Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Expeditious Diastereoselective Synthesis of Medium Ring Heterocycle-Fused Chromenes *via* Tandem 8/9*-endo-dig* and 8*-exo-dig* Hydroalkoxylation-Formal-[4+2]-Cycloaddition

Santosh. J. Gharpure,* Santosh K. Nanda,[†] Dipak J. Fartade[†]

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai -400076

India. Fax: +91-22-2576 7152; Tel: +91-22-2576 7171; E-mail: sigharpure@iitb.ac.in

Table of Contents

1.	General Information	S2
2.	Experimental and Characterization of compounds	S3-S23
3.	X-Ray crystallographic analysis	S24-S29
4.	Copies of NMR-Spectra	

1. General experimental:

Melting points are recorded using sigma melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on Nicolet 6700 spectrophotometer. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on Bruker Avance 400 spectrometer. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were recorded on Bruker Avance 500 spectrometer. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to either internal tetramethylsilane or residual CHCl₃ (7.26 ppm for ¹H) or the central line (77.16 ppm) of CDCl₃ (for ¹³C). In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses.

High resolution mass measurements were carried out using Maxis impact (brucker) instrument using direct inlet mode. X-ray diffraction studies were carried out using Bruker Single Crystal Kappa Apex II. Analytical thin-layer chromatographies (TLC) were performed on glass plates $(7.5 \times 2.5 \text{ and } 9 \times 5.0 \text{ cm})$ coated with Merck or Acme's silica gel G containing 13% calcium sulfate as binder or on pre-coated 0.2 mm thick Merck 60 F₂₄₅ silica plates and various combinations of ethyl acetate and hexanes were used as eluent. Visualization of spots was accomplished by either exposure to iodine vapour or KMnO₄ stain. All small-scale dry reactions were carried out using standard syringe septum technique. Dry dichloromethane was prepared by refluxing over anhydrous P₂O₅ and distillation on to calcium hydride. Dry DMF was prepared by stirring on CaH and distillation on to molecular sevies. CuI, Rh₂(OAc)₄ and TMSOTf were obtained from Aldrich. All other Lewis/Bronsted acids, phenyl acetylene, NaH (60% dispersion in mineral oil), benzyl bromide, propargyl bromide (80% in toluene), Mg turning, DMP, [Pd(PPh₃)₂]Cl₂, aryl iodides, TMSCN, are commercial reagents and were used as such without further purification. All other alkyne and alkynols were prepared using literature established protocol.

2. Experimental procedure for the diastereoslective synthesis of medium ring heterocycle-fused Chromenes:

(*Note*: In the cases where diastereomeric mixture of products was obtained, the isomers could not be separated and data for the major isomer is mentioned).

12a-(p-tolyl)-5-tosyl-3,4,5,6-tetrahydro-2H,12aH-chromeno[2,3-

b][1,5]oxazocine (9a):

To a magnetically stirred solution of alkynol **5a** (50 mg, 0.139 mmol), salicylaldehyde (**8a**) (15 μ L, 0.139 mmol) in dry CH₂Cl₂ (8.0 mL) was added dropwise TMSOTf (50 μ L, 0.278 mmol) at 0 °C. Reaction was monitored by TLC, quenched with saturated aq. solution of NaOH upon completion, extracted with CH₂Cl₂ (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished a separable mixture of oxazepino chromene **9a** (55 mg, 82%) as a single diastereomer (dr ≥19:1).

Physical appearance: Sticky solid.

R_f: 0.4 (1:9 ethyl acetate-petroleum ether).

IR (neat): 3019, 2925, 1657, 1335, 1216, 1158, 759 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2 H), 7.22 (td,

J = 9.0, 1.5 Hz, 1H) 7.18 (dd, J = 7.5, 1.5 Hz, 1H), 7.14 (d,

J = 8.0 Hz, 2H), 7.05 (s, 1H), 6.94 (td, *J* = 7.5, 1.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 4.08 (d, *J* = 14.0 Hz, 1H), 4.02 (dd, *J* = 10.5, 3.0 Hz, 2H), 3.50 (dt, *J* = 14.0, 4.5 Hz, 1H), 3.23 (d, *J* = 10.0 Hz, 1H), 3.16-3.21 (m, 1H), 2.43 (s, 3H), 2.24 (s, 3H), 2.05-2.09 (m, 1H), 1.78-1.82 (m, 1H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 152.7 (C), 143.3 (C), 138.9 (C), 138.7 (C), 136.8 (C), 130.7 (CH), 130.4 (CH), 129.8 (2 × CH), 129.4 (C), 128.9 (2 × CH), 127.4 (CH), 127.0 (2 × CH), 125.7 (2 × CH), 121.0 (CH), 118.2 (C), 115.5 (CH), 105.2 (C), 62.0 (CH₂), 52.7 (CH₂), 47.3 (CH₂), 30.1 (CH₂), 21.6 (CH₃), 21.3 (CH₃);

HRMS (ESI-TOF) m/z: calcd. for $C_{27}H_{27}NNaO_4S$ [M+Na]⁺: 484.1553, found 484.1553.

(4a*R**,13a*S**,14a*S**)-13a-(*p*-tolyl)-6-tosyl-1,3,4,4a,5,6,7,14a-octahydro-2*H*,13a*H*benzo[*b*]chromeno[3,2-*g*][1,5]oxazocine (9b):

Reaction of alkynol **5b** (86 mg, 0.209 mmol), salicylaldehyde (**8a**) (23 μ L, 0.210 mmol) with TMSOTf (76 μ L, 0.418 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished the oxazocino chromene **9b** (75mg, 71%) as a as a single diastereomer (dr \geq 19:1).

Physical appearance: Sticky solid.

R_f: 0.5 (1:9 ethyl acetate-petroleum ether).

IR (neat): 3019, 2919, 1698, 1595, 1354, 1245, 1019, 998, 765 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.63 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.21 (t,

J = 14.0, 7.2 Hz, 1H), 7.13 (t, *J* = 14, 8.0 Hz, 3H), 6.92 (q, *J* = 11.6, 7.6 Hz, 2H), 6.80 (s, 1H), 3.53-3.60 (m, 3H), 3.24 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.90 (bs, 1H), 2.42 (s, 3H), 2.33 (s, 3H), 2.00-2.02 (m, 1H), 1.90 (bs, 1H), 1.50-1.67 (m, 4H), 1.17-1.32 (m, 1H), 1.04-1.10 (m, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.1 (C), 143.2 (2 × C), 139.2 (C), 138.5 (C), 136.0 (C), 130.4 (CH), 129.8 (2 × CH), 129.6 (CH), 128.7 (2 × CH), 127.2 (2 × CH), 127.1 (CH), 126.0 (2 × CH), 120.8 (CH), 117.9 (C), 115.1 (CH), 104.3 (C), 77.11 (CH), 53.7 (CH₂), 53.5 (CH₂) 44.7 (CH), 34.6 (CH₂), 29.9 (CH₂), 25.3 (CH₂), 25.1 (CH₂), 21.5 (CH₃), 21.3 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₁H₃₃NNaO₄S [M+Na]⁺: 538.2023, found 538.2022.

(7S*,8aS*)-7-methyl-8a-phenyl-5-tosyl-6,7-dihydro-5H,8aHbenzo[e]chromeno[3,2-g][1,4]oxazocine (9c):

Reaction of alkynol **5c** (80 mg, 0.197 mmol), salicylaldehyde (**8a**) (21 μ L, 0.197 mmol) with TMSOTf (71 μ L, 0.394 mmol) in dry CH₂Cl₂ (8.0 mL) at 0 °C as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished the oxazocine chromene **9c** (95 mg, 95%) a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_{*f*}: 0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 222-224 °C.

IR (neat): 2983, 1458, 1448, 1375, 1245, 1093, 918, 847, 758, 736, 608 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 7.67 (d, J = 8.4 Hz, 2H), 7.19-7.27 (m, 10H), 7.16 (dd, J = 7.6, 1.2 Hz, 1H), 6.96-7.04 (m, 4H), 6.56 (s, 1H), 4.63-4.70 (m, 1H), 4.12 (dd, J = 14.8, 0.0 Hz, 1H), 3.24 (dd, J = 14.8, 9.2 Hz, 1H), 2.44 (s, 3H), 1.27 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.0 (C), 143.3 (C), 142.4 (C), 140.2 (C),

139.7 (C), 132.7 (C), 132.1 (CH), 129.9 (CH), 129.7 (2 × CH), 128.8 (CH), 128.5 (CH), 128.3 (CH), 127.7 (2 ×

CH), 127.6 (CH), 127.6 (C), 127.5 (CH), 127.3 (2 × CH), 126.8 (CH), 125.8 (2 × CH), 121.2 (CH), 118.2 (C), 115.1 (CH), 104.5 (C), 72.8 (CH), 58.5 (CH₂), 21.6 (CH₃), 20.4 (CH₃); HRMS (ESI-TOF) m/z: calcd. for $C_{31}H_{27}NNaO_4S$ [M+Na]⁺: 532.1553, found 532.1561.

