Supporting Information

Regio- and Chemo-selective Cyclization of Allenic-Ugi for the Synthesis of 3-

Pyrroline Skeleton

Kamran Amiri,^a Hormoz Khosravi,^a Saeed Balalaie,^{*a,b} Farhad Golmohammadi^a, Muhammad U. Anwar,^c Ahmed Al-Harrasi^{*c}

^a Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran,

balalaie@kntu.ac.ir, Tel:+98-21-23064226, Fax: +98-21-22889403

^b Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

^c Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman

Table of Contents

1.	Computational details	S1
2.	X-ray crystallographic analysis for products 7a and 7f	S3
3.	Characterization Data	S6
4.	Z-matrix, total energy and imaginary frequency of DFT calculations	.S85
5.	Reference	\$107

1. Computational details

Scheme S1 Mulliken charges, eelectrophilicity index and LUMO-CA of anions A and B

Scheme S2 Scan coordinate of INT1 (energy are given in kcal mol⁻¹, calculated with B3LYP/6-31G (d))

•	T 7	a 4 11		1 • 0		0 1.00	
2.	X-ray	Crystallogr	aphic Ana	alysis for	Products	3a and 3f	

Crystal data						
	3a	3f				
Chemical formula	$C_{23}H_{26}N_2O_2$	$C_{25}H_{26}Cl_2N_2O_2$				
Mr	362.46	457.38				
Crystal system, space	Monoclinic, P2 ₁ /n	Monoclinic, $P2_1/n$				
group						
Temperature (K)	296	296				
a, b, c (Å)	11.5219 (11), 11.4926 (9),	16.0878 (15), 7.3312 (8),				
	15.5242 (14)	19.996 (2)				
β (°)	92.720 (3)	101.831 (5)				
$V(Å^3)$	2053.3 (3)	2308.3 (4)				
Z	4	4				
Radiation type	Mo K_{α}	Mo K_{α}				
$\mu (mm^{-1})$	0.08	0.31				
Crystal size (mm)	0.5 imes 0.2 imes 0.15	$0.29 \times 0.27 \times 0.06$				
Data collection						
Diffractometer	Bruker APEX-II CCD	Bruker APEX-II CCD				
Absorption correction	Multi-scan	Multi-scan				
	SADABS	SADABS				
T_{min}, T_{max}	0.677, 0.745	0.709, 0.745				
No. of measured,	29035, 4207, 3062	62396, 4114, 3107				
independent and						
observed $[I > 2\sigma(I)]$						
reflections						
R _{int}	0.041	0.071				
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.626	0.598				
Refinement						
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.059, 0.177, 1.07	0.046, 0.125, 1.05				
No. of reflections	4207	4114				
No. of parameters	252	281				
No. of restraints	1	-				
H-atom treatment	H atoms treated by a	H-atom parameters constrained				
	mixture of independent and					
	constrained refinement					
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.67, -0.19	0.30, -0.46				

Computer programs: Bruker APEX2, Bruker SAINT, SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick 2014), Bruker SHELXTL

For X-ray measurements, single crystal of **7a** and **7f** were mounted on a MiTeGen loop with grease and examined on a Bruker D8 Venture APEX diffractometer equipped with Photon 100 CCD area detector at 296 (2) K using graphite-monochromated Mo-K_a radiation($\lambda = 0.71073$ Å). Data was collected using the APEX-II software,^{S1} integrated using SAINT^{S2} and corrected for absorption using a multi-scan approach (SADABS).^{S3} The structure was solved using intrinsic phasing.^{S4} Final cell constants were determined from full least squares refinement of all observed reflections. All non-H atoms were located in subsequent difference maps and refined anisotropically with SHELXL-97,^{S5} using full least squares refinement against F². H-atoms were added at calculated positions and refined with a riding model. The structure has been deposited with the CCDC (CSD deposition numbers 1904044, 1904045).

3. Characterization Data

Figure S1: ¹H-NMR of compound 5a (400MHz, CDCl₃)

Figure S2: ¹³C-NMR of compound 5a (100 MHz, CDCl₃)

Figure S3: ESI (-) of 5a with formula $C_{22}H_{23}N_2O_2$ and $[M-H]^-$ 347.3

Figure S6: ESI (+) of 5b with formula $C_{22}H_{23}N_3NaO_4$ and $[M+Na]^+$ 415.3.

Figure S7: ¹H-NMR of compound 5c (400MHz, CDCl₃)

²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ¹⁰ ¹⁰⁰

Figure **S10**: ESI (-) of **5c** with formula $C_{22}H_{21}^{35}ClN_2O_2$ and $[M-H]^-$ 415.2.

Figure **S12**: ¹³C-NMR of compound **5d** (100 MHz, CDCl₃)

Figure S13: ESI (+) of 5d with formula $C_{23}H_{26}{}^{35}ClN_2O_3$ and $[M+H]^+ 413.2$, $C_{46}H_{50}{}^{35}Cl_2N_4NaO_6$

and [2M+Na]+ 847.4

S14 | Page

Figure **S16**: ESI (-) of **5e** with formula $C_{24}H_{24}^{35}ClN_2O_2$ and $[M-H]^-407.2$

Figure **S19**: ESI (+) of **5f** with formula $C_{24}H_{25}{}^{35}Cl_2N_2O_2$ and $[M+H]^+ 443.2$, $C_{48}H_{48}{}^{35}Cl_4N_4NaO_4$ and $[2M+Na]^+ 909.4$.

Figure **S20**: ¹H-NMR of compound **5g** (400MHz, CDCl₃)

Figure S22: ESI (+) of 5g with formula $C_{24}H_{27}N_2O_2$ and $[M+H]^+$ 375.3, $C_{48}H_{52}N_4NaO_4$ and $[2M+Na]^+$ 771.5.

