Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Stereoselective Michael additions on α-aminoacrylates as the key step to an *L*-Oic analogue bearing a quaternary stereocenter

Federico Maria Cecchinelli,^a Giuseppe Celentano,^a Alessandra Puglisi^b and Nicoletta Gaggero^a

^a Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, via Venezian 21, 20133-Milano, Italia

e-mail: nicoletta.gaggero@unimi.it

^b Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133-Milano, Italia

Table of Contents

- 1. General Information
- 2. Preparation of acrylates
- 3. General procedure for the preparation of chiral or racemic ketimines
- 4. General procedure for the Michael additions
- 5. Domino deprotection/cyclization and hydrogenation reaction of 3f.
- 6. Synthesis of (2R,3aS,7aS)-methyl 1-((2-bromophenyl)sulfonyl)-3a-methyloctahydro-1Hindole-2-carboxylate (6)
- 7. Analytical data compounds **3a-3k**, **5** and **6**
- 8. ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra, HPLC chromatograms, mass spectra.

1. General Information

Dry solvents were purchased and stored under nitrogen over molecular sieves (bottles with crown caps). Reactions were monitored by analytical thin-layer chromatography (TLC) using silica gel 60 F254 pre- coated glass plates (0.25 mm thickness) and visualized by UV light and a KMnO₄ solution. Flash chromatography was carried out on silica gel (230-400 mesh). Proton NMR spectra were recorded on spectrometers operating at 300 MHz (Bruker Fourier 300). Proton chemical shifts are reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal standard (CDCl₃ δ = 7.26 ppm). 13C NMR spectra were recorded on 300 MHz spectrometers (Bruker Fourier 300) operating at 75 MHz, with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, $\delta = 77.0$ ppm). 19F NMR spectra were recorded on 300 MHz spectrometers (Bruker AMX 300) operating at 282 MHz. Fluorine chemical shifts are reported in ppm (δ) relative to CF₃Cl. Enantiomeric excess determinations were performed under below reported conditions with Agilent 1200 series HPLC. Mass spectra (MS) were performed at CIGA (Centro Interdipartimentale Grandi Apparecchiature), with mass spectrometer APEX II & Xmass software (Bruker Daltonics). Optical rotations were obtained on a polarimeter at 589 nm using 5 mL or 1 mL cell with a length of 1 dm.

2. **Preparation of acrylates**

2.1 Preparation of methyl 2-(2,2,2-trifluoroacetamido)acrylate (**2b**)¹

To a solution of serine methyl ester hydrochloride (11.2 mmol, 1.742 g) in anhydrous dichloromethane (20 mL), triethylamine (44.90 mmol, 4 eq, 6.3 mL) and trifluoroacetic anhydride (28 mmol, 2.5 eq, 3.9 mL) were added, dropwise, at 0°C. The reaction became dark and after stirring for 24 hours, water was added to eliminate triethylamonium chloride. The phases were separated and the organic layer was washed with saturated NaHCO₃ (2 x 10 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated and the crude product was purified by a short silica gel flash column chromatography, eluting with hexane:ethyl acetate 4:1. The pure product (1.912 g) was isolated as an yellow oil in 87% yield. The spectroscopic data are in agreement with literature values.¹ 1H NMR (300 MHz, CDCl₃) δ : 3.87 (s, 3H), 6.10 (s, 1H), 6.69 (s, 1H), 8.67 (s, 1H).

2.2 Preparation of benzyl 2-(2,2,2-trifluoroacetamido)acrylate (2c)

To a solution of serine benzyl ester hydrochloride (8 mmol, 1.853 g) in anhydrous dichloromethane (18 mL), triethylamine (32 mmol, 4 eq, 4.5 mL) and trifluoroacetic anhydride (20 mmol, 2.5 eq, 2.8 mL) were added, dropwise, at 0°C. The reaction became dark and after stirring for 24 hours, water was added to eliminate triethylamonium chloride. The phases were separated and the organic layer was washed with saturated NaHCO₃ (2 x 10 ml) and dried over anhydrous Na₂SO₄. The solvent was evaporated and the crude product was purified by a short silica gel flash column chromatography, eluting with hexane:ethyl acetate 4:1. The pure product (1.749 g) was isolated as an oil in 80% yield. The spectroscopic data are in agreement with literature values.² ¹H NMR (300 MHz, CDCl₃) δ : 5.31 (s, 3H), 6.17 (s, 1H), 6.20 (s, 1H), 7.39 (s, 5H), 8.55 (s broad, 1H).