(2S*,12aS*)-2-methyl-12a-(p-tolyl)-3,4-dihydro-2H,6H,12aH-

[1,5]dioxocino[2,3-b]chromene (10a):

Reaction of alkynol **6a** (83 mg, 0.380 mmol), salicylaldehyde (**8a**) (40 μ L, 0.380 mmol) with TMSOTf (137 μ L, 0.76 mmol) in dry CH₂Cl₂ (8.0 mL) at 0 °C as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished the dioxocino chromene **10a** (83 mg, 68%) as a single diastereomer (dr \geq 19:1).

Physical appearance: Sticky solid.

R_f: 0.4 (1:9 ethyl acetate-petroleum ether).

IR (neat): 3020, 1522, 928, 761, 670, 626 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.0 Hz, 2H), 7.22 (td, J = 8.0, 1.6 Hz, 1H), 7.13-7.16 (m, 3H), 6.92-6.95

(m, 2H), 6.79 (s, 1H), 4.14-4.19 (m, 1H), 4.05 (d, *J* = 12.8 Hz, 1H), 3.83 (d, *J* = 12.8 Hz, 1H), 3.74-3.86 (m, 2H), 2.34 (s, 3H), 1.74-1.83 (m, 1H), 1.58-1.65 (m, 1H), 1.28 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.2 (C), 139.6 (C), 138.3 (C), 132.1 (C), 130.3 (CH), 129.2 (CH), 128.8 (2 × CH), 127.2 (CH), 126.0 (2 × CH), 120.8 (CH), 118.3 (C), 115.4 (CH), 104.7 (C), 73.9 (CH₂), 69.8 (CH), 69.0 (CH₂), 38.5 (CH₂), 23.4 (CH₃), 21.3 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₂₁H₂₂NaO₃ [M+Na]⁺: 345.1461, found 345.1460.

(2S*,12aS*)-11-methoxy-2-methyl-12a-(p-tolyl)-3,4-dihydro-2H,6H,12aH-[1,5]dioxocino[2,3-b]chromene (10b):

Reaction of alkynol **6a** (77 mg, 0.352 mmol), *o*-vanillin (**8b**) (53 mg, 0.352 mmol) with TMSOTf (127 μ L, 0.704 mmol) in dry CH₂Cl₂ (8.0 mL) at 0 °C as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished the dioxocino chromene **10b** (82 mg, 66%) as a single diastereomer (dr

≥19:1).

Physical appearance: Sticky solid.

R_f: 0.4 (1:9 ethyl acetate-petroleum ether).

IR (neat): 3012, 2971, 2879, 1659, 1588, 1423, 1312, 1255, 1132, 1008, 756, 678 cm⁻¹.

8

Me

0

Мe

11a

¹**H NMR (400 MHz, CDCl₃):** δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.76 (s, 1H), 4.14-4.18 (m, 1H), 4.05 (d, *J* = 12.8 Hz, 1H), 3.83 (s, 3H), 3.77-3.85 (m, 3H), 2.32 (s, 3H), 1.73-1.82 (m, 1H), 1.57-1.65 (m, 1H), 1.29 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 147.4 (C), 142.7 (C), 139.6 (C), 138.1 (C), 132.2 (C), 129.0 (CH), 128.7 (2 × CH), 126.1 (2 × CH), 120.3 (CH), 119.4 (CH), 118.9 (C), 113.7 (CH), 104.8 (C), 73.9 (CH₂), 69.8 (CH), 69.0. (CH₂), 56.5 (CH₃), 38.6 (CH₂), 23.4 (CH₃), 21.2 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₂₂H₂₅O₄ [M+H]⁺: 353.1474, found 353.1476.

(2S*,12aS*)-2-methyl-12a-(p-tolyl)-3,4-dihydro-2H,6H,12aH-

[1,5]oxathiocino[2,3-b]chromene (11a): Reaction of allymol **7a** (73 mg, 0.308 mmol), salid

Reaction of alkynol **7a** (73 mg, 0.308 mmol), salicylaldehyde (**8a**) (37 μ L, 0.308 mmol) with TMSOTf (111 μ L, 0.616 mmol) in dry CH₂Cl₂ (8.0 mL) at 0 °C as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished the oxathiocino chromene **11a** (89 mg, 85%) as a single \sqrt{S}

diastereomer (dr ≥19:1).

Physical appearance: Sticky solid.

R_f: 0.4 (1:9 ethyl acetate-petroleum ether).

IR (neat): 3019, 1528, 1426, 1216, 847, 765, 670 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.40-7.43 (m, 2H), 7.19 (ddd, *J* = 9.2, 7.2, 1.2 Hz, 1H), 7.14-7.17 (m, 2H), 7.12 (d, *J* = 1.6 Hz, 1H), 6.93 (td, *J* = 7.2, 0.8 Hz, 1H),

6.88 (d, *J* = 8.4 Hz, 1H), 6.80 (s, 1H), 4.26-4.31 (m, 1H), 3.25 (d, *J* = 13.6 Hz, 1H), 2.79-2.92 (m, 2H), 2.79 (d, *J* = 13.6 Hz, 1H), 2.34 (s, 3H), 1.93 (m, 1H), 1.58-1.66 (m, 1H), 1.31 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 151.9 (C), 140.0 (C), 138.4 (C), 134.3 (C), 129.7 (CH), 128.8 (2 × CH), 127.0 (CH), 126.7 (CH), 125.9 (2 × CH), 120.9 (CH), 118.8 (C), 115.2 (CH), 105.0 (C), 69.4 (CH), 37.8 (CH₂), 36.4 (CH₂), 31.8 (CH₂), 22.8 (CH₃), 21.3 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₂₁H₂₃O₂S [M+H]⁺: 339.1413, found 339.1410.

(8S*,9aS*)-8-methyl-9a-phenyl-5-tosyl-5,6,7,8-tetrahydro-9aHbenzo[f]chromeno[3,2-h][1,5]oxazonine (9d):

Reaction of alkynol **5d** (100 mg, 0.238 mmol), salicylaldehyde (**8a**) (28 μ L, 0.262 mmol) with TMSOTf (86 μ L, 0.476 mmol) in dry CH₂Cl₂ (8.0 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished oxazepino chromene **9d** (72 mg, 58%) as a single diastereomer (dr ≥19:1).

Physical appearance: White Solid.

R_f: 0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 193-195 °C

IR (neat): 3013, 2998, 1657, 1345, 1134, 1098, 768, 667 cm⁻¹.

Ts N 9 9 Me 9d

¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, J = 6.4 Hz, 2H),

7.30 (bd, J = 6.0 Hz, 3H), 7.13-7.22 (m, 6H), 7.01-7.06 (m, 3H), 6.81 (t. J = 6.0 Hz, 1H), 6.71 (s, 1H), 6.66 (d, J = 6.4 Hz. 1H), 6.18 (d, J = 6.0 Hz, 1H), 4.45-4.54 (m, 1H), 3.88 (dd, J = 14.5, 6.5 Hz, 1H), 3.27 (td, J = 14.0, 5.5 Hz, 1H), 2,47 (s, 3H), 2.27-2.32 (m, 1H), 1.63-1.71 (m, 1H), 1.27 (d, J = 5.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 152.4 (C), 143.7 (C), 143.3 (C), 142.7 (C), 139.2 (C), 136.1 (C), 132.9 (CH), 130.5 (C), 129.8 (CH), 129.6 (2 × CH), 128.4 (CH), 128.4 (2 × CH), 128.1 (CH), 127.9 (CH), 127.6 (CH), 127.5 (2 × CH), 127.3

(CH), 127.1 (CH), 126.5 (2 × CH), 121.3 (CH), 118.5 (C), 115.4 (CH), 103.1 (C), 66.7 (CH), 51.4 (CH₂), 37.4 (CH₂), 23.2 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. for $C_{32}H_{29}NNaO_4S$ [M+Na]⁺: 546.1710, found 546.1713.