Figure **S25**: ESI (+) of **5h** with formula $C_{24}H_{26}N_3O_4$ and $[M+H]^+$ 420.3, $C_{48}H_{50}N_6NaO_8$ and $[2M+Na]^+$ 861.5.

Figure **S28**: ESI (+) of **5i** with formula $C_{50}H_{54}^{79}Br_2N_4NaO_4$ and $[2M+Na]^+957.4$.

Figure **S31**: ESI (-) of **5j** with formula $C_{24}H_{23}^{79}Br^{35}ClN_2O_2$ and $[M-H]^- 483.3$.

Figure **S34**: ESI (+) of **5k** with formula $C_{26}H_{31}N_2O_3$ [M+H]⁺419.3, and $C_{52}H_{60}N_4NaO_6$ [2M+Na]⁺ 859.6.

S28 | Page

Figure **S37**: ESI (-) of **5** with formula $C_{25}H_{27}N_2O_2$ and $[M-H]^-$ 387.1.

Figure **S40**: ESI (-) of **5m** with formula C₂₅H₂₆⁷⁹BrN₂O₃ and [M-H]⁻ 481.2.

Figure S41: ¹H-NMR of compound 6a (600MHz, CDCl₃)

Figure S42: ¹³C-NMR of compound 6a (151 MHz, CDCl₃)

Figure **S43**: IR of compound **6a** (KBr, cm⁻¹)

Figure S44: HRMS-ESI of 6a with formula $C_{23}H_{26}N_2O_2$ and $[M+H]^+$ 363.2091.

Figure **S45**: ¹H-NMR of compound **6b** (600MHz, CDCl₃)

Figure **S46**: ¹³C-NMR of compound **6b** (151 MHz, CDCl₃)

Figure **S50**: ¹³C-NMR of compound **6c** (75 MHz, DMSO-*d*₆)

Figure **S51**: IR of compound **6c** (KBr, cm⁻¹)

Figure **S52**: HRMS-ESI of **6c** with formula $C_{23}H_{24}{}^{35}Cl_2N_2O_2$ and $[M+H]^+ 431.1491$

Figure **S54**: ¹³C-NMR of compound **6d** (75 MHz, CDCl₃)

Figure **S56**: HRMS-ESI of **6d** with formula $C_{24}H_{27}^{35}ClN_2O_3$ and $[M+H]^+ 427.1997$

Figure S57: ¹H-NMR of compound 6e (600MHz, CDCl₃)

Figure **S58**: ¹³C-NMR of compound **6e** (151 MHz, CDCl₃)

Figure **S59**: IR of compound **6e** (KBr, cm⁻¹)

Figure S60: HRMS-ESI of 6e with formula $C_{25}H_{27}^{35}ClN_2O_2$ and $[M+H]^+$ 423.1995

Figure **S64**: IR of compound **6f** (KBr, cm⁻¹)

Figure S65: HRMS-ESI of 6f with formula $C_{25}H_{26}$ $^{35}Cl_2N_2O_2$ and $[M+H]^+$ 457.1651

Figure S66: ¹H-NMR of compound 6g (600MHz, CDCl₃)

Figure S67: ¹³C-NMR of compound 6g (151 MHz, CDCl₃)

Figure **S71**: ¹³C-NMR of compound **6h** (151 MHz, CDCl₃)

Figure S73: HRMS-ESI of 6h with formula $C_{25}H_{27}N_3O_4$ and $[M+H]^+$ 434.2100

Figure S74: ¹H-NMR of compound 6i (600MHz, CDCl₃)

Figure S75: ¹³C-NMR of compound 6i (151 MHz, CDCl₃)

Figure **S76**: IR of compound **6i** (KBr, cm⁻¹)

Figure S77: HRMS-ESI of 6i with formula $C_{26}H_{29}^{79}BrN_2O_2$ and $[M+H]^+$ 481.1321

Figure **S79**: ¹H-NMR of compound **6j** (300MHz, CDCl₃ at 55 °C)

Figure **S81**: IR of compound **6j** (KBr, cm⁻¹)

Figure **S82**: HRMS-ESI of **6j** with formula $C_{26}H_{26}^{79}Br \ {}^{35}ClN_2O_2$ and $[M+H]^+ \ 501.0857$

Figure **S84**: ¹³C-NMR of compound **6k** (151 MHz, CDCl₃)

Figure S86: HRMS-ESI of 6k with formula $C_{27}H_{32}N_2O_3$ and $[M+H]^+$ 433.2219

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0. fl (ppm)

Figure S87: ¹H-NMR of compound 6l (600MHz, CDCl₃)

Figure S88: ¹³C-NMR of compound 6l (151 MHz, CDCl₃)

Figure S90: HRMS-ESI of 61 with formula $C_{26}H_{30}N_2O_2$ and $[M+H]^+$ 403.2406

Figure **S91**: ¹H-NMR of compound **6m** (400MHz, CDCl₃)

Figure **S92**: ¹³C-NMR of compound **6m** (101 MHz, CDCl₃)

Figure **S94**: HRMS-ESI of **6m** with formula $C_{26}H_{29}^{79}BrN_2O_3$ and $[M+H]^+$ 497.1471

Figure **S97**: IR of compound **7a** (KBr, cm⁻¹)

Figure **S98**: HRMS-ESI of **7a** with formula $C_{23}H_{26}N_2O_2$ and $[M+H]^+$ 363.2152

Figure S100: ¹³C-NMR of compound 7b (151 MHz, CDCl₃)

Figure S102: HRMS-ESI of 7b with formula $C_{23}H_{25}N_3O_4$ and $[M+H]^+$ 408.2008

Figure S104: ¹³C-NMR of compound 7c (151 MHz, CDCl₃)

Figure **S105**: IR of compound **7c** (KBr, cm⁻¹)

