Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Decarboxylative cascade cyclization of α -keto acids with 2-cyano-3-arylaniline

derived acrylamides

Jia-Qi Shang,†^a Xiang-Xiang Wang,†^a Yangchun Xin,^b Yi Li,^a Bin Zhou^a and Ya-Min Li^{*a}

^{*a*}Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.

^bKatzin Diagnostic & Research PET/MR Center, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, United States.

[†]These authors contributed equally.

E-mail: liym@kust.edu.cn.

Table of Contents

1. Reaction conditions screening	S1
2. Mechanistic studies	S2
3. Charts of compounds	S5

1. Reaction conditions screening

				catalyst pxidant solvent	n	
		1a	2a	3aa		
Entry ^a	2a (equiv)	Catalyst (mol%)	Oxidant (equiv)	Solvent (mL, v/v)	Temp (°C)	Yield ^b (%)
1	3	$Ag_2CO_3(5)$	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	47
2	3	AgF (5)	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	33
3	3	AgOAc (5)	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	28
4	3	AgOTf (5)	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	46
5	3	$AgClO_4(5)$	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	47
6	3	$AgNO_3(5)$	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	52
7	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	54
8	3	$Ag_2O(3)$	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	47
9	3	Ag ₂ O (10)	$(NH_4)_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	37
10	3	$Ag_2O(5)$	$K_2S_2O_8(1)$	Acetone/H ₂ O (3, 1/1)	120	43
11	3	$Ag_2O(5)$	Oxone (1)	Acetone/H ₂ O (3, 1/1)	120	Trace
12	3	$Ag_2O(5)$	$Ce(SO_4)_2(1)$	Acetone/H ₂ O (3, 1/1)	120	0
13	3	$Ag_2O(5)$	DTBP(1)	Acetone/H ₂ O (3, 1/1)	120	Trace
14	3	$Ag_2O(5)$	TBPB(1)	Acetone/H ₂ O (3, 1/1)	120	Trace
15	3	$Ag_2O(5)$	BPO(1)	Acetone/H ₂ O (3, 1/1)	120	11
16	3	$Ag_2O(5)$	DCP(1)	Acetone/H ₂ O (3, 1/1)	120	Trace
17	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(2)$	Acetone/H ₂ O (3, 1/1)	120	57
18	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1)	120	61
19	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(4)$	Acetone/H ₂ O (3, 1/1)	120	60
20	2	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1)	120	28
21	4	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1)	120	43
22	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	THF/H ₂ O (3, 1/1)	120	27
23	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	<i>i</i> -PrOH/H ₂ O (3, 1/1)	120	45
24	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	CH ₃ CN/H ₂ O (3, 1/1)	120	35
25	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Dioxane/H ₂ O (3, 1/1)	120	33
26	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	DMF/H ₂ O (3, 1/1)	120	29
27	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	DMSO/H ₂ O (3, 1/1)	120	Trace
28	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	DCE/H ₂ O (3, 1/1)	120	Trace
29	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Toluene/H ₂ O (3, 1/1)	120	Trace
30	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (1.5, 1/1)	120	42
31	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (4.5, 1/1)	120	38
32	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O $(3, 1/1)$	90	54
33	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O $(3, 1/1)$	100	61
34	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O $(3, 1/1)$	110	59

Acetone/H₂O (3, 1/1)

Acetone/H₂O (3, 2/1)

Acetone/H₂O (3, 1/2)

Trace

 $(NH_4)_2S_2O_8(3)$

 $(NH_4)_2S_2O_8(3)$

 $(NH_4)_2S_2O_8(3)$

Ag₂O (5)

 $Ag_2O(5)$

Ag₂O (5)

38	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1.5/1)	100	48
39	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1.1)	100	61
40	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1.2)	100	58
41	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1.3)	100	66
42	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1.4)	100	58
43	3	$Ag_2O(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1.5)	100	59
44	3	-	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1.3)	100	39
45	3	$Ag_2O(5)$	-	Acetone/H ₂ O (3, 1/1.3)	100	0
46	3	$AgNO_3(5)$	$(NH_4)_2S_2O_8(3)$	Acetone/H ₂ O (3, 1/1.3)	100	46

^aReaction conditions: 1a (0.30 mmol), 2a, catalyst and oxidant in solvent for 12 h under air. ^bIsolated yield of 3aa.

2. Mechanistic studies

1) Radical-trapping experiment

Acrylamide **1a** (0.3 mmol), phenylglyoxylic acid **2a** (0.9 mmol), Ag₂O (0.015 mmol), (NH₄)₂S₂O₈ (0.9 mmol), TEMPO (1.5 mmol) and acetone/H₂O [3.0 mL, 1/1.3 (v/v)] were added in a sealed tube with a Teflon lined cap. The mixture was allowed to stir at 100 °C for 12 hours. After cooling down to room temperature, the mixture was under HRMS (ESI) analysis.

Figure S1. HRMS spectra of the reaction solution.

2) Kinetic isotope effect (KIE) experiments

a) Intermolecular KIE experiment

Acrylamide **1a** (0.3 mmol), phenylglyoxylic acid **2a** (0.9 mmol), Ag₂O (0.015 mmol), (NH₄)₂S₂O₈ (0.9 mmol) and acetone/H₂O [3.0 mL, 1/1.3 (v/v)] were added in a sealed tube with a Teflon lined cap. In another reaction vessel, acrylamide **1a**- D_5 was used instead of **1a**. The two reactions were stirred at 100 °C for 0.5 hour. After cooling down to room temperature, the two reaction mixtures was combined, and the aqueous Na₂CO₃ (1.0 M, 10.0 mL) was added, then extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄, and filtered. The filtrate was concentrated by rotary evaporation and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (6/1) as the eluent to afford the corresponding product **3aa** and **3aa**- D_4 (38 mg, 17%). The products were under ¹H NMR analysis (Figure S2).

Figure S2. ¹H NMR spectra of the mixture of compound 3aa and 3aa-D₄.

b) Intramolecular KIE experiment

Acrylamide $1a-D_1$ (0.3 mmol), phenylglyoxylic acid 2a (0.9 mmol), Ag₂O (0.015 mmol), (NH₄)₂S₂O₈ (0.9 mmol) and acetone/H₂O [3.0 mL, 1/1.3 (v/v)] were added in a sealed tube with a Teflon lined cap. The reaction was stirred at 100 °C for 12 hours. After cooling down to room temperature, the aqueous Na₂CO₃ (1.0 M, 5.0 mL) was added, then extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄, and filtered. The filtrate was concentrated by rotary evaporation and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (6/1) as the eluent to afford the corresponding product **3aa** and **3aa**-D₁ (65 mg, 57%). The products were under ¹H NMR analysis (Figure S3).

Figure S3. ¹H NMR spectra of the mixture of compound 3aa and 3aa-D₁.

3. Charts of compounds

S6