(8*S**,9a*S**)-11-methoxy-8-methyl-9a-phenyl-5-tosyl-5,6,7,8-tetrahydro-9a*H*-benzo[*f*]chromeno[3,2-*h*][1,5]oxazonine (9e):

Reaction of alkynol **5d** (200 mg, 0.476 mmol), *o*-vanillin (**8b**) (73 mg, 0.476 mmol) with TMSOTf (172 μ L, 0.952 mmol) in dry CH₂Cl₂ (8.0 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished oxazepino chromene **9e** (165 mg, 62%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_f: 0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 211-213 °C

IR (neat): 3016, 2973, 1672, 1355, 1235, 1078, 769, 665 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.63 (d, J = 8.0 Hz, 2H),

7.29 (d, J = 8.0 Hz, 2H), 7.17-7.19 (m, 2H),7.10-7.15 (m, 3H), 7.03 (td, J = 8.0, 1.5 Hz, 1H), 6.94-6.97 (m, 2H), 6.84 (dd, J = 6.5, 2.0 Hz, 1H), 6.79 (td, 7.5, 1.0 Hz, 1H), 6.67 (s, 1H), 6.66 (d, J = 6.5 Hz, 1H), 6.16 (dd, J = 7.5, 1.0 Hz, 1H), 4.84-4.52 (m, 1H), 3.90 (s, 3H), 3.86 (dd, J = 17.5, 6.5 Hz, 1H), 3.27 (ddd, J = 18.0, 12.5, 5.5 Hz, 1H), 2.47 (s, 3H), 2.24-2.31 (m, 1H), 1.64-1.69 (m, 1H), 1.25 (d, J = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 147.2 (C), 143.7 (C), 143.3 (C), 142.8 (C), 141.7 (C), 139.3 (C), 136.2 (C), 132.9 (CH), 130.8 (C), 129.6 (2 × CH), 128.4 (2 × CH), 128.4 (CH), 128.0 (CH), 127.8 (CH), 127.4 (2 × CH), 127.3 (CH), 127.1 (CH), 126.7 (2 × CH), 120.9 (CH), 119.7 (CH), 119.2 (C), 112.6 (CH), 103.1 (C), 67.1 (CH), 56.2 (CH₃), 51.5 (CH₂), 37.5 (CH₂), 22.7 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₃H₃₁NNaO₅S [M+Na]⁺: 576.1815, found 576.1815.

(8*S**,9a*S**)-8-methyl-9a-(*p*-tolyl)-5-tosyl-5,6,7,8-tetrahydro-9a*H*benzo[*f*]chromeno[3,2-*h*][1,5]oxazonine (9f):

Reaction of alkynol **5e** (85 mg, 0.196 mmol), salicylaldehyde (**8a**) (22 μ L, 0.205 mmol) with TMSOTf (71 μ L, 0.3920 mmol) in dry CH₂Cl₂ (8 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel

column using ethyl acetate-petroleum ether (20:80) as eluent furnished the oxazonine chromene **9f** (66 mg, 63%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White solid.

R*f***:** 0.6 (2:8 ethyl acetate-petroleum ether). **m.p.:** 214-216 °C

IR (neat): 2978, 2923, 1598, 1487, 1456, 1347, 1242, 1181, 1163, 1118, 1094, 1031, 1003, 909, 820, 753, 734, 570, 550 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 7.65(d, J = 8.0 Hz, 2H),

7.26-7.30 (m, 3H), 7.20 (d, J = 6.0 Hz, 1H), 6.95-7.02 (m, 7H), 6.40 (t, J = 15.0, 7.5 Hz, 1H), 6.68-6.69 (m, 2H), 6.23 (d, J = 7.5 Hz, 1H), 4.50 (quint, J = 10.0, 5.5 Hz, 1H), 3.89 (dd, J = 14.5, 6.5 Hz, 1H), 3.28 (td, J = 13.0, 5.5 Hz, 1H), 2.50 (s, 3H), 2.27-2.31 (m, 4H), 1.66 (td, J = 16.0, 5.5 Hz, 1H), 1.26 (d, J = 6.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, DEPT): δ 152.5 (C), 143.7(C), 142.7 (C), 140.5 (C), 139.3 (C), 137.8 (C), 136.2 (C), 133.1 (CH), 130.7 (C), 129.7 (CH), 129.6 (2 × CH), 128.4 (2 × CH), 128.4 (CH), 128.1 (2 × CH), 127.8 (CH), 127.5 (CH), 127.3 (CH), 127.2 (CH), 126.4 (2 × CH) 121.2 (CH), 118.5 (C), 115.4 (CH), 103.2 (C), 66.7 (CH), 51.5 (CH₂), 37.4 (CH₂) 23.3 (CH₃), 21.7 (CH₃), 21.2 (CH₃); HRMS (ESI-TOF) m/z: calcd. For C₃₃H₃₁NNaO₄S [M+Na]⁺: 560.1866 found 560.1866.

(8*S**,9a*S**)-11-methoxy-8-methyl-9a-phenyl-5-tosyl-5,6,7,8-tetrahydro-9a*H*-benzo[*f*]chromeno[3,2-*h*][1,5]oxazonine (9g):

Reaction of alkynol **5e** (85 mg, 0.196 mmol), *o*-vanillin (**8b**) (28 mg, 0.180 mmol) with TMSOTf (71 μ L, 0.392 mmol) in dry CH₂Cl₂ (8 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column

using ethyl acetate-petroleum ether (20:80) as eluent furnished the oxazonine chromene **9g** (69 mg, 62 %) as a a single diastereomer (dr \geq 19:1).

Physical appearance: White solid.

R_f: 0.5 (2:8 ethyl acetate-petroleum ether).

т.р.: 241-243 °С

IR (neat): 2931, 2841, 1580, 1478, 1446, 1346, 1268,

1242, 1163, 1085, 1076, 1005, 912, 814, 772, 731, 569, 548 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.64 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.5 Hz, 2H), 6.81-7.06 (m, 9H), 6.68 (d, J = 8.0 Hz, 1H), 6.65 (s, 1H), 6.20 (d, J = 7.5 Hz, 1H),

4.47-4.50 (m, 1H), 3.85-3.89 (m, 4H), 3.27 (td, *J* = 14.0, 5.5 Hz, 1H), 2.46 (s, 3H), 2.21-2.31(m, 4H), 1.64 (td, *J* = 15.5, 5.5 Hz, 1H), 1.25 (d, *J* = 5.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 147.2 (C), 143.6 (C), 142.7 (C), 141.8 (C), 140.5 (C), 139.4 (C), 137.5 (C), 136.2 (C), 133.0 (CH), 131.0 (C), 129.6 (2 × CH), 128.4 (2 × CH), 128.3 (CH), 128.0 (2 × CH), 127.6 (CH), 127.3 (CH), 127.1 (CH), 126.6 (2 × CH), 120.7 (CH) 119.7 (CH), 119.2 (C), 112.6 (CH), 103.1 (C), 67.0 (CH), 56.2 (CH₃), 51.5 (CH₂), 37.5 (CH₂) 22.7 (CH₃), 21.7 (CH₃), 21.2 (CH₃); HRMS (ESI-TOF) m/z: calcd. For C₃₄H₃₃NNaO₅S [M+Na]⁺: 590.1972 found 590.1970.

(8S*,9aS*)-9a-(3,5-dimethylphenyl)-8-methyl-5-tosyl-5,6,7,8-tetrahydro-9aHbenzo[f]chromeno[3,2-h][1,5]oxazonine (9h):

Reaction of alkynol **5f** (50 mg, 0.111 mmol), salicylaldehyde (**8a**) (12 μ L, 0.111 mmol) with TMSOTf (41 μ L, 0.223 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene **9h** (32 mg, 52%)as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_f:0.4 (1:9 ethyl acetate-petroleum ether).

m.p.:161-163 °C

IR (neat): 3011, 2919, 1674, 1632, 1356, 1293, 987, 876, 768 cm⁻¹.

Ts, N 9 0 Me Me Me Me

¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 8.0 Hz, 2H),

7.26-7.30 (m, 3H), 7.20 (d, *J* = 6.8 Hz, 1H), 7.00-7.07 (m, 3H), 6.70-6.86 (m, 6H), 6.22 (d, *J* = 7.2 Hz, 1H), 4.46-4.48 (m, 1H), 3.87 (dd, *J* = 14.4, 6.4 Hz, 1H), 3.28 (td, *J* = 14.0, 5.2 Hz 1H), 2.47 (s, 3H), 2.24-2.29 (m, 1H), 2.13 (s, 6H), 1.63-1.71 (m, 1H), 1.25 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 152.5 (C), 143.7 (C), 142.9 (C), 142.7 (C), 139.3 (C), 136.9 (2 × C), 136.2 (C), 133.1 (CH), 130.7 (C), 129.7 (CH), 129.6 (2 × CH), 128.5 (2 × CH), 128.4 (CH), 127.7 (CH), 127.6 (2 × CH), 127.3 (CH), 127.0 (CH), 124.3 (2 × CH), 121.2 (CH), 118.5 (C), 115.4 (CH), 103.2 (C), 66.7 (CH), 51.5 (CH₂), 37.4 (CH₂), 23.3 (CH₃), 21.7 (CH₃) 21.4 (2 × CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₄H₃₃NNaO₄S [M+Na]⁺: 574.2023, found 574.2021.

(8S*,9aS*)-9a-(3,5-dimethylphenyl)-11-methoxy-8-methyl-5-tosyl-5,6,7,8tetrahydro-9aH-benzo[f]chromeno[3,2-h][1,5]oxazonine (9i): Reaction of alkynol **5f** (53 mg, 0.118 mmol), o-vanillin (**8b**) (17 mg, 0.112 mmol) with TMSOTf (43 μ L, 0.236 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene **9i** (42 mg, 61%) as a single diastereomer (dr ≥19:1).

Physical appearance: White Solid.

