF d8).

Fig. S12.5. ^{1}H - ^{1}H COSY of product 31 (400 MHz, THF d₈).

Fig. S12.6. TOCSY of 31 (400 MHz, THF d_8).

Fig. S12.7. NOESY of 31 (400 MHz, THF d_8).

Fig. S13.8. HSQC (whole spectrum) of 31 (400 MHz, THF d₈).

Fig. S12.9. HSQC (Expanded region) of 31 (400 MHz, THF d₈).

Fig. S12.10. HMBC (whole spectrum) of 31 (400 MHz, THF d₈).

Fig. S12.11. HMBC (expanded region) of 31 (400 MHz, THF d₈).

400 MHz, in THF-d_8; the residual solvent peak: δ_{H} 1.73; δ_{C} 25.3 ppm

NC). ¹ H ¹	³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	0.82(m,1H);1.70(m,1H	46.28(t)	9	0.80 (m, 1H)	61.51(d)	17	1.12 (m, 1H)	51.81(d)	25	0.864(s, 3H)	17.00(q)
2	1.53(m,1H); 1.65(m, 1H	19.49(t)	10		38.45(s)	18		46.13(s)	26	0.874(s,3H)	15.36(q)
3	1.16(m, 1H);1.37 (m,1H	43.06(t)	11 1	.26(m, 1H); 1.56(m	,1H) 21.32(t)	19	1.05 (m, 1H);1.45 1H)	^{(m,} 39.25(t)	27	0.703 (s, 3H)	14.86(q)
4		33.96(s)	12	1.17(m,1H); 1.6 1H)	^{i4(m,} 29.73(t)	20	1.48(m,1H);1.68(n	^{n,} 25.98(t)	28	1.100(s, 3H) ^a	29.96(q) ^a
5	0.85 (m, 1H)	57.50(d)	13	1.01(m, 1H)	48.48(d)	21	1.70(m, 1H)	51.98(d)	29	1.075 (s, 3H) ^a	27.72(q) ^a
6	1.37(m,1H); 1.53(m, 1H)	16.97(t)	14	1.09(m, 1H)	51.06 (d)	22		72.25(s)	30	3.02 (s, 1H)	
7	1.05(m, 1H); 1.76(m, 1H)	42.51(t)	15	1.19(m,1H); 1.65(m	, 1H) 26.31(t)	23	0.860(s,3H)	33.77(q)			
8		38.20(s)	16	1.18(m,1H);1.92(m,	1H) 27.00(t)	24	0.825(s,3H)	21.84(q)			

a: exchangeable

Fig. S12.12. Assignments of the NMR data of product 41 in THF d₈, HR-EIMS and optical rotation.