Figure **S106**: HRMS-ESI of **7c** with formula $C_{23}H_{24}^{35}Cl_2N_2O_2$ and $[M+H]^+ 431.1329$

Figure S108: ¹³C-NMR of compound 7d (151 MHz, CDCl₃)

Figure **S109**: IR of compound **7d** (KBr, cm⁻¹)

Figure **S110**: HRMS-ESI of **7d** with formula C₂₄H₂₇³⁵ClN₂O₃ and [M+H]⁺ 427.2013

Figure **S112**: ¹³C-NMR of compound **7e** (151 MHz, CDCl₃)

Figure S114: HRMS-ESI of 7e with formula $C_{25}H_{27}^{35}ClN_2O_2$ and $[M+H]^+$ 423.2067

Figure S116: ¹³C-NMR of compound 7f (151 MHz, CDCl₃)

Figure **S118**: HRMS-ESI of **7f** with formula $C_{25}H_{26}^{35}Cl_2N_2O_2$ and $[M+H]^+ 457.1481$

Figure **S121**: IR of compound **7g** (KBr, cm⁻¹)

Figure **S125**: IR of compound **7h** (KBr, cm^{-1})

Figure S126: HRMS-ESI of 7h with formula $C_{25}H_{27}N_3O_4$ and $[M+H]^+$ 434.2080

Figure S128: ¹³C-NMR of compound 7i (151 MHz, CDCl₃)

Figure **S130**: HRMS-ESI of **7i** with formula $C_{26}H_{29}^{79}BrN_2O_2$ and $[M+H]^+$ 481.1203

Figure **S133**: IR of compound **7j** (KBr, cm⁻¹)

Figure **S134**: HRMS-ESI of **7j** with formula $C_{26}H_{26}^{79}Br^{35}ClN_2O_2$ and $[M+H]^+$ 501.0689

Figure S136: ¹³C-NMR of compound 7k (151 MHz, CDCl₃)

Figure S138: HRMS-ESI of 7k with formula $C_{27}H_{32}N_2O_3$ and $[M+H]^+$ 433.2235

Figure S142: HRMS-ESI of 71 with formula $C_{26}H_{30}N_2O_2$ and $[M+H]^+$ 403.2174

Figure S144: ¹³C-NMR of compound 7m (151 MHz, CDCl₃)

Figure **S145**: IR of compound **7m** (KBr, cm⁻¹)

Figure S146: HRMS-ESI of 7m with formula $C_{26}H_{29}^{79}BrN_2O_3$ and $[M+H]^+$ 497.1022

4. Z-matrix, total energy and imaginary frequency of DFT calculations

Anion A at PCM (DMF)

С	-0.87804400	2.75452100	-0.11279900
С	0.31300700	4.89718200	1.23478800
С	-1.66844600	3.69400200	0.55483500
С	0.51908500	2.88411500	-0.11341300
С	1.10309800	3.97411200	0.55237200
С	-1.07862000	4.76150200	1.23404100
С	1.44795400	2.00237200	-0.91298900
0	2.34103500	2.55549000	-1.57878600
N	1.31501800	0.64404000	-0.91847300
С	2.20476800	-0.09277100	-1.83530800
С	3.64219600	-0.18777200	-1.35492000
С	4.32234200	-1.30423600	-1.30087600
С	4.99738200	-2.42506400	-1.25382700
С	0.40145500	-0.14061500	-0.04205700
С	-0.70297800	-0.86528000	-0.86381600
С	1.19230400	-1.05736400	0.89654200
С	2.62880300	-2.65651700	2.72139600
С	1.27462800	-2.44464500	0.72032700
С	1.83636200	-0.48615300	2.00594400
С	2.54948300	-1.27327900	2.91006100
С	1.98717000	-3.23701500	1.62574200
0	-0.33669200	-1.69784200	-1.75797500
N	-1.92172500	-0.50796700	-0.51003800
С	-2.99959300	-1.18038000	-1.23526000
С	-3.93533100	-2.45830900	0.78032400

С	-4.89554700	-0.18833600	0.17632800
С	-5.19071700	-1.57198600	0.77726900
С	-4.27152000	-0.30744200	-1.22307700
С	-3.32681300	-2.56747400	-0.62571100
Н	-1.35104600	1.91169900	-0.61022800
Н	0.78071600	5.72623400	1.75907700
Н	-2.74998200	3.58657300	0.54389900
Н	2.18195900	4.09045200	0.52353000
Н	-1.69760500	5.48539000	1.75746700
Н	1.75709700	-1.07439200	-1.98205800
Н	2.19310600	0.44009900	-2.79252600
Н	4.12029900	0.75283000	-1.08547900
Н	5.56223500	-2.79075300	-2.11028300
Н	5.02069300	-3.03956000	-0.35515000
Н	-0.10298200	0.58401500	0.59112500
Н	3.18106600	-3.27416500	3.42504100
Н	0.77699100	-2.88852600	-0.13492500
Н	1.77621900	0.58914200	2.16187900
Н	3.03758700	-0.80984000	3.76387700
Н	2.03851700	-4.31250800	1.47328900
Н	-2.70525100	-1.35082500	-2.28431200
Н	-3.18777700	-2.02595700	1.45816300
Н	-4.17775200	-3.45701800	1.16943600
Н	-4.19730100	0.34759800	0.83168400
Н	-5.81607300	0.41025000	0.13290200
Н	-5.59026300	-1.46913300	1.79562900
Н	-5.97634200	-2.06398800	0.18249700
Н	-4.03305900	0.68961300	-1.61724400

Н	-5.01193100	-0.75008800	-1.90795900
Н	-2.41206700	-3.17086400	-0.60606400
Н	-4.03943200	-3.08897100	-1.28510700

Total energy= -1228.95235954 a.u.