R*f***:**0.4 (1:9 ethyl acetate-petroleum ether). **m.p.:** 221-223 °C

IR (neat): 3091, 2917, 2896, 1654, 1454, 1352, 1123, 1089, 984, 865, 567 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.64 (d, *J* = 8.0 Hz, 2H),

7.29 (d, J = 8.0 Hz, 2H), 7.04 (td, J = 8.0, 1.5 Hz, 1H), 6.94-6.98 (m, 2H), 6.81-6.84 (m, 2H), 6.77 (s, 1H), 6.73 (s, 2H), 6.65-6.69 (m, 2H), 6.17 (dd, J = 8.0, 1.5 Hz, 1H), 4.43-4.49 (m, 1H), 3.90 (s, 3H), 3.87 (dd, J = 14.5, 6.0 Hz, 1H), 3.29 (ddd, J = 18.0, 12.5, 5.5 Hz 1H), 2.46 (s, 3H), 2.22-2.29 (m, 1H), 2.12 (s, 6H), 1.62-1.69 (m, 1H), 1.25 (d, J = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 147.2 (C), 143.6 (C), 142.9 (C), 142.7 (C), 141.7 (C), 139.4 (C), 136.6 (2 × C), 136.2 (C), 133.1 (CH), 130.9 (C), 129.6 (2 × CH), 129.4 (CH), 128.4 (2 × CH), 128.3 (CH), 127.4 (CH), 127.2 (CH), 126.9 (CH), 124.6 (2 × CH), 120.7 (CH), 119.7 (CH), 119.2 (C), 112.5 (CH), 103.1 (C), 66.7 (CH), 56.2 (CH₃), 51.5 (CH₂), 37.5 (CH₂), 22.7 (CH₃), 21.7 (CH₃) 21.4 (2 × CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₅H₃₅NNaO₅S [M+Na]⁺: 604.2128, found 604.2129.

(8S*,9aS*)-8-methyl-9a-(m-tolyl)-5-tosyl-5,6,7,8-tetrahydro-9aHbenzo[f]chromeno[3,2-h][1,5]oxazonine (9j):

Reaction of alkynol **5g** (107 mg, 0.246 mmol), salicylaldehyde (**8a**)(29 μ L, 0.271 mmol) with TMSOTf (90 μ L, 0.493 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene **9j** (56 mg, 42%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_f:0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 193-195 °C

IR (neat): 3112, 2987, 1867, 1623, 1611, 1567, 1465, 1236, 1098, 971, 863, 765 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.64 (d, J = 8.5 Hz, 2H), 7.29-7.31 (m, 3H), 7.04 (dd, J = 7.5, 1.0 Hz, 1H), 6.94-7.07 (m, 7H), 6.83 (t, J = 7.5 Hz, 1H), 6.67-6.69 (m, 2H), 6.19 (dd, J = 8.0, 1.0 Hz, 1H), 4.46-4.53 (m, 1H), 3.87 (dd, J = 14.5, 6.0 Hz, 1H), 3.29 (ddd, J = 18.0, 12.5, 5.5 Hz, 1H), 2.47 (s, 3H), 2.25-2.32 (m, 1H), 2.20 (s, 3H), 1.65-1.71 (m, 1H), 1.25 (d, J = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 152.4 (C), 143.7 (C), 143.1 (C), 142.7 (C),

139.3 (C), 137.0 (C), 136.1 (C), 133.0 (CH), 130.6 (C), 129.7 (CH), 129.6 (2 × CH), 128.8 (CH), 128.4 (3 × CH), 127.8 (CH), 127.6 (CH), 127.3 (2 × CH), 127.2 (CH), 127.1 (CH), 123.6 (CH), 121.3 (CH), 118.5 (C), 115.4 (CH), 103.2 (C), 66.7 (CH), 51.5 (CH₂), 37.4 (CH₂), 23.4 (CH₃), 21.7 (CH₃) 21.5 (CH₃); HRMS (ESI-TOF) m/z:

calcd. for $C_{33}H_{31}NNaO_4S$ [M+Na]⁺: 560.1866, found 560.1864.

(8S*,9aS*)-11-methoxy-8-methyl-9a-(m-tolyl)-5-tosyl-5,6,7,8-tetrahydro-9aH-benzo[f]chromeno[3,2-h][1,5]oxazonine (9k):

Reaction of alkynol **5g** (105 mg, 0.242 mmol), o-vanillin (**8b**)(39 mg, 0.254 mmol) with TMSOTf (88 μ L, 0.484 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene

9k (67 mg, 49%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

Rf:0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 192-194 °C

IR (neat): 3121, 3091, 2985, 1654, 1623, 1572, 1453, 1287, 1198, 1076, 973, 769 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.64 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.04 (td, J = 8.0, 1.5 Hz, 1H), 6.91-6.99 (m, 6H), 6.80-6.85 (m, 2H), 6.66-6.68 (m, 2H), 6.17 (dd, J = 8.0, 1.5 Hz, 1H), 4.45-4.51 (m, 1H), 3.90 (s, 3H), 3.86 (dd, J = 14.5, 6.0 Hz, 1H), 3.28 (ddd, J = 18.5, 12.0, 5.5 Hz, 1H), 2.46 (s, 3H), 2.23-2.30 (m, 1H), 2.18 (s, 3H), 1.62-1.69 (m, 1H), 1.25 (d, J = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 147.2 (C), 143.6 (C), 143.1 (C), 142.7 (C), 141.7 (C), 139.3 (C), 136.9 (C), 136.2 (C), 133.0 (CH), 130.9 (C), 129.6 (2 × CH),

128.6 (CH), 128.4 (2 × CH), 128.4 (CH), 127.6 (CH), 127.4 (CH), 127.3 (CH), 127.2 (CH), 127.0 (CH), 123.8 (CH), 120.8 (CH), 119.7 (CH), 119.2 (C), 112.5 (CH), 103.1 (C), 67.1 (CH), 56.2 (CH₃), 51.5 (CH₂), 37.5 (CH₂), 22.7 (CH₃), 21.7 (CH₃) 21.4 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₄H₃₃NNaO₅S [M+Na]⁺: 590.1972, found 590.1967.

(8S*,9aS*)-9a-(4-methoxyphenyl)-8-methyl-5-tosyl-5,6,7,8-tetrahydro-9aHbenzo[f]chromeno[3,2-h][1,5]oxazonine (9l):

Reaction of alkynol **5h** (49 mg, 0.108 mmol), salicylaldehyde (**8a**) (12 μ L, 0.108 mmol) with TMSOTf (40 µL, 0.217 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene 9a followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene 91 (29 mg, 48%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_{*f*}**:**0.4 (1:9 ethyl acetate-petroleum ether). **m.p.:**173-175 °C

IR (neat): 3112, 3098, 2984, 1652, 1564, 1456, 1342, 1254, 1123, 987, 765, 567 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, J = 8.5 Hz, 2H), 7.26-7.30 (m, 3H), 7.19 (d, J = 6.5 Hz, 1H), 7.09 (d, J =

Me 91 OMe 8.5 Hz, 2H), 6.99-7.07 (m, 3H), 6.85 (t, J = 7.5 Hz, 1H), 6.66-6.68 (m, 4H), 6.22

Ts、

N

9

(dd, J = 8.0, 1.5 Hz, 1H), 4.44-4.50 (m, 1H), 3.86 (dd, J = 14.5, 6.5 Hz, 1H), 3.74(s, 3H), 3.25 (ddd, J = 18.5, 13.0, 6.0 Hz, 1H), 2.47 (s, 3H), 2.23-2.30 (m, 1H), 1.62-1.68 (m, 1H), 1.24 (d, J = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 159.4 (C), 152.5 (C), 143.7 (C), 142.8 (C), 139.4 (C), 136.2 (C), 136.0 (C), 133.1 (CH), 130.8 (C), 129.7 (CH), 129.6 (2 × CH), 128.5 (2 × CH), 128.4 (CH), 127.8 (2 × CH), 127.7 (CH), 127.6 (CH), 127.4 (CH), 127.3 (CH), 121.3 (CH), 118.5 (C), 115.4 (CH), 112.8 (2 × CH), 103.1 (C), 66.7 (CH), 55.4 (CH₃), 51.4 (CH₂), 37.4 (CH₂), 23.3 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₃H₃₁NNaO₅S [M+Na]⁺: 576.1815, found 576.1816. (8S,9aS)-11-methoxy-9a-(4-methoxyphenyl)-8-methyl-5-tosyl-5,6,7,8-

tetrahydro-9aH-benzo[f]chromeno[3,2-h][1,5]oxazonine (9m):

Reaction of alkynol **5h** (45 mg, 0.100 mmol), o-vanillin (**8b**) (15 mg, 0.100 mmol) with TMSOTf (37 µL, 0.200 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene 9a followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene

9m (42 mg, 72%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_f**:**0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 260-262 °C

IR (neat): 3018 2998, 1652, 1457, 1352, 1242, 987, 769 cm⁻¹.

