Electronic Supplementary Information for Organic & Biomolecular Chemistry

Electronic Supplementary Information

for

Regioselective deoxygenative chalcogenation of 7-azindole *N*oxides promoted by I₂/PEG-200

Shanshan Liu,*,† Heng Yang,† Lin-Yu Jiao,‡ Jian-Hua Zhang,†

Chen Zhao,[†] Yangmin Ma,[†] and Xiufang Yang*,[†]

[†] Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China

[‡] School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China E-mails: shanshanliu@sust.edu.cn (S. Liu); yangxf@sust.edu.cn (X. Yang)

Table of Contents

1	Mechanistic Studies	S2
1.1	The Effect of <i>N</i> -Oxides and Air on the Reaction	S2
1.2	The Effect of Radical Scavenger on the Reaction	S2
1.3	Control Experiments	S3
1.4	Control Experiments for the Deoxygenation Step	S4
1.5	Experimental Details for the Mixed Disulfenylation	S5
2	X-Ray Crystal Data of Compound 4aa	S6
3	¹ H, ¹³ C, and ¹⁹ F Spectra	S 8

1 Mechanistic Studies

1.1 The Effect of *N*-Oxides and Air on the Reaction

Two parallel experiments were carried out according to reaction **a** as follows: 1*H*-pyrrolo[2,3*b*]pyridine 7-oxide (**1a**, 33.5 mg, 0.25 mmol, 1.00 equiv), 1,2-diphenyldisulfane (**3a**, 32.7 mg, 0.15 mmol, 0.60 equiv), I_2 (0.025 mmol, 10 mol%), and PEG-200 (0.6 mL) were added to two vails. Purification by flash column chromatography on silica gel affords the analytically pure product **4aa** (48.6 mg, 86%) and (52 mg, 92%) under argon and air, respectively.

1.2 The Effect of Radical Scavenger

According to the **GP2**, 1*H*-pyrrolo[2,3-*b*]pyridine 7-oxide derivative (**1a**, 33.5 mg, 0.25 mmol, 1.0 equiv),1,2-diphenyldisulfane (**3a**, 32.7 mg, 0.15 mmol, 0.60 equiv), I₂ (6.4 mg, 0.025 mmol, 10 mol%), PEG-200 (0.6 mL), and BHT (110 mg, 0.5 mmol, 2 equiv.) was added. Purification by flash column chromatography on silica gel afforded the analytically pure product (48 mg, 85%).

1.3 Control Experiments

1a (33.5 mg, 0.25 mmol, 1.0 equiv) was subjected to the iodine (64 mg, 0.25 mmol, 1 equiv), and disulfides (**3a**, 32.7 mg, 0.15 mmol, 0.60 equiv) for 20 hours, respectively, no reaction ouccured. However, Heating the I_2 (38.1 mg, 0.15 mmol, 0.6 equiv), and **3a** (32.7 mg, 0.15 mmol, 0.6 equiv) to generate the in *situ* formed PhSI, then **1a** (33.5 mg, 0.25 mmol, 1 equiv) was added into the above solution for 12 hours, **4aa** was delivered the in 54.8 mg and 97% yield. This observation shows that the reaction would start from the formation of an electrophilic sulfur species.

To elucidate the deoxygenation step, **12** (60.5 mg, 0.25 mmol) was subjected to the PEG (0.6 mL) and I_2 (63 mg, 0.25 mmol, 1equiv), no reaction occurred after 20 hours. However, the desired product **4aa** was formed in the addition of HI and PhSI. When 1 equiv. of HI solution (50% wt, 64 mg, 0.25 mmol) was used, deoxygenative product was obtained in 47% yield (26.6 mg) after 20 hours, while 2 equiv. of HI solution (50 wt%, 128 mg, 0.5 mmol) was used, the product was obtained in 96% yield (54.2 mg). PhSI was prepare from I_2 (63.5 mg, 0.25 mmol, 1 equiv), and **3a** (54.5 mg, 0.25 mmol, 1 equiv) in situ, then **12** (60.5 mg, 0.25 mmol) was added to the mixture for 8 hours to delivery the product in 91% yield (51.4 mg).

2 X-Ray Crystal Data of Compound 4aa

Figure S1. Crystal Structure of Compound 4aa

Table S1. Crystal data and structure refinement for compound 4aa

SUST_1788_0m
$C_{13}N_2SH_{10}$
226.29
273.15
monoclinic
P21/n
5.8840(6)
8.0198(7)
24.297(3)
90
95.847(7)
90
1140.6(2)
4
1.318
0.255
472.0

Crystal size/mm ³	0.15 × 0.14 × 0.13
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	5.352 to 56.54
Index ranges	$-7 \le h \le 5$, $-10 \le k \le 10$, $-32 \le l \le 24$
Reflections collected	11367
Independent reflections	2722 [R_{int} = 0.0666, R_{sigma} = 0.0828]
Data/restraints/parameters	2722/0/145
Goodness-of-fit on F ²	1.074
Final R indexes [I>=2σ (I)]	$R_1 = 0.0660, wR_2 = 0.1480$
Final R indexes [all data]	R ₁ = 0.1487, wR ₂ = 0.1717
Largest diff. peak/hole / e Å ⁻³	0.23/-0.26

Table S2. Bond lengths [Å].

Atom Atom		Length/Å	Atom Atom		Length/Å
C1	C2	1.380(4)	C8	C9	1.436(5)
C1	C6	1.374(4)	C8	S1	1.739(4)
C2	C3	1.362(5)	C9	C10	1.409(5)
C3	C4	1.364(6)	C9	C13	1.378(5)
C4	C5	1.381(5)	C10	N1	1.364(4)
C5	C6	1.377(5)	C10	N2	1.341(4)
C6	S1	1.776(3)	C11	C12	1.377(6)
C7	C8	1.360(5)	C11	N2	1.338(4)
C7	N1	1.351(4)	C12	C13	1.386(6)

Table S3.Bond angles [°].

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C6	C1	C2	119.6(4)	C10	C9	C8	105.7(3)
C3	C2	C1	121.3(3)	C13	C9	C8	137.0(4)
C2	C3	C4	119.4(4)	C13	C9	C10	117.3(3)
C3	C4	C5	120.1(4)	N1	C10	C9	108.8(3)
C6	C5	C4	120.6(4)	N2	C10	C9	126.5(3)
C1	C6	C5	119.0(3)	N2	C10	N1	124.7(4)
C1	C6	S1	124.1(3)	N2	C11	C12	124.3(4)
C5	C6	S1	116.9(3)	C11	C12	C13	120.8(4)
N1	C7	C8	111.5(3)	C9	C13	C12	117.3(4)
C7	C8	C9	106.1(3)	C7	N1	C10	107.9(3)
C7	C8	S1	126.3(3)	C11	N2	C10	113.9(4)
C9	C8	S1	127.5(3)	C8	S1	C6	104.04(16)

70

80

50 40 30 20 10

60

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

-10 -20 -30

0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