Imaginary Freq = 0

Anion B at PCM (DMF)

С	-0.19083400	-2.12881800	-1.03502200
С	1.91365400	-3.39067100	-2.37556900
С	-0.15783800	-3.52069600	-1.13795400
С	0.82928600	-1.35496400	-1.60713800
С	1.86958300	-1.99823800	-2.29251900
С	0.89810000	-4.15620100	-1.79796700
С	0.80331300	0.15279100	-1.64183900
0	1.08526100	0.72915400	-2.70372800
Ν	0.46538700	0.84099800	-0.50473400
С	0.34763700	2.30984500	-0.63707800
С	1.62775300	3.06470700	-0.33276100
С	2.21654700	3.87706400	-1.17363800
С	2.79349400	4.69500200	-2.01725400
С	0.47588000	0.27627000	0.83060800
С	-0.79216200	0.15501500	1.48628700
С	1.75442800	-0.05775200	1.42263800
С	4.31560800	-0.74403000	2.55577300
С	1.88576300	-0.63021800	2.72497400
С	2.98195600	0.14120100	0.72304500
С	4.21724700	-0.18781700	1.27666800
С	3.12599300	-0.95863300	3.26328800

0	-0.97506700	-0.16449400	2.69286100
Ν	-1.93389400	0.39521100	0.70326300
С	-3.24222400	0.62139200	1.31412400
С	-4.51447100	1.25432100	-0.82567900
С	-4.55885100	-1.14249600	0.00402300
С	-5.34159700	-0.03685600	-0.72172700
С	-4.08218000	-0.67423400	1.38652700
С	-4.01992900	1.71545500	0.55702600
Н	-1.01321800	-1.64142600	-0.52224800
Н	2.73506100	-3.87582400	-2.89630800
Н	-0.95866800	-4.11071300	-0.69966900
Н	2.64274300	-1.39649800	-2.76050200
Н	0.92494100	-5.24058300	-1.86690400
Н	0.01074700	2.54437700	-1.64785600
Н	-0.42452400	2.62130900	0.07445900
Н	2.05430000	2.91276300	0.65823600
Н	2.53704900	5.75281500	-2.05626600
Н	3.55516900	4.35202000	-2.71609200
Н	5.28075800	-1.00041000	2.98502900
Н	0.98164800	-0.79863700	3.29469600
Н	2.96603100	0.57548900	-0.27113500
Н	5.11838800	-0.00538800	0.69266700
Н	3.16337500	-1.39196900	4.26235500
Н	-3.05441700	0.95512200	2.34045900
Н	-3.65913900	1.08157500	-1.49568000
Н	-5.10737400	2.05207900	-1.29119300
Н	-3.68611900	-1.42462300	-0.60181500
Н	-5.17666300	-2.04446400	0.10279100

Н	-5.64489500	-0.37456400	-1.72124900
Н	-6.26820500	0.17406700	-0.16668200
Н	-3.48456700	-1.44927500	1.87921200
Н	-4.95739300	-0.48605200	2.02706600
Н	-3.39859500	2.61589300	0.46512900
Н	-4.89169700	1.99404200	1.16551900
Н	-1.78368300	0.74948500	-0.22980300

Total energy= -1228.95252654 a.u.

Imaginary Freq = 0

Anion A in gas phase

С	-1.16315000	2.54630000	0.02357100
С	-0.14655200	4.92154100	1.10497200
С	-2.00045800	3.42601000	0.71607200
С	0.19747300	2.85501600	-0.13041500
С	0.68888300	4.05862100	0.40011100
С	-1.49936900	4.60717600	1.26346400
С	1.17400900	2.04828400	-0.95904100
0	1.96324000	2.67153900	-1.68670700
Ν	1.19014400	0.68380800	-0.91523200
С	2.07022700	0.01297000	-1.88910200
С	3.54267500	0.09077500	-1.52489100
С	4.33534800	-0.94417700	-1.43150000
С	5.12569200	-1.98365900	-1.33340200
С	0.42082600	-0.17569200	0.02649600
С	-0.63132700	-1.02854000	-0.74207400
С	1.37203700	-0.96607300	0.93109700
С	3.10555500	-2.31862600	2.69585500

С	1.57114400	-2.34757900	0.81533100
С	2.05349800	-0.27650000	1.94623000
С	2.91218600	-0.94021400	2.82072400
С	2.43096700	-3.01505700	1.69240300
0	-0.20864700	-1.94341300	-1.51494800
Ν	-1.87098400	-0.64987900	-0.49470400
С	-2.88786600	-1.40249300	-1.22328000
С	-3.76198900	-2.64343000	0.83087400
С	-4.81532400	-0.43849600	0.14294600
С	-5.05221400	-1.80740200	0.80236200
С	-4.19861100	-0.59072200	-1.25642500
С	-3.15785800	-2.78359300	-0.57397600
Н	-1.57250700	1.61451700	-0.37046400
Н	0.25378600	5.84313900	1.52231500
Н	-3.05274300	3.17516000	0.82784300
Н	1.73247900	4.30730800	0.23449200
Н	-2.15728500	5.28190300	1.80757300
Н	1.71667300	-1.01517000	-1.97584300
Н	1.92784200	0.51669900	-2.85139300
Н	3.93354000	1.09436000	-1.36352200
Н	5.67110900	-2.37492800	-2.19176000
Н	5.25109800	-2.51112000	-0.38924300
Н	-0.12832800	0.49923000	0.67722800
Н	3.77325100	-2.84269900	3.37700800
Н	1.04659800	-2.87310900	0.02431300
Н	1.90720500	0.79727900	2.04737200
Н	3.42743400	-0.38388900	3.60131100
Н	2.57234300	-4.08914400	1.58798400

Η	-2.55843200	-1.59270400	-2.25824200
Н	-3.02620900	-2.14886600	1.47707900
Н	-3.96291100	-3.63348400	1.26685800
Н	-4.11975100	0.14195800	0.76142600
Н	-5.75864800	0.12604600	0.09139900
Н	-5.44976600	-1.67763100	1.82013600
Н	-5.82374500	-2.35378200	0.23478200
Н	-3.99975500	0.39854000	-1.68941300
Н	-4.92162900	-1.09435700	-1.91937100
Н	-2.21477400	-3.33855700	-0.54507400
Н	-3.85256300	-3.35584300	-1.21240700

Total energy= -1228.88103676 a.u.