2.3 Preparation of methyl 2-benzamidoacrylate (2a)³

To a solution of serine methyl ester hydrochloride (12 mmol, 1.866 g) in anhydrous dichloromethane (15 mL), triethylamine (40 mmol, 3.3 eq, 5.6 mL) and benzoylchloride (24 mmol, 2.0 eq, 2.8 mL) were added, dropwise, at 0°C under inert atmosphere. The reaction was stirred overnight at room temperature, then, water was added. The phases were separated and the organic layer was washed with saturated NaHCO₃ (2 x 10 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated and the quantitative crude methyl 2-amino-3-hydroxypropanoate without purification was used for the following step.

To a solution of the product (12 mmol, 3.115 g) in anhydrous dichloromethane (12 mL) at 0°C, under inert atmosphere, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (14 mmol, 1.16 eq, 2.1 mL) was added. Stirring was continued at 0° C for 9 hours. Water was added, the phases were separated and the organic layer was washed with saturated NaHCO₃ (2 x 10 ml) and dried over anhydrous Na₂SO₄. The solvent was evaporated and the crude acrylate was purified over a short silica gel flash chromatography column using *n*-hexane/ethyl acetate 4:1 as eluent. The acrylate (2.390 g) was recovered in 97% chemical yield. The spectroscopic data are in agreement with literature values. ¹H NMR (300 MHz, CDCl3) δ : 3.88 (s, 3H), 5,98 (s, 1H), 6,79 (s, 1H),7.43-7.57 (m, 3H), 7.81-7.85 (m, 2H), 8.54 (s broad, 1H).

3 General procedure for the preparation of chiral ketimines.

5 Å Molecular sieves were activated by heating for 30 minutes at reduced pressure at 200 °C. After cooling, anhydrous toluene (8 mL), 2-substituted cyclanone (8 mmol) and (*R*)- or (*S*)-phenylethylamine (PEA) (8 mmol, 1 mL) were added under inert atmosphere. The mixture was stirred under reflux for 24-30 hours in order to obtain a high PEA conversion (75-94%). The conversions were monitored by ¹H-NMR (CDCl₃) of the reaction mixture, comparing the quartet at δ 4.11 of PEA with the signal of the same proton of the ketimine which shifts on the left of the spectrum. Ketimines were used for the following step without any purification.

Conversion (%)
90%
84%
88%
86%
84%
84%
94%
75%
80%
80%

4 General procedure for the Michael additions

4.1 General procedure for the Michael addition of ketimines ((R)-1f-j) with acrylate 2b and ketamine (S)-1a with acrylate 2c.

To a anhydrous toluene solution (6 mL) of crude ketimines (**1f-j**) (7.2 mmol), **2b** (3.6 mmol, 0.5 eq, 710 mg) and hydroquinone (5 mg) were added (ketimine **1a** reacted in the same condition with **2c**). After stirring at room temperature for 30 hours, the crude was filtered to remove the molecular sieves and 20% aqueous acetic acid (3 mL) was added. The mixture was stirred for 1 hour, then extracted with ethyl acetate (10 mL x 3). The collected organic layers were washed with saturated NaHCO₃, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography column over silica gel, eluting firstly with hexane:ethyl acetate 9:1 and then with hexane:ethyl acetate 8:2.

4.2 General procedure for the Michael addition of chiral ketimines ((*S*)-1a-e) with acrylates 2a.

To an anhydrous THF solution (6 mL) of crude ketimine (**1a-e**) (7.2 mmol), **2a** (3.6 mmol, 0.5 eq, 739 mg) and hydroquinone (5 mg) were added. After stirring under reflux for 3 day, 20% aqueous acetic acid (3 mL) was added. The mixture was stirred for 1 hour, then extracted with ethyl acetate (10 mL x 3). The collected organic layers were washed with saturated NaHCO₃, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography column over silica gel, eluting with hexane:ethyl acetate 7:3.