¹**H NMR (400 M, Hz, CDCl₃):**δ 7.63 (d, *J* = 8.0 Hz, 2H),

7.28 (d, J = 8.0 Hz, 2H), 7.03-7.09 (m, 3H), 6.92-6.98 (m, 2H), 6.82-6.86 (m, 2H), 6.63-6.68 (m, 4H), 6.21 (d, J = 6.8 Hz, 1H), 4.45-4.50 (m, 1H), 3.89 (s, 3H), 3.86 (dd, J = 14.4, 6.0 Hz, 1H), 3.73 (s, 3H), 3.25 (ddd, J = 18.0, 12.8, 5.6 Hz, 1H), 2.46 (s, 3H), 2.21-2.30 (m, 1H), 1.60-1.67 (m, 1H), 1.24 (d, J = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 159.4 (C), 147.2 (C), 143.6 (C), 142.7 (C), 141.8 (C), 139.4 (C), 136.2 (C), 136.0 (C), 133.0 (CH), 131.0 (C), 129.6 (2 × CH), 128.4 (2 × CH), 128.4 (CH), 127.9 (2 × CH), 127.5 (CH), 127.3 (CH), 127.2 (CH), 120.8 (CH), 119.7 (CH), 119.2 (C), 112.7 (2 × CH), 112.5 (CH), 103.0 (C), 67.1 (CH), 56.2 (CH₃), 55.4 (CH₃), 51.5 (CH₂), 37.5 (CH₂), 22.7 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₄H₃₃NNaO₆S [M+Na]⁺: 606.1921, found 606.1917.

(88,9a8)-9a-(3-methoxyphenyl)-8-methyl-5-tosyl-5,6,7,8-tetrahydro-9aHbenzo[f]chromeno[3,2-h][1,5]oxazonine (9n):

Reaction of alkynol **5i** (110 mg, 0.244 mmol), salicylaldehyde (**8a**)(29 μ L, 0.269 mmol) with TMSOTf (89 μ L, 0.489 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene **9n** (40 mg, 30%) as a single diastereomer (dr ≥19:1).

Physical appearance: White Solid.

R_f**:**0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 192-194 °C

IR (neat): 3112, 2918, 2876, 1652, 1543, 1234, 1091, 876, 768 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, J = 8.0 Hz, 2H),

7.27-7.30 (m, 3H), 7.21 (d, J = 6.5, Hz, 1H), 7.00-7.09 (m, 4H), 6.85 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.70-6.74 (m, 3H), 6.66 (d, J = 8.0, Hz, 1H), 6.26

(d, *J* = 7.5 Hz, 1H), 4.46-4.51 (m, 1H), 3.87 (dd, *J* = 14.5, 6.5 Hz, 1H), 3.61 (s, 3H), 3.26 (ddd, *J* = 18.0, 13.0, 5.5 Hz, 1H), 2.47 (s, 3H), 2.25-2.32 (m, 1H), 1.63-1.69 (m, 1H), 1.25 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 159.0 (C), 152.3 (C), 144.7 (C), 143.7 (C), 142.7 (C), 139.3 (C), 136.1 (C), 132.9 (CH), 130.4 (C), 129.8 (CH), 129.6 (2 × CH), 128.5 (CH), 128.5 (CH), 128.4 (2 × CH), 127.9 (CH), 127.6 (CH), 127.4 (CH), 127.3 (CH), 121.4 (CH), 119.3 (CH), 118.5 (C), 115.4 (CH), 113.7 (CH), 112.3 (CH), 103.0 (C), 66.8 (CH), 55.3 (CH₃), 51.5 (CH₂), 37.4 (CH₂), 23.2 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF), m/z: calcd. for C₃₃H₃₁NNaO₅S [M+Na]⁺: 576.1815, found 576.1814.

(8S,9aS)-11-methoxy-9a-(3-methoxyphenyl)-8-methyl-5-tosyl-5,6,7,8tetrahydro-9aH-benzo[f]chromeno[3,2-h][1,5]oxazonine (9o):

Reaction of alkynol **5i** (100 mg, 0.222 mmol), o-vanillin (**8b**)(36 mg, 0.233 mmol) with TMSOTf (81 μ L, 0.445 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene **9o** (57 mg, 44%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_f:0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 218-220 °C

IR (neat): 3112, 3098, 2917, 1672, 1543, 1243, 1123, 1087, 987, 762 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.63 (d, *J* = 8.0 Hz, 2H),

7.29 (d, *J* = 8.0 Hz, 2H), 7.02-7.06 (m, 2H), 6.93-6.98 (m, 2H), 6.80-6.85 (m, 3H), 6.65-6.71 (m, 4H), 6.24 (d, *J* = 6.5 Hz, 1H), 4.47-4.51 (m, 1H), 3.90 (s, 3H), 3.86 (dd, *J* = 15.0, 6.5 Hz, 1H), 3.60 (s, 3H), 3.26 (ddd, *J* = 18.0, 12.5, 5.5 Hz, 1H), 2.46 (s, 3H), 2.23-2.31 (m, 1H), 1.62-1.68 (m, 1H), 1.25 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 158.9 (C), 147.2 (C), 144.7 (C), 143.6 (C), 142.7 (C), 141.6 (C), 139.3 (C), 136.1 (C), 132.8 (CH), 130.6 (C), 129.6 (2 × CH), 128.4 (CH), 128.4 (2 × CH), 128.4 (CH), 127.7 (CH), 127.3 (CH), 127.2 (CH), 120.8 (CH), 119.7 (CH), 119.5 (CH), 119.2 (C), 113.6 (CH), 112.5 (2 × CH), 102.8 (C), 67.1 (CH), 56.2 (CH₃), 55.3 (CH₃), 51.5 (CH₂), 37.5 (CH₂), 22.7 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₄H₃₃NNaO₆S [M+Na]⁺: 606.1921, found 606.1924.

(8S*,9aS*)-2-bromo-11-methoxy-8-methyl-9a-phenyl-5-tosyl-5,6,7,8-tetrahydro-9aH-benzo[f]chromeno[3,2-h][1,5]oxazonine (9p):

Reaction of alkynol **5j** (36 mg, 0.072 mmol), o-vanillin (**8b**) (11 mg, 0.070 mmol) with TMSOTf (27 μ L, 0.144 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene **9p** (16 mg, 35%) as a single diastereomer (dr ≥19:1).

Physical appearance: Sticky Solid.

R*f***:**0.4 (1:9 ethyl acetate-petroleum ether).

IR (neat): 3012, 2999, 2876, 1652, 1543, 1432, 1365, 1297, 1198, 986, 767 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.14-7.22 (m, 5H), 6.94-

6.99 (m, 2H), 6.83 (dd, J = 6.5, 2.0 Hz, 2H), 6.65 (s, 1H), 6.50 (d, J = 8.5 Hz, 1H), 5.91 (d, J = 2.0 Hz, 1H), 4.40-4.47 (m, 1H), 3.90 (s, 3H), 3.84 (dd, J = 14.5, 6.5 Hz, 1H), 3.20 (ddd, J = 18.0, 12.5, 5.5 Hz, 1H), 2.47 (s, 3H), 2.22-2.29 (m, 1H), 1.63-1.70 (m, 1H), 1.24 (d, J = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 147.2 (C), 143.9 (2 × C), 142.8 (C), 141.8 (C), 141.7 (C), 141.3 (C), 135.9 (CH), 135.8 (C), 131.6 (CH), 129.7 (2 × CH), 129.6 (C), 128.8 (CH), 128.4 (2 × CH), 128.0 (CH), 127.6 (2 × CH), 126.6 (2 × CH), 121.8 (CH), 119.7 (CH), 118.8 (C), 112.8 (2 × CH), 102.8 (C), 67.2 (CH), 56.2 (CH₃), 51.5 (CH₂), 37.4 (CH₂), 22.7 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₃H₃₀BrNNaO₅S [M+Na]⁺: 654.0913, found 654.0911.

(8S*,9aS*)-2,8-dimethyl-9a-phenyl-5-tosyl-5,6,7,8-tetrahydro-9aH-

benzo[f]chromeno[3,2-h][1,5]oxazonine (9q):

Reaction of alkynol **5k** (58 mg, 0.133 mmol), salicylaldehyde (**8a**) (14 μ L, 0.133 mmol) with TMSOTf (49 μ L, 0.267 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene **9p** (25 mg, 35%) as a single diastereomer (dr ≥19:1).

Physical appearance: White Solid.