Imaginary Freq = 0

Anion B in gas phase

С	0.29989000	2.18006600	-0.84004600
С	-1.60910600	3.70795000	-2.19513800
С	0.38077100	3.57353700	-0.83516000
С	-0.73984500	1.53922300	-1.52739900
С	-1.67956600	2.31564000	-2.21824900
С	-0.57670500	4.34183300	-1.50106600
С	-0.84524600	0.04117200	-1.68616900
0	-1.18820600	-0.41603300	-2.78296400
Ν	-0.54592100	-0.76771500	-0.61382900
С	-0.57291400	-2.22051700	-0.87717300
С	-1.90016600	-2.88202900	-0.55463000
С	-2.55593300	-3.64607800	-1.38860400
С	-3.20378600	-4.41390400	-2.22880500

С	-0.48952400	-0.33650300	0.77071000
С	0.79332900	-0.36197700	1.40134100
С	-1.73197500	0.00343800	1.43662300
С	-4.20670600	0.69240600	2.72768100
С	-1.79165900	0.37226000	2.81335800
С	-2.97778900	0.00484500	0.74692500
С	-4.17445800	0.33610000	1.37802700
С	-2.99326700	0.70480700	3.42691700
0	1.04378900	-0.18444600	2.61605800
Ν	1.91344300	-0.57678000	0.54488400
С	3.17051100	-1.02897700	1.13677200
С	4.50600400	-1.14231900	-1.05326200
С	4.59556200	0.95305900	0.37199600
С	5.37080800	0.04229200	-0.59391800
С	4.04808400	0.16667800	1.57100600
С	3.94405400	-1.92193900	0.14894200
Н	1.04893900	1.59052000	-0.32356700
Н	-2.35658700	4.29710600	-2.72213100
Н	1.19398100	4.05952800	-0.30096800
Н	-2.45921100	1.80716600	-2.77648000
Н	-0.51594400	5.42811400	-1.48229300
Н	-0.31963600	-2.39416000	-1.92468200
Н	0.20001100	-2.66306200	-0.23707500
Н	-2.30053000	-2.69229000	0.44029000
Н	-3.03115000	-5.48886700	-2.27701300
Н	-3.94005500	-4.00736000	-2.92088900
Н	-5.14251100	0.95225400	3.21829500
Н	-0.86556500	0.37961600	3.37292100

Η	-3.00877100	-0.26692100	-0.30334200
Н	-5.09643300	0.31619200	0.79710500
Н	-2.98180200	0.97833400	4.48232700
Н	2.93398300	-1.60477400	2.04093900
Н	3.68018700	-0.76296100	-1.67106300
Н	5.08892200	-1.81564900	-1.69722000
Н	3.75402300	1.41122300	-0.16396500
Н	5.23844700	1.77523700	0.71592700
Н	5.72390900	0.61335700	-1.46390200
Н	6.26976700	-0.34409200	-0.08746900
Н	3.44128000	0.80209800	2.22213700
Н	4.88869300	-0.21492800	2.17330700
Н	3.30020400	-2.74413900	-0.19338200
Н	4.78241600	-2.38567000	0.68971700
Н	1.69391400	-0.93694100	-0.37374200

Total energy= -1228.87810940 a.u.

Imaginary Freq = 0

С	1.42884700	-0.01147000	1.64614200
С	0.28558000	0.94568500	2.01132100
С	-0.85129200	0.35103300	2.57835000
С	-1.27163500	0.13165200	3.82331000
С	0.33058500	1.17943300	0.02009100
Η	0.58783800	1.96348500	2.27738200
Н	1.26701700	-1.02653000	2.02305200
Η	2.40135800	0.34795300	2.01291500
Н	-0.70787400	0.40512700	4.73126300

Н	-2.22794700	-0.35667300	4.04144200
С	0.94223000	2.49500600	-0.27419300
С	0.15294900	3.65832900	-0.43218100
С	2.34053600	2.67138700	-0.27144500
С	0.73692700	4.91118800	-0.58817600
Н	-0.92446700	3.55739000	-0.45265800
С	2.92333800	3.92929600	-0.43185600
Н	2.97946600	1.80023200	-0.16240900
С	2.12813400	5.06350700	-0.59143900
Н	0.09619900	5.78280000	-0.71233300
Н	4.00874400	4.01806600	-0.43442300
Н	2.57906200	6.04573900	-0.71710900
С	1.65345000	-0.78338600	-0.79164400
0	1.27002500	-0.68005200	-1.95683500
С	2.55973000	-1.94015900	-0.42130100
С	3.64638900	-1.84432400	0.45699500
С	2.33601400	-3.15515200	-1.08543000
С	4.48007700	-2.94299500	0.67981600
Н	3.85763700	-0.90510900	0.95761800
С	3.15368400	-4.25746800	-0.84910200
Н	1.51476000	-3.20534900	-1.79300400
С	4.23115200	-4.15502600	0.03576800
Н	5.32579400	-2.84842900	1.35720800
Н	2.95683700	-5.19689700	-1.36079700
Н	4.87529200	-5.01276000	0.21608900
Ν	1.29010400	0.08423800	0.19302800
С	-0.97830600	0.84844400	-0.63247700
0	-1.52425500	1.56196600	-1.48828300