5. Domino deprotection/cyclization and hydrogenation reaction of 3f.

To a solution of **3f** (0.81 mmol, 251 mg) in 1.3 mL of methanol, *p*-toluenesulfonic acid (0.81 mmol, 1 eq, 0.113 mL) was added. The reaction mixture was heated to 65 °C under stirring until TLC showed complete reaction (about 24-30 hours). The crude mixture was diluted with MeOH to 15 ml and Pd/C (10% w/w, 250 mg) was added. The reaction mixture was placed in a glass Parr reaction bottle and shaken under 12 atm of hydrogen. The catalytic hydrogenation was carried out for 24 hours at 40°C. The catalyst was removed by filtration on a celite cake, and the filtrate was concentrated in vacuo. Ethyl acetate was added to the crude product in order to induce precipitation. After filtration, white crystals of 2*R*,3a*S*,7a*S*)-2-(methoxycarbonyl)-3a-methyloctahydro-1H-indol-1-ium 4-methylbenzenesulfonate (**5**) (135 mg) were obtained in 45% yield.

6 Synthesis of (2*R*,3a*S*,7a*S*)-methyl 1-((2-bromophenyl)sulfonyl)-3a-methyloctahydro-1H-indole-2-carboxylate (6).

TEA (0.43 mmol, 1.1 eq, 0.060 mL) was added to a solution of **5** (0.39 mmol, 143 mg) in anhydrous THF (8 mL) under nitrogen atmosphere at rt. After 1h under stirring, TEA (0.43 mmol, 1.1 eq, 0.060 mL), 2-bromobenzenesulfonylchloride (0.39 mmol, 1 eq, 100 mg) and DMAP (0.08 mmol, 0.2 eq, 10 mg) were added. The reaction mixture was stirred at rt for 24 hours, quenched with 1M HCl (2 mL), extracted with ethyl acetate (5 mL x 4), dried with Na₂SO₄ and concentrated in vacuo. The crude residue was purified by silica gel flash chromatography (starting with hexane/ethyl acetate 9:1 to hexane/ethyl acetate 8:2) to yield 85 mg of **6** as a colorless solid (53% chemical yield).

Methyl 2-benzamido-3-(1-ethyl-2-oxocyclohexyl)propanoate (Table 1, compound 3a)

Yield 90% (3.24 mmol, 1.03 g)

¹**H NMR** (300 MHz, CDCl₃) δ: 1.20 (s, 3H), 1.40-1.90 (m, 7H), 2.20-2.55 (m, 3H), 3.71 (s, 3H), 4.79 (ddd, J = 7.8, 4.8, 4.0 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 7.25-7.55 (m, 3H), 7.75 (d, J = 10.1 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ: 20.96, 25.60, 26.79, 36.45, 38.55, 38.82, 48.08, 50.25, 52.57, 127.24, 128.78, 131.91, 133.74, 166.92, 173.22, 217.02.

IR (KBr) cm⁻¹ 3292 (NH), 2983-2845 (CH), 1749 (C=O ester), 1700 (C=O ketone), 1631 (C=O amide), 1535 (C-N), 1218 (C-O).

MS Mass (ESI) m/z calc. for C18H23NO4Na1+: 340.2, found: 340.2 [M + Na].

 $[\alpha]^{20}_{D} = -72.7 \ (c \ 0.994, \ CH_2Cl_2).$

e.e. 96% determined by HPLC on Daicel Chiralpak AD column; mobile phase: 85:15 Hexane/Ethanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 15.385 min (minor), t_R 19.602 min (major).