R*f***:**0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 207-209 °C

IR (neat): 3098, 2987, 2932, 1657, 1575, 1452, 1123, 987, 769 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.63 (d, J = 8.0 Hz, 2H), 7.26-7.30 (m, 3H), 7.13-7.21 (m, 6H), 7.00-7.04 (m, 2H), 6.83 (dd, J = 8.5, 1.5 Hz, 1H), 6.68 (s, 1H), 6.51 (d, J = 8.0 Hz, 1H), 5.93 (s, 1H), 4.45-4.52 (m, 1H), 3.85 (dd, J = 14.5, 6.5 Hz, 1H), 3.23 (ddd, J = 18.5, 13.0, 6.0 Hz, 1H), 2.47 (s, 3H), 2.23-2.30 (m, 1H), 1.90 (s, 3H), 1.57-1.69 (m, 1H), 1.25 (d, J = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 152.5 (C), 143.6 (C), 143.3 (C), 140.2 (C), 138.8 (C), 137.1 (C), 136.3 (C), 133.7 (CH), 130.7 (C), 129.7 (CH), 129.6 (2 × CH), 129.1 (CH), 128.4 (2 × CH), 128.0 (CH), 127.7 (CH), 127.6 (CH), 127.4 (2 × CH), 126.9 (CH), 126.6 (2 × CH), 121.3

(CH), 118.6 (C), 115.4 (CH), 103.0 (C), 66.8 (CH), 51.6 (CH₂), 37.5 (CH₂), 23.2 (CH₃), 21.7 (CH₃), 20.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₃H₃₁NNaO₄S [M+Na]⁺: 560.1866, found 560.1865.

(8S*,9aS*)-11-methoxy-2,8-dimethyl-9a-phenyl-5-tosyl-5,6,7,8-tetrahydro-9aH-benzo[f]chromeno[3,2-h][1,5]oxazonine (9r):

Reaction of alkynol **5k** (49 mg, 0.113 mmol), o-vanillin (**8b**) (17 mg, 0.113 mmol) with TMSOTf (41 μ L, 0.226 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazonine chromene

9r (32 mg, 50%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_f:0.4 (1:9 ethyl acetate-petroleum ether).

т.р.: 215-217 °С

IR (neat): 3012, 2987, 2786, 1652, 1342, 1123, 976, 867, 765 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.09-7.18 (m, 5H), 6.93-6.98 (m, 2H), 6.81-6.84 (m, 2H), 6.65 (s, 1H), 6.51 (d, *J* = 8.0 Hz, 1H), 5.91 (d, *J* = 1.6 Hz, 1H), 4.44-4.52 (m, 1H), 3.90 (s, 3H), 3.85 (dd, *J* = 14.4, 6.0 Hz, 1H), 3.24 (ddd, *J* = 18.6, 12.4, 5.6 Hz, 1H), 2.46 (s, 3H), 2.21-2.30 (m, 1H), 1.90 (s, 3H), 1.61-1.68 (m, 1H), 1.24 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 147.2 (C), 143.5 (C), 143.3 (C), 141.7 (C), 140.2 (C), 138.8 (C), 137.0 (C), 136.3 (C), 133.7 (CH), 131.0 (C), 129.6 (2 × CH), 129.0 (CH), 128.4 (2 × CH), 127.9 (CH), 127.5 (CH), 127.3 (2 × CH), 126.9 (CH), 126.8 (2 × CH), 120.8 (CH), 119.7 (CH), 119.3 (C), 112.5 (CH), 103.1 (C), 67.1

(CH), 56.2 (CH₃), 51.6 (CH₂), 37.5 (CH₂), 22.8 (CH₃), 21.7 (CH₃), 20.6 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₃₄H₃₃NNaO₅S [M+Na]⁺: 590.1972, found 590.1971.

Stereoselective Synthesis of *Spiro*-cyclic Chromene 12:

(4S*,6S*)-4-methyl-1-tosyl-1,2,3,4-tetrahydrospiro[benzo[c][1,5]oxazocine-6,2'chromene] (12a):

Reaction of alkynol **5m** (81 mg, 0.194 mmol), salicylaldehyde (**8a**)(21 μ L, 0.194 mmol) with TMSOTf (71 μ L, 0.389 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazocine chromene **12a** (37 mg, 43%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_{*f*}:0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 201-203 °C

IR (neat): 3087, 3011, 2982, 1654, 1456, 1352, 986, 567 cm⁻¹

¹**H NMR (500 MHz, CDCl₃):** δ 7.83 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 7.0 Hz, 1H), 7.34-7.40 (m, 3H), 7.24-7.30 (m, 2H), 7.21 (d, J = 7.0 Hz, 1H), 6.99-7.02 (m, 2H), 6.88 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 10.0 Hz, 1H), 6.45 (d, J = 9.5 Hz, 1H), 4.19-4.23 (m, 1H), 4.14 (dd, J = 14.5, 4.5 Hz, 1H), 3.05 (td, J = 16.0, 4.0 Hz, 1H), 2.46 (s, 3H), 2.03-2.11 (m, 1H), 1.39 (d, J = 13.5 Hz, 1H), 1.09 (d, J = 6.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 151.6 (C), 143.5 (C), 142.3 (C), 138.7 (C), 138.0 (C), 132.0 (CH), 130.1 (CH), 129.9 (CH), 129.8 (2 × CH), 129.2 (CH), 128.9 (CH), 128.0 (2 × CH), 127.2 (CH), 126.2 (CH), 123.6 (CH), 121.6 (CH), 120.5 (C), 116.5 (CH), 100.5 (C), 69.7 (CH), 52.1 (CH₂), 35.7 (CH₂), 23.4 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF), m/z: calcd. for C₂₆H₂₅NNaO₄S [M+Na]⁺: 470.1396, found 470.1390.

(4S*,6S*)-4,8-dimethyl-1-tosyl-1,2,3,4-tetrahydrospiro[benzo[c][1,5]oxazocine-6,2'-chromene] (12b):

Reaction of alkynol **5n** (51 mg, 0.118 mmol), salicylaldehyde (**8a**) (14 μ L, 0.118 mmol) with TMSOTf (43 μ L, 0.237 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazocine chromene **12b** (14 mg, 25%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_f:0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 162-164 °C

IR (neat): 3011, 2987, 1654, 1575, 1456, 1172, 987, 765, 564 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.82 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 1.2 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.20-7.28 (m, 2H), 7.07 (dd, J = 8.4, 1.6 Hz, 1H), 6.98-7.04 (m, 2H), 6.75 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 9.6 Hz, 1H), 6.44 (d, J = 9.6 Hz, 1H), 4.17-4.24 (m, 1H), 4.13 (dd, J = 14.8, 4.0 Hz, 1H), 3.03 (td, J = 12.8, 3.6 Hz, 1H), 2.46 (s, 3H), 2.34 (s, 3H), 2.00-2.12 (m, 1H), 1.37 (d, J = 10.0 Hz, 1H), 1.08 (d, J = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 151.6 (C), 143.4 (C), 142.8 (C), 139.0 (C), 138.2 (C), 136.1 (C), 132.6 (CH), 130.7 (CH), 129.9 (CH), 129.7 (2 × CH), 129.2 (CH), 128.0 (2 × CH), 127.2 (CH), 126.4 (CH), 123.5 (CH), 121.6 (CH), 120.6 (C), 116.5 (CH), 100.5 (C), 69.8 (CH), 52.2 (CH₂), 35.8 (CH₂), 23.4 (CH₃), 21.7 (CH₃), 21.4 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₂₇H₂₇NNaO₄S [M+Na]⁺: 484.1553, found 484.1556.

(4S*, 6S*)-8'-methoxy-4,8-dimethyl-1-tosyl-1,2,3,4

tetrahydrospiro[benzo[c][1,5]oxazocine-6,2'-chromene] (12c):

Reaction of alkynol **5n** (76 mg, 0.176 mmol), o-vanillin (**8b**) (26 mg, 0.176 mmol) with TMSOTf (64 μ L, 0.3528 mmol) in dry CH₂Cl₂ (6 mL) at 0 °C to rt as described for the oxazepino chromene **9a** followed by purification on a silica gel column using ethylacetate-petroleum ether (10:90) as eluent furnished oxazocine chromene **12c** (17 mg, 20%) as a single diastereomer (dr \geq 19:1).

Physical appearance: White Solid.

R_{*f*}**:**0.4 (1:9 ethyl acetate-petroleum ether).

m.p.: 194-196 °C

IR (neat): 3123, 3012, 2976, 1656, 1567, 1234, 1082, 972, 763, cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.80 (d, J = 8.0 Hz, 2H), 7.52 (s, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.04 (dd, J = 8.0, 1.5 Hz, 1H), 6.90-6.97 (m, 2H), 6.85 (dd, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 6.62 (d, J = 9.5 Hz, 1H), 6.44 (d, J = 9.5 Hz, 1H), 4.26 (sext, J = 6.0 Hz, 1H), 4.13 (dd, J = 14.5, 4.5 Hz, 1H), 3.90 (s, 3H), 3.02 (td, J = 16.5, 3.5 Hz, 1H), 2.45 (s, 3H), 2.32 (s, 3H), 2.06-2.14 (m, 1H), 1.38 (d, J = 14.5 Hz, 1H), 1.06 (d, J = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 148.2 (C), 143.3 (C), 141.8 (C), 140.5 (C), 139.2 (C), 138.2 (C), 136.0 (C), 132.8 (CH), 130.6 (CH), 129.8 (CH), 129.7 (2 × CH), 127.9 (2 × CH), 126.6 (CH), 123.5 (CH), 121.4 (C), 121.2

(CH), 119.5 (CH), 111.9 (CH), 100.5 (C), 69.9 (CH), 56.0 (CH₃), 52.2 (CH₂), 35.9 (CH₂), 22.9 (CH₃), 21.7 (CH₃), 21.4 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₂₈H₂₉KNO₅S [M+K]⁺: 530.1398, found 530.1399.