Ν	-1.56266400	-0.28874700	-0.12152100
Н	-1.41477800	-0.35384200	0.92574600
С	-2.91080000	-0.62470000	-0.56164300
С	-3.20149100	-2.10582500	-0.26783200
С	-3.99172700	0.27900000	0.06984900
Н	-2.93469800	-0.46418200	-1.64715200
С	-4.61750600	-2.51053700	-0.70801400
Н	-3.09158700	-2.28217100	0.81303100
Н	-2.44709800	-2.72810000	-0.76497800
С	-5.40661600	-0.12570300	-0.37131900
Н	-3.90657700	0.21366900	1.16429100
Н	-3.77858400	1.31495900	-0.21025200
С	-5.68814600	-1.60714100	-0.07567600
Н	-4.80874700	-3.56290300	-0.45440200
Н	-4.68994800	-2.43692800	-1.80407800
Н	-6.15747300	0.50886600	0.12040100
Н	-5.51280400	0.04982300	-1.45297700
Н	-6.68806500	-1.89037000	-0.43506700
Н	-5.69021900	-1.76205400	1.01410900

Total energy= -1228.81977185 a.u.

Imaginary Freq = 1 (382.55*i*)

TS2			
0	-1.01176500	0.68631700	-1.70432000
Ν	-0.93758500	0.25231100	0.55027200
С	-3.08095700	4.28513600	-0.98645200
0	1.40779200	-2.46614100	-0.02703200

Ν	1.72079200	-0.24829500	0.38334700
Н	1.29139300	0.65354600	0.23031900
С	-2.36979600	5.19225600	-0.19526400
Н	-2.67621300	6.23477100	-0.14644400
С	-1.25893000	4.75199200	0.52471500
Н	-0.69007700	5.45207900	1.13265600
С	-0.87209800	3.41074900	0.47092000
Н	-0.01061700	3.07929700	1.04335000
С	-1.58215300	2.49305500	-0.31418900
С	-2.67859500	2.95328500	-1.05821800
Н	-3.19881600	2.24942600	-1.70067800
С	-1.14945000	1.05265200	-0.53439400
С	-1.18336000	0.70015400	1.98624800
Н	-0.26472800	1.21956900	2.31047800
Н	-1.99628200	1.43280900	2.01484400
С	-1.48364600	-0.51884300	2.77650700
Н	-2.43126900	-0.59324300	3.30519100
С	-0.80351500	-1.62992800	2.40298700
С	-0.27084100	-2.80456700	2.74159200
С	-0.54621800	-1.13378000	0.37598800
С	0.88999600	-1.35619200	0.17864500
С	-1.55392300	-2.00572700	-0.26783900
С	-2.92147900	-1.64853200	-0.21719200
С	-3.91216200	-2.45363400	-0.77299100
Н	-4.95264300	-2.13680600	-0.70805300
С	-3.58523900	-3.65270300	-1.40981900
Н	-4.35857800	-4.28120000	-1.84741000
С	-2.23893300	-4.02354500	-1.47001600

Н	-1.95435200	-4.95325300	-1.96189700
С	-1.24256300	-3.22653400	-0.91104100
Н	-0.20583900	-3.53221900	-0.95957200
С	3.13847200	-0.34415200	0.08690400
Н	3.43900000	-1.34546800	0.41494800
С	3.92498700	0.70574900	0.88771200
Н	3.72226700	0.57271400	1.95727900
Н	3.56051500	1.71141200	0.62031700
С	5.43394500	0.62902400	0.60355600
Н	5.96544400	1.41392000	1.15948700
Н	5.81986100	-0.33194400	0.97566300
С	5.73671600	0.74089600	-0.89904300
Н	5.45402400	1.74543700	-1.24978300
Н	6.81653600	0.64003300	-1.07785400
С	4.95641700	-0.31092700	-1.70272700
Н	5.32099600	-1.31303800	-1.43073700
Н	5.15198200	-0.19086600	-2.77714600
С	3.44799600	-0.22964500	-1.42067200
Н	2.90788900	-1.02396600	-1.94577000
Н	3.05463000	0.72880000	-1.79374500
Н	-3.94377800	4.62052000	-1.55774700
Н	-3.20609100	-0.72492400	0.27610600
Н	-0.07694100	-3.58149600	2.00861400
Н	0.04300300	-2.99284400	3.76754700

Total energy= -1228.84457931 a.u.

Imaginary Freq = 1 (327.47i)

С	-1.49281100	0.72953600	1.90848200
С	-1.08799900	0.00892700	3.18450900
С	-0.74428900	-1.27285700	3.24851200
С	-0.64669800	-2.17238500	2.20107000
С	-0.79090800	-1.20254900	0.30960300
Н	-1.19972100	0.63848300	4.07620500
Н	-1.20389600	1.78050000	1.98995700
Н	-2.59505000	0.72176700	1.83296100
Н	0.31805800	-2.64480800	2.01198500
Н	-1.47678200	-2.86867400	2.05569700
С	-1.96625000	-1.79852600	-0.34973700
С	-1.97404400	-3.14066000	-0.81350400
С	-3.18769000	-1.09399800	-0.46574200
С	-3.11689700	-3.71355100	-1.36106800
Н	-1.05470400	-3.70764100	-0.75898700
С	-4.33071500	-1.67643700	-1.01149900
Н	-3.24209700	-0.06447900	-0.12862100
С	-4.31276000	-2.99441500	-1.46833500
Н	-3.07217500	-4.74413700	-1.71157700
Н	-5.24395300	-1.08658400	-1.08172400
Н	-5.20353900	-3.45027300	-1.89560200
С	-0.69150000	1.10835400	-0.41251600
0	-0.20383500	0.77033200	-1.49237000
С	-0.99015500	2.58995300	-0.24770300
С	-2.27683500	3.09337200	-0.01312600
С	0.04761500	3.49508100	-0.51085600
С	-2.51527500	4.46895500	-0.02413300