Methyl 2-benzamido-3-(1-ethyl-2-oxocyclohexyl)propanoate (Table 1, compound 3b)

Yield 90% (3.24 mmol, 1.074 g)

¹**H NMR** (300 MHz, CDCl₃) δ: 0.80 (t, 3H), 1.40-2.00 (m, 9H), 2.25-2.50 (m, 2H), 2.65 (dd, J = 14.5, 12.1 Hz, 1 H), 3.74 (s, 3H), 4.71 (ddd, J = 7.8, 4.0, 3.7 Hz, 1H), 6.90 (d, J = 7.7 Hz, 1H), 7.45-7.55 (m, 3H), 7.78 (d, J = 9.5 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ: 7.86, 20.64, 26.68, 30.93, 33.71, 34.67, 39.27, 50.19, 51.43, 52.54, 127.24, 128.77, 131.87, 133.74, 166.87, 173.40, 216.94.

IR (NaCl) cm⁻¹ 3346 (NH), 3030- 2867 (CH), 1746 (C=O ester), 1697 (C=O ketone), 1661 (C=O amide), 1531 (C-N), 1224 (C-O).

MS Mass (ESI+) m/z calc. for C19H25NO4H1+: 332.1, found: 332.1 [M + H]; m/z calc. for C19H25NO4Na1+: 354.2, found: 354.2 [M + Na]

 $[\alpha]^{20}{}_{D} = -65.9 \ (c \ 0.720, \ \mathrm{CH}_2\mathrm{Cl}_2)$

e.e. > 98 % determined by HPLC on Daicel Chiralpak AD column; mobile phase: 80:20 Hexane/Ethanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 14.492 min (minor), t_R 18.706 min (major).

Methyl 2-benzamido-3-(1-methyl-2-oxocyclopentyl)propanoate (Table 1, compound 3c)

Yield 95% (3.42 mmol, 1.037 g)

¹**H NMR** (300 MHz, CDCl₃) δ: 1.06 (s, 3H), 1.70-2.31(m, 8H), 3.73 (s,3H), 4.92 (ddd, J = 9.2, 4.7, 3.6 Hz, 1H), 6.32 (d, J = 9.3 Hz, 1H), 7.40-7.60 (m, 3H), 7.74 (d, J = 6.8 Hz, 2H)

¹³C NMR (75 MHz, CDCl₃) δ: 18.69, 23.91, 33.49, 37.55, 38.50, 47.81, 49.99, 52.73, 116.21, 127.21, 128.76, 128.90, 132.17, 133.46, 167.26, 173.00.

IR (NaCl) cm⁻¹ 3344 (NH), 3031- 2861 (CH), 1737 (C=O ester), 1658 (C=O ketone), 1650 (C=O amide), 1533 (C-N), 1212 (C-O).

MS Mass: (ESI+) m/z calc. for C17H21NO4H1+: 304.1, found: 304.1 [M + H].

 $[\alpha]^{20}{}_{D} = -4 (c \ 1.04, \mathrm{CH}_2\mathrm{Cl}_2)$

e.e. > 98 determined by HPLC on Daicel Chiralpak IB column; mobile phase: 85:15 Hexane/Ethanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 7.56 min (major), t_R 7.88 min (minor).

Methyl 2-benzamido-3-(2-methyl-3-oxotetrahydrothiophen-2-yl)propanoate (Table 1, compound 3d)

Yield 93% (3.35 mmol, 1.076 g)

¹**H** NMR (300 MHz, CDCl₃) δ : 1.46 (s, 3H), 2.34 (dd, J = 10.3, 5.1 Hz, 2H), 2.41-2.53 (m,1H), 2.56-2.68 (m, 1H), 2.90 (dd, J = 13.2, 6.6 Hz, 2H), 3.78 (s, 3H), 5.19 (ddd, J = 9.2, 5.0, 4.6 Hz, 1H), 6.36 (d, J = 9.2 Hz, 1H), 7.40-7.60 (m, 3H), 7.80 (d, J = 6.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ: 22.32, 27.43, 39.28, 41.04, 50.79, 52.81, 55.54, 127.30, 128.92, 132.21, 133.57, 167.39, 172.70, 217.28.

IR 3301 (NH), 3027-2840 (CH), 1760 (C=O ester), 1724 (C=O ketone), 1645 (C=O amide), 1532 (C-N), 1218 (C-O), 661 (C-S).

MS Mass: (ESI+) m/z calc. for C16H19NO4S1Na1+: 344.1, found: 344.1 [M + Na].