Synthesis of D-Glucal-fused alkynol 6b from Tri-O-acetyl-D-Glucal:

The diol **17** was prepared from Tri-*O*-acetyl-*D*-glucal (**15**) in 3-steps by following literature established protocol.¹ 60% NaH (206 mg, 5.145 mmol) was added to a solution of diol **17** (680 mg, 5.145 mmol) in dry DMF (20 mL). After stirring for 0.5 h

at 0 °C, propargyl bromide (438 μ L, 5.145 mmol) was added drop wise at room temperature. The reaction mixture was quenched with saturated aq. solution of NH₄Cl upon completion, extracted with EtOAc (3 × 5 mL) and dried over

anhydrous Na₂SO₄. Evaporation of the solvent and purification of the residue over

a silica gel column using ethyl acetate-petroleum ether (30:70) as eluent furnished terminal alkyne 18 (365 mg, 42%) as a yellow liquid.

Physical appearance: Yellow liquid.

R_f: 0.3 (1:9 ethyl acetate-petroleum ether).

IR (neat): 3448, 3018, 2928, 2352, 1759, 1522, 1509, 1345, 1007, 916, 757, 638 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.16-4.23 (m, 2H), 3.90 (dt, J = 18.0, 2.0 Hz, 1H), 3.66-3.84 (m, 2H), 3.54 (ddd, J = 19.0, 9.0, 4.5 Hz, 1H), 3.23 (td, J = 15.0, 7.5, 3.5 Hz, 1H), 3.24 (quint, J = 4.5 Hz, 1H), 2.44 (t, J = 4.0 Hz, 1H), 2.35 (bs, 1H), 2.08-2.17 (m, 1H), 1.61-1.72 (m, 2H), 1.39 (dddd, *J* = 23.5, 12.5, 5.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 80.6 (C), 80.4 (CH), 79.5 (CH), 75.0 (CH₂), 70.7 (CH), 68.0 (CH₂), 67.8 (CH₂), 58.8 (CH₂), 32.3 (CH₂), 25.3 (CH₂); HRMS (ESI-TOF) m/z: calcd. for $C_9H_{14}NaO_3$ [M+Na]⁺: 193.0835, found 193.0832.

(2R,3S)-2-(((3-(p-tolyl)prop-2-yn-1-yl)oxy)methyl)tetrahydro-2H-pyran-3-ol (6b):

To a mixture of terminal alkyne 18 (150 mg, 0.881 mmol), 4-iodotoluene (192 mg, 0.881 mmol), PdCl₂(PPh₃)₂ (12 mg, 0.017 mmol) and CuI (6 mg, 0.035 mmol) was added Et₃N (5 mL) at room temperature. The reaction was strirred for 12 h at the same temperature. Excess Et₃N was evaporated under reduced pressure and the residue was purified on a silica gel column using ethyl acetate-petroleum ether (30:70) as eluent furnished the alkynol **6b** (213 mg, 93%) as a yellow sticky solid.

Physical appearance: Yellow sticky solid.

R_f: 0.4 (2:8 ethyl acetate-petroleum ether).

IR (neat): 3443, 2926, 2355, 1739, 1599,

¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J =

8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 4.12 (AB, J = 17.6, 15.2 Hz, 2H), 3.91 (dt, J = 11.2, 2.0 Hz, 1H), 3.83 (dd, J = 10.0, 5.2 Hz, 1H), 3.79 (dd, J = 9.6, 4.4 Hz, 1H), 3.58 (ddd, J = 14.0, 12.0, 4.8 Hz, 1H), 3.34 (td, J = 11.6, 3.6 Hz, 1H), 3.26 (quint, J = 4.8 Hz, 1H), 2.57 (bs, 1H), 2.32 (s, 3H), 2.09-2.13 (m, 1H), 1.61-1.74 (m, 2H), 1.41 (ddd, *J* = 23.6, 8.4, 4.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 138.7 (C), 131.7 (2 × CH), 129.1 (2 × CH), 119.4 (C), 86.9 (C), 84.1 (C), 80.3 (CH), 70.9 (CH₂), 68.3 (CH), 67.8 (CH₂), 59.7 (CH₂), 32.2 (CH₂), 25.3 (CH₂), 21.5 (CH₃); HRMS (ESI-TOF) m/z: calcd. for C₁₆H₂₀NaO₃ [M+Na]⁺: 283.1305, found 283.1312.

(4aR,13aR,14aS)-13a-(p-tolyl)-1,2,3,4a,5,14a-hexahydro-7H,13aHpyrano[2',3':7,8][1,5]dioxocino[2,3-b]chromene (10c):

Reaction of alkynol **6b** (65 mg, 0.249 mmol), salicyaldehyde (**8a**) (32 μ L, 0.262 mmol) with TMSOTf (90.4 μ L, 0.499 mmol) in dry CH₂Cl₂ (8 mL) at 0 °C as described for the oxazepino chromene **9a** followed by purification on a silica gel column using methanol- dichloromethane (2:98) as eluent furnished the dioxocino

chromene 10c (38 mg, 42 %) as a colourless liquid.

Physical appearance: colourless liquid.

R_f: 0.8 (2:98 methanol-dichloromethane).

 $[\alpha]_{D}^{25}$: 65.147 (c 0.19, CH₂Cl₂).

IR (neat): 2933, 2847, 1606, 1466, 1252, 1166, 1097, 954, 937, 828, 754 cm⁻¹. ¹**H NMR (400 MHz, C₆D₆):** δ 7.70 (d, J = 8.0 Hz, 2H), 6.96-7.00 (m, 4H), 6.87-6.89 (m, 1H), 6.77 (m, 1H), 6.28 (s, 1H), 3.93-4.03 (m, 3H), 3.69-3.77 (m, 2H), 3.54 (dd, J = 11.2, 4.4 Hz, 1H), 3.39 (ddd, J = 9.2, 7.4, 4.0, Hz, 1H), 2.95 (td, J = 12.4, 2.4 Hz, 1H), 2.15-2.19 (m, 1H), 2.05 (s, 3H), 1.59-1.69 (m, 1H), 1.14(qd, J=.17.6, 4.0 Hz, 1H), 1.00-1.04 (m, 1H).

¹³C NMR (100 MHz, C₆D₆, DEPT): δ 154.1 (C), 140.4 (C), 138.6 (C), 132.4 (C), 131.0 (CH), 129.7 (CH), 129.2 (2 × CH), 127.9 (CH), 127.0 (2 × CH), 121.5 (CH), 119.0 (C), 115.8 (CH), 105.5 (C), 80.2 (CH), 74.5 (CH₂), 73.4 (CH), 72.9 (CH₂) 68.1 (CH₂), 32.1 (CH₂), 25.6 (CH₂) 20.7 (CH₃); HRMS (ESI-TOF) m/z: calcd. For C₂₃H₂₄NaO₄ [M+Na]⁺: 387.1567 found 387.1566.

diethyl (2R*,4S*,9S*)-4-methyl-14-methylene-2-(p-tolyl)-5,6-dihydro-4H-2,9methanobenzo[j][1,3]dioxa[7]thiacycloundecine-8,8(9H)-dicarboxylate (14a): To a magnetically stirred solution of ketal 11a (30 mg, 0.088 mmol) in dry benzene (5 mL) was added diazo ester 13 (50 mg, 0.265 mmol) followed by Rh₂(OAc)₄ (2

mg, 0.004 mmol) and the reaction mixture was refluxed at 80 °C for 4 h. The solvent

was evaporated and purification of the residue over a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished bridge bicyclic ketal **14a** (40 mg, 91%) as a single diastereomer (dr \geq 19:1).

Physical appearance: Sticky solid.

R_{*f*}: 0.4 (1:9 ethyl acetate-petroleum ether).