Н	-3.09774600	2.40756400	0.17444100
С	-0.18355500	4.86962100	-0.49743700
Н	1.03507400	3.10450700	-0.73871700
С	-1.46836300	5.36244200	-0.25572500
Н	-3.52196700	4.84180200	0.15068900
Н	0.63721200	5.55742300	-0.68831400
Н	-1.65299700	6.43428600	-0.25476100
Ν	-0.92619700	0.23235300	0.62390200
С	0.56713300	-1.58825900	-0.12896000
0	0.83460400	-2.57196600	-0.83475100
Ν	1.60487800	-0.85027100	0.43796200
Н	1.33555000	-0.00997600	0.93142800
С	2.95063000	-0.91559600	-0.09409400
С	3.25513000	0.24469800	-1.06520800
С	3.99858100	-0.96863400	1.03157700
Η	2.98479300	-1.85597800	-0.65564400
С	4.68309100	0.15936100	-1.62609900
Н	3.13681100	1.19835600	-0.52438100
Н	2.50801900	0.24493800	-1.86524700
С	5.43007400	-1.04851000	0.47564900
Н	3.90237100	-0.06702900	1.65760900
Н	3.78520200	-1.82422200	1.68317700
С	5.72722800	0.10138400	-0.50031600
Н	4.88620100	1.01132700	-2.28971000
Н	4.77292600	-0.74541400	-2.24605800
Н	6.15914600	-1.04867300	1.29791500
Н	5.55606600	-2.00579600	-0.05245300
Н	6.73851400	-0.00468600	-0.91793600

Total energy= -1228.82297157a.u.

Imaginary Freq = 1 (247.24)

С	-0.06212300	0.20187100	2.05443200
С	1.29787000	-0.43441700	1.78912200
С	1.45004400	-1.81657400	1.67310100
С	1.20605000	-2.82147900	2.51283000
С	-0.77216000	0.63763500	-0.27291800
Н	2.08041000	0.09912300	2.33339000
Н	0.02984900	1.29018800	2.16361900
Н	-0.48567000	-0.21179300	2.97343800
Н	0.80903000	-2.71300200	3.53991000
Н	1.38025000	-3.87163900	2.24143800
С	-1.34682100	2.06835200	-0.19471800
С	-2.20262900	2.45354000	0.84618800
С	-1.06226200	3.00211300	-1.20454400
С	-2.75299800	3.73780000	0.88347900
Н	-2.44462600	1.74583500	1.63299300
С	-1.61436900	4.28193600	-1.16591400
Н	-0.39746900	2.70157200	-2.00787000
С	-2.46263100	4.65925800	-0.12161900
Н	-3.41140400	4.01375900	1.70469400
Н	-1.37897100	4.98985100	-1.95826900
Н	-2.89206500	5.65858200	-0.09364600
С	-2.07532000	-0.90635200	1.21253600

0	-2.52829200	-1.11111200	2.34096200
С	-2.68186900	-1.62573000	0.03433500
С	-4.07395300	-1.69392000	-0.09284400
С	-1.86999900	-2.34864200	-0.85110300
С	-4.65065800	-2.43819000	-1.12090100
Н	-4.69221700	-1.16322300	0.62542000
С	-2.45035200	-3.10880400	-1.86741700
Н	-0.79134700	-2.33047700	-0.71387100
С	-3.83897500	-3.14642900	-2.01150800
Н	-5.73295300	-2.47318900	-1.22405000
Н	-1.81553900	-3.67332900	-2.54583200
Н	-4.28867200	-3.73218100	-2.81025100
Ν	-0.98981800	-0.10206300	0.97045800
С	0.70217400	0.63435100	-0.75953200
0	0.86844700	0.84183900	-1.98446500
Ν	1.65592600	0.44717200	0.15269900
С	3.02183300	0.37075200	-0.37765700
С	4.08012800	0.62422600	0.71044600
С	3.30957000	-0.96684500	-1.09710500
Н	3.11832700	1.17211000	-1.12797900
С	5.49592100	0.62438700	0.11204300
Н	4.02342600	-0.16454700	1.47078000
Н	3.87483500	1.57807600	1.21564100
С	4.73290700	-1.00055600	-1.67575000
Н	3.14713700	-1.77761000	-0.37617100
Н	2.57425100	-1.08989500	-1.89859700
С	5.79451400	-0.70125100	-0.60553000
Н	6.24127000	0.80765600	0.89931300

Η	5.59019700	1.45305300	-0.60705900
Н	4.93224900	-1.97559000	-2.14319600
Н	4.81689500	-0.24945800	-2.47754700
Н	6.79951000	-0.67734500	-1.05218600
Н	5.79738000	-1.51421100	0.13576400
Н	-1.31144300	0.12390600	-1.07066600

Total energy= -1228.82013348 a.u.

Imaginary Freq = 1 (343.79i)

С	-1.03976300	0.87483400	2.05788400
С	0.39630800	0.88279900	2.51810200
С	1.30793400	-0.08629600	2.27577300
С	2.22576500	-0.82428100	2.91372600
С	-1.00429000	-1.14313800	0.59086200
Н	-1.45577800	1.88602200	2.07355000
Н	-1.68462200	0.27752800	2.72909800
Н	3.09037700	-1.26759800	2.43494600
Н	2.10794100	-1.00567900	3.98099900
С	-2.21623100	-1.94602600	0.13169400
С	-2.07721600	-3.29088400	-0.24534700
С	-3.50836600	-1.41041800	0.19551500
С	-3.19680600	-4.06466700	-0.55399600
Н	-1.08242800	-3.71022700	-0.32655900
С	-4.62876600	-2.18309800	-0.11299500
Н	-3.63402200	-0.37265200	0.48795500
С	-4.47987700	-3.51821500	-0.49011400