 $[\alpha]^{20}_{D} = +10.8 (c \ 0.991, CH_2Cl_2).$

e.e. 98 determined by HPLC on Daicel Chiralpak AD column; mobile phase: 85:15 Hexane/2-Propanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 10.77 min (minor), t_R 14.26 min (major).

Methyl 3-(1-allyl-2-oxocyclohexyl)-2-benzamidopropanoate (Table 1, compound 3e)

Yield 80% (2.88 mmol, 0.989 g)

¹**H NMR** (200 MHz, CDCl₃) δ: 1.40-2.50 (m, 12H), 3.74 (s, 3H), 4.75 (ddd, J = 7.4, 5.1, 3.5 Hz, 1H), 4.90-5.20 (m, 2H), 5.50-5.70 (m, 1H), 6.85 (d, J = 7.4 Hz, 1H), 7.42-7.51 (m, 3H), 7.80 (dd, J = 8.0, 1.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ: 20.60, 26.58, 29.90, 33.38, 35.27, 39.31, 42.27, 50.18, 51.38, 52.69, 116.25, 127.36, 128.83, 132.00, 133.52, 166.95, 173.30, 216.38.

IR (NaCl) cm⁻¹ 3355 (NH), 3030- 2865 (CH), 1746 (C=O ester), 1699 (C=O ketone), 1661 (C=O amide), 1529 (C-N), 1216 (C-O).

MS Mass: (ESI+) m/z calc. for C20H23NO4H+: 344.3, found 344.3 [M + H].

 $[\alpha]^{20}_{D} = -87.5 \ (c \ 1.30, \ CH_2Cl_2)$

e.e. 96% determined by HPLC on Daicel Chiralpak AD column; mobile phase: 85:15 Hexane/Ethanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 14.68 min (minor), t_R 18.48 min (major).

Methyl 3-(1-methyl-2-oxocyclohexyl)-2-(2,2,2-trifluoroacetamido)propanoate (Table 2, compound 3f)

Yield 80% (2.88 mmol, 0.891 g) ¹**H NMR** (300 MHz, CDCl₃) δ: 1.25 (s, 3H), 1.50-1.92 (m, 7H), 1.97-2.10 (m, 1H), 2.28-2.64 (m, 3H), 3.77 (s, 3H), 4.58 (ddd, J = 10.5, 7.9, 4.1 Hz, 1 H), 7.25 (bs, 1H). ¹³**C NMR** (75, CDCl₃) δ: 20.65, 24.94, 26.80, 36.40, 37.74, 38.40, 44.39, 47.86, 49.88, 109.89-

121.32, 156.07-157.57, 171.20, 216.59.

¹⁹**F NMR** (300MHz, CDCl₃) δ: -76.17.

HRMS Mass (TOF MS ES+) m/z calc. for C13H18F3NO4Na1+: 332.1078, found: 332.1078 [M + Na].

 $[\alpha]^{20}{}_{D} = -66,2 \ (c \ 0.5, \ \mathrm{CH}_2\mathrm{Cl}_2).$

e.e. 94% determined by HPLC using Phenomenex Lux 3μ cellulose-4 column; mobile phase: 80:20 Hexane/2-Propanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 7.65 min (minor), t_R 8.85 min (major).

Methyl 3-(1-ethyl-2-oxocyclopentyl)-2-(2,2,2-trifluoroacetamido)propanoate (Table 2, compound 3g)

Yield 68% (2.448 mmol, 0.757 g)

¹**H NMR** (300MHz, CDCl₃) δ: 0.87 (t, J = 7.5 Hz, 3H), 1.42-1.51 (q, 2H), 1.70 (s, 1H), 1.83-2.20 (m, 8H), 2.30-2.44 (m, 1H), 3.79 (s, 3H), 4.67 (td, J = 9.7, 4.3 Hz, 1H), 6.71 (d, J = 8.9 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ: 7.89, 18.14, 28.25, 31.23, 34.65, 36.98, 49.71, 50.84, 52.88, 109.82-121.25, 156.30-157.80, 171.15, 222.85.

¹⁹**F NMR** (300MHz, CDCl₃) δ: -76.11.