IR (neat): 2983, 2944, 1742, 1447, 1374, 1244, 1094, 1048, 937, 918, 758 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.61 (d, J = 7.5 Hz, 1H), 7.44 (d, J = 8.0 Hz, 2H), 7.26-7.29 (m, 1H), 7.19 (d, 7.5 Hz, 2H), 6.98-7.02 (m, 2H), 5.33 (s, 1H), 4.91 (s, 1H), 4.58 (s, 1H), 4.23-4.39 (m, 5H), 3.65 (dd, J = 15.0, 10.5 Hz, 1H), 2.39 (s, 3H), 2.36-2.41 (m, 1H), 1.86-1.91 (m, 1H), 1.79-1.85 (m, 1H), 1.34 (dd, J = 13.0, 7.0 Hz, 6H), 0.99 (d, J= 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 170.8 (C), 167.8 (C), 152.9 (C), 145.0 (C), 138.2 (C), 136.8 (C), 131.2 (CH), 128.8 (CH), 128.3 (2 × CH), 128.2 (2 × CH), 124.9 (C), 120.9 (CH), 120.8 (CH₂), 116.6 (CH), 101.4 (C), 68.4 (C), 68.0 (CH), 62.9 (CH₂), 61.7 (CH₂), 48.2 (CH), 38.5 (CH₂), 28.9 (CH₂), 21.3 (CH₃), 20.7 (CH₃), 141.1 (CH₃), 14.0 (CH₃); HRMS (ESI-TOF) m/z: calcd. For C₂₈H₃₂NaO₆S [M+Na]⁺: 519.1812 found 519.1812.

Refernce:

1. Gharpure, S. J.; Mane, S. P.; Nanda, L. N.; Shukla, M. K. *Isr. J. Chem.* **2016**, *56*, 553.

X-Ray crystallographic analysis: Crystal data and structure refinement for 9c:

Identification code		9c		
Solvent		EtOAc		
CCDC		1885265		
Bond precision:	C-C = 0.0046 A	Wavelength= 0.71073		
Cell:	a=15.6522(10)	b=13.6042(7)	c= 12.4636(8)	
	alpha= 90	beta= 107.449(7)	gamma= 90	
Temperature:	150 K			
	Calculated	Reported		
Volume	2531.8 (3)	2531.8 (3)		
Space group	P 21/c	P 1 21/c 1		
Hall group	-P 2ybc	-P 2ybc		
Moiety formula	C31 H27 N O4 S	C31 H27 N O4 S		
Sum formula	C31 H27 N O4 S	C31 H27 N O4 S		
Mr	509.59	509.59		
Dx, g cm-3	1.337	1.337		
Ζ	4	4		
Mu (mm-1)	0.167	0.167		
F000	1072.0	1072.0		
F000'	1072.97			
h,k,l max	18,16,14	18,16,14		
Nref	4456	4454		
Tmin,Tmax	0.961,0.995	0.411,1.000		
Tmin'	0.940			
Correction method =	Numerical			
Data completeness = 1.000		Theta(max)=25.000		
R(reflections) =	0.0560(3337)	wR2(reflections)= 0.1878(4454)		

S = 1.090

Crystal data and structure refinement for 9d:

Identification code		9d	
Solvent		EtOAc	
CCDC		1885266	
Bond precision:	C-C = 0.0090	Wavelength= 0.71073	
Cell:	a=9.2331(7)	b=9.4073(7)	c=15.2033(12)
	alpha= 90	beta= 91.611(7)	gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	1320.02 (17)	1320.01 (18)	
Space group	P 21	P 1 21 1	
Hall group	P 2yb	P 2yb	
Moiety formula	C32 H29 N O4 S	C32 H29 N O4 S	
Sum formula	C32 H29 N O4 S	C32 H29 N O4 S	
Mr	523.62	523.62	
Dx, g cm-3	1.317	1.317	
Z	2	2	
Mu (mm-1)	0.162	0.162	
F000	552.0	552.0	
F000'	552.49		
h,k,l max	10,11,18	10,11,18	
Nref	4636[2472]	4523	
Tmin,Tmax	0.977,0.982	0.602,1.000	
Tmin'	0.971		
Correction method =	- Numerical		
Data completeness =	= 1.83/0.98	Theta(max)= 24.999	
R(reflections) =	0.0560(3777)	wR2(reflections)= 0.1724(4523)	

S = 1.097

Crystal data and structure refinement for 9e:

Identification code		9e	
Solvent		EtOAc	
CCDC		1894452	
Bond precision:	C-C = 0.0042 A	Wavelength= 0.71073	
Cell:	a=9.1034(2)	b=9.5264(3)	c=15.9591(4)
	alpha= 90	beta= 91. 547(2)	gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	1383.51(6)	1383.51(6)	
Space group	P 21	P 1 21 1	
Hall group	P 2yb	P 2yb	
Moiety formula	C33 H31 N O5 S	C33 H31 N O5 S	
Sum formula	C33 H31 N O5 S	C33 H31 N O5 S	
Mr	523.65	523.65	
Dx, g cm-3	1.329	1.329	
Ζ	2	2	
Mu (mm-1)	0.161	0.161	
F000	584.0	584.0	
F000'	584.51		
h,k,l max	10,11,18	10,11,18	
Nref	4876[2598]	4843	
Tmin,Tmax	0.977,0.991	0.908,1.000	
Tmin'	0.963		
Correction method =	Numerical		
Data completeness = 1.86/0.99		Theta(max)= 24.986	
R(reflections) =	0.0324(4615)	wR2(reflections)= 0.0933(4843)	

S = 0.927

Crystal data and structure refinement for 9f:

Identification code		9f		
Solvent		EtOAc		
CCDC		1894451		
Bond precision:	C-C = 0.0051A	Wavelength= 0.71073		
Cell:	a= 9.2545(7)	b=9.0908(5)	c= 32.563(3)	
	alpha= 90	beta= 96.115(7)	gamma= 90	
Temperature:	150 K			
	Calculated	Reported		
Volume	2724.0(4)	2724.0(3)		
Space group	P 21/c	P 1 21/c 1		
Hall group	-P 2ybc	-P 2ybc		
Moiety formula	C33 H31 N O4 S	C33 H31 N O4 S		
Sum formula	C33 H31 N O4 S	C33 H31 N O4 S		
Mr	537.65	537.65		
Dx, g cm-3	1.311	1.311		
Ζ	4	4		
Mu (mm-1)	0.159	0.159		
F000	1136.0	1136.0		
F000'	1136.98			
h,k,l max	11,10,38	10,10,38		
Nref	4802	4633		
Tmin,Tmax	0.972,0.981	0.645,1.000		
Tmin'	0.967			
Correction method =	Numerical			
Data completeness = 0.965		Theta(max)= 24.996		
R(reflections) =	0.0709(3241)	wR2(reflections)= 0.1715(4633)		
S = 1.068				

Crystal data and structure refinement for 12a:

Identification code		12a	
Solvent		EtOAc	
CCDC		1944770	
Bond precision:	C-C = 0.0037 A	Wavelength= 0.71073	
Cell:	a= 8.3119(4)	b=24.2166(14)	c = 11.0613(5)
	alpha= 90	beta= 93.864(5)	gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	2221.4(2)	2221.4(2)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C26 H25 N O4 S	2(C26 H25 N O4 S)	
Sum formula	C26 H25 N O4 S	C52 H50 N2 O8 S2	
Mr	447.53	895.06	
Dx, g cm-3	1.338	1.338	
Z	4	4	
Mu (mm-1)	0.179	0.179	
F000	944.0	944.0	
F000'	944.92		
h,k,l max	9,28,13	9,28,13	
Nref	3899	3798	
Tmin,Tmax	0.974,0.993	0.596,1.000	
Tmin'	0.967		
Correction method =	Numerical		
Data completeness =	0.974	Theta(max)= 24.999	
R(reflections) =	0.0503(3012)	wR2(reflections)= 0.1321(3798)	
S = 1.042			

Crystal data and structure refinement for 12c:

		Ter	
Identification code		12c	
Solvent		EtOAc	
CCDC		1944769	
Bond precision:	C-C = 0.0042 A	Wavelength= 0.71073	
Cell:	a= 10.6050(4)	b= 16.0358(5)	c=16.1366(5)
	alpha= 69.467(3)	beta= 72.006(3)	gamma=89.666(3)
Temperature:	150 K		
	Calculated	Reported	
Volume	2427.91(16)	2427.91(15)	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C28 H29 N O5 S	2(C28 H29 N O5 S)	
Sum formula	C28 H29 N O5 S	C56 H58 N2 O10 S2	
Mr	491.58	983.16	
Dx, g cm-3	1.345	1.345	
Ζ	4	2	
Mu (mm-1)	0.174	0.174	
F000	1040.0	1040.0	
F000'	1040.98		
h,k,l max	12,19,19	12,19,19	
Nref	8557	8552	
Tmin,Tmax	0.966,0.993	0.808,1.000	
Tmin'	0.966		
Correction method = Numerical			
Data completeness =	0.999	Theta(max)= 25.000	
R(reflections) =	0.0571(6503)	wR2(reflections)= 0.1489(8552)	

S = 1.044

S30

S31

SJG-DJF-3-314-S1-1H

NOE enhancement-2%

SJG-SN-10-1475-1H

NOE enhancement-2%

SJG-SN-910-1476-1H

SJG-SN-910-1476-13C

NOE enhancement-2%

SJG-SN-10-1516-NOEA

10 ppm

SJG-DJF-4-33-1H

SJG-DJF-4-105-S-2-1H

NOE enhancement-2%

SJG-SN-10-1517-S1-1H