Н	-3.06206900	-5.10286100	-0.85198600
Н	-5.62024700	-1.73691300	-0.05990300
Н	-5.35100700	-4.12349700	-0.73355000
С	-1.39773700	1.04008800	-0.42928500
0	-1.60804400	0.51847900	-1.52479900
С	-1.33114400	2.55259900	-0.36552300
С	-0.26883700	3.24876500	0.22781100
С	-2.30561300	3.27084800	-1.07282200
С	-0.20139700	4.64086800	0.13168200
Н	0.49750500	2.69217300	0.76267000
С	-2.24835600	4.66098800	-1.14903400
Н	-3.09588900	2.71842700	-1.57243600
С	-1.19265400	5.35161100	-0.54667700
Н	0.63224800	5.16995800	0.58831900
Н	-3.01970300	5.20650100	-1.68856100
Н	-1.13962500	6.43625300	-0.61435100
Ν	-1.25474800	0.30739000	0.71644400
С	0.33910200	-1.38331900	-0.18507800
0	0.39215700	-2.15696200	-1.15991000
Ν	1.34319800	-0.66078800	0.32616200
С	2.57844500	-0.66638700	-0.45402400
С	3.45031000	0.55851900	-0.12709500
С	3.40904700	-1.96912500	-0.35160400
Н	2.28587400	-0.58855400	-1.51490400
С	4.70716900	0.61306000	-1.01085500
Н	3.74383000	0.52769000	0.93103500
Н	2.85286500	1.46955500	-0.25763700
С	4.65801800	-1.91050300	-1.24520000

Н	3.71882800	-2.13426300	0.68913300
Н	2.76411600	-2.80408500	-0.64006600
С	5.52618300	-0.68485000	-0.92041100
Н	5.33126200	1.47495500	-0.73308000
Н	4.40790500	0.77142400	-2.05834200
Н	5.24921800	-2.83240400	-1.14255200
Н	4.34522100	-1.85870700	-2.29927700
Н	6.39589100	-0.63670300	-1.59239000
Н	5.92493700	-0.78763800	0.10085500
Н	-0.79367100	-1.47204600	1.61626100
Н	0.69161100	1.70233900	3.17228500

Total energy= -1228.82665762 a.u.

Imaginary Freq = 1 (322.88*i*)

INT1

С	1.13679400	-0.75517900	2.02834200
С	0.06155400	-1.84127200	2.06082900
С	-1.27999400	-1.68642700	1.97372100
С	-1.72973300	-0.22253000	1.89687400
С	0.46023800	1.31429000	0.67086900
Н	2.13342100	-1.17483800	2.20267800
Н	0.99373700	0.01009500	2.80251700
С	1.36671900	2.42789900	0.15525700
С	2.05834600	3.19913300	1.10017900
С	1.57810200	2.69946500	-1.20604000
С	2.94287600	4.20780600	0.71294000
Н	1.90306100	3.00441200	2.16006300
С	2.46143100	3.70737500	-1.59398600

Н	1.04280600	2.11670000	-1.94099400
С	3.14796500	4.46565700	-0.64215300
Н	3.46498400	4.79061200	1.46917300
Н	2.61247200	3.90331500	-2.65357000
Н	3.83330900	5.25121200	-0.95449000
С	1.41774400	-0.63706600	-0.43798000
0	1.02912900	-0.24275500	-1.53987200
С	2.28299800	-1.87600500	-0.39322200
С	1.82767800	-3.04367800	-1.01601000
С	3.58338100	-1.84068200	0.12374400
С	2.64930300	-4.16663100	-1.09540700
Н	0.82333100	-3.05866800	-1.42687600
С	4.41407300	-2.95883100	0.02710000
Н	3.94532100	-0.92833400	0.59056700
С	3.94650100	-4.12735300	-0.57632200
Н	2.27845900	-5.07456300	-1.56552300
Н	5.42616200	-2.91640100	0.42379400
Н	4.58921400	-5.00239800	-0.64434300
Ν	1.17699400	0.01733700	0.73612400
С	-0.93145900	1.23907200	-0.02580500
0	-1.19118600	1.95062100	-1.00017200
Ν	-1.83739200	0.37700500	0.52591700
С	-3.07843700	0.14375600	-0.23315800
С	-3.36822800	-1.35976800	-0.40051300
С	-4.28172700	0.90716400	0.35881100
Н	-2.88820100	0.57258600	-1.22107200
С	-4.67194300	-1.59520000	-1.18160100
Н	-3.38365500	-1.85449200	0.57976100

Н	-2.52216700	-1.81672000	-0.92712600
С	-5.56424400	0.65422100	-0.44911700
Н	-4.45143400	0.59283700	1.39748600
Н	-4.04383200	1.97804800	0.37961800
С	-5.86221900	-0.84810100	-0.56143700
Н	-4.88535100	-2.67177800	-1.23381500
Н	-4.54723500	-1.25307200	-2.22141900
Н	-6.41224600	1.18191800	0.01049400
Н	-5.44753200	1.07338300	-1.46029000
Н	-6.77339500	-1.01471200	-1.15421600
Н	-6.06013200	-1.25210900	0.44284600
Н	0.25728400	1.55913000	1.71672000
Н	-1.12824200	0.49018100	2.50067900
Н	-2.74294100	-0.12274200	2.31376100
Н	0.49574100	-2.84961600	2.12414200

Total energy= -1228.81508099 a.u.

Imaginary Freq = 0
5. References

- (S1) APEX, Bruker AXS, Madison, WI, USA.
- (S2) SAINT, Bruker AXS, Madison, WI, USA.
- (S3) SADABS, Bruker AXS, Madison, WI, USA.
- (S4) G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
- (S5) SHELXTL, Bruker AXS, Madison, Wisconsin, USA, 2015.