HRMS Mass (TOF MS ES+) m/z calc. for C13H18F3NO4Na1+ 332.1076, found: 332.1076 [M + Na].

 $[\alpha]^{20}_{D} = +24,4 \ (c \ 0.5, \ CH_2Cl_2).$

e.e. 97% determined by HPLC on Phenomenex Lux 3μ cellulose-4 column; mobile phase: Hexane/2-Propanol 90:10, flow rate: 0,8 mL/min, pressure: 70 bar; detection wavelength 210 nm; t_R 7.81 min (major), t_R 9.94 min (minor).

Methyl 3-(1-methyl-2-oxocyclopentyl)-2-(2,2,2-trifluoroacetamido)propanoate (Table 2, compound 3h).

Yield 52% (1.872 mmol, 0.553 g).

¹**H NMR** (300 MHz, CDCl₃) δ: 1.07 (s, 3H), 1.77-2.19 (m, 7H), 2.36-2.48 (m, 1H), 3.79 (s, 3H), 4.73 (td, J = 8.6, 5.9 Hz, 1H), 6.95 (bs, 1H).

¹³C NMR (75, CDCl₃) δ: 18.33, 22.58, 34.13, 36.66, 37.40, 47.64, 49.75, 52.93, 113.62-117.44, 156.76-157.26, 171.05, 223.11.

¹⁹**F NMR** (300MHz, CDCl₃) δ: -76.11.

HRMS Mass (TOF MS ES+) m/z calc. for C12H16F3NO4Na1+ 318.0925, found: 318.0925 [M + Na].

e.e. 94% determined by HPLC on Phenomenex Lux 3μ cellulose-4 column; mobile phase: 90:10 Hexane/2-Propanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 7.98 min (major), t_R 8.94 min (minor).

Methyl 3-(1-(methylthio)-2-oxocyclohexyl)-2-(2,2,2-trifluoroacetamido)propanoate (Table 2, compound 3i)

Yield 80% (2.88 mmol, 0.983 g).

¹**H NMR** (300 MHz, CDCl₃) δ: 1.49-1.80 (m, 3H), 1.87 (s, 3H), 1.98-2.13 (m, 4H), 2.20-2.34 (m, 2H), 2.52 (dd, J = 14.8, 10.7 Hz, 1H), 3.11 (ddd, J = 15.5, 14.1, 6.1 Hz, 1H), 3.80 (s, 3H), 4.78 (ddd, J = 8.4, 5.2, 3.9 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ: 11.07, 20.55, 25.99, 34.47, 35.30, 36.68, 49.23, 52.99, 55.18, 109.83-121.26, 156.03-157.53, 171.07, 206.85.

¹⁹**F NMR** (300MHz, CDCl₃) δ: -76.12.

HRMS Mass (TOF MS ES+) m/z calc. for C13H18F3NO4SNa1+ 364.0796, found: 364.0796 [M + Na].

 $[\alpha]^{20}_{D} = +22,3 \ (c \ 0.5, \ CH_2Cl_2).$

e.e. 97% determined by HPLC on Phenomenex Lux 3μ cellulose-4 column; mobile phase: Hexane/2-Propanol 90:10; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R = 8.48 min (major), t_R = 10.79 min (minor).

Methyl 3-(1-allyl-2-oxocyclohexyl)-2-(2,2,2-trifluoroacetamido)propanoate (Table 2, compound 3j)

Yield 75% (2.7 mmol, 0.905 g).

¹**H NMR** (300 MHz, CDCl₃) δ: 1.50-1.93 (m, 7H), 2.01-2.12 (m, 1H), 2.22-2.64 (m, 5H), 3.78 (s, 3H), 4.53 (ddt, J = 11.8, 7.9, 3.7 Hz, 1H), 4.99-5.19 (m, 2H), 5.58 (ddt, J = 11.9, 7.2, 4.3 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ: 20.30, 26.60, 33.40, 34.65, 38.85, 41.79, 49.80, 51.10, 53.09, 109.88-121.31, 119.64, 131.25, 156.12-157.61, 171.21, 215.73.

¹⁹**F NMR** (300 MHz, CDCl₃) δ: -76.17.

HRMS Mass (TOF MS ES+) m/z calc. for C15H20F3NO4Na1+: 358.1235, found: 358.1235 [M + Na].

 $[\alpha]^{20}_{D} = +95.6 (c \ 0.5, \ CH_2Cl_2).$

e.e. 97% determined by HPLC on Phenomenex Lux 3μ cellulose-4 column; mobile phase: Hexane/2-Propanol 90:10; flow rate: 0,8 ml/min; pressure: 70 bar; detection wavelength 210 nm; t_R = 6.41 min (major), t_R = 7.47 min (minor).

Benzyl 3-(1-methyl-2-oxocyclohexyl)-2-(2,2,2-trifluoroacetamido)propanoate (Table 2, compound 3k)

Yield 90% (3.24 mmol, 1.249 g)

¹**H NMR** (300 MHz, CDCl₃): δ 1.20 (s, 3H), 1.50-1.83 (m, 7H), 2.23-2.60 (m, 3H), 4.65 (ddd, J = 11.8, 7.5, 3.9 Hz, 1H), 5.17 (s, 2H), 7.34-.7.37 (m, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 20.92, 25.46, 27.02, 36.46, 37.83, 38.68, 48.15, 50.33, 67.91, 118.72, 126.52, 128.57, 135.18, 156.77, 170.80, 216.93.

IR: (NaCl) cm⁻¹ 3326 (NH), 2872-3068 (CH), 1723 (C=O estere), 1696 (C=O ketone), 1554 (C-N), 1267 (C-O).

MS Mass: (ESI+) m/z calc. for C19H22F3NO4Na1+: 408.2, found: 408.2 [M + Na].

 $[\alpha]^{20}_{D} = -51.3 (c 1.11, CH_2Cl_2)$

e.e. 96% determined by HPLC on Daicel Chiralpak AD column; mobile phase: 85:15 Hexane/Ethanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 6.86 min (major), t_R 8.01 min (minor).

(2*R*,3a*S*,7a*S*)-2-(methoxycarbonyl)-3a-methyloctahydro-1H-indol-1-ium 4methylbenzenesulfonate (5)

Yield 45% (0.365 mmol, 135 mg)

¹**H NMR** (300MHz, CD₃OD) δ: 1.15 (s, 3H), 1.43-1.64 (m, 6H), 1.78-2.01 (m, 3H), 2.39 (s, 3H), 3.42 (t, J = 4.8 Hz, 1H), 3.86 (s, 3H), 4.64 (t, J = 9.0 Hz, 1H), 7.26 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 7.9 Hz, 2H).

¹³C NMR (75 MHz, CD₃OD) δ: 19.53, 19.96, 20.21, 22.15, 22.64, 31.34, 40.13, 40.83, 52.71, 56.37, 64.46, 125.60, 128.47, 140.37, 142.20, 169.92.

HRMS Mass: (TOF MS ES+) m/z calc. for C11H20NO2⁺ [M] 198.1498, found 198.1498 [M]. $[\alpha]^{20}_{D} = +13,4 (c \ 0.5, MeOH)$ (2R,3aS,7aS)-methyl 1-((2-bromophenyl)sulfonyl)-3a-methyloctahydro-1H-indole-2carboxylate (6).

Yield 53% (0.207 mmol, 86 mg)

¹**H NMR** (300MHz, CD₃OD) δ: 1.12 (s, 3H), 1.25-1.35 (m, 4H), 1.46-1.85 (m, 5H), 2.22 (dd, J = 12.8, 9.4 Hz, 1H), 3.70 (s, 3H), 3.78 (t, J = 4.4 Hz, 1H), 4.75 (dd, J = 9.3, 6.9 Hz, 1H), 7.34-7.45 (m, 2H), 7.74 (dd, J = 7.5, 1.6 Hz, 1H), 8.18 (dd, J = 7.6, 2.0 Hz, 1H).

¹³C NMR (75 MHz, CD₃OD) δ: 20.44, 21.13, 23.95, 24.80, 33.94, 40.71, 42.26, 52.26, 60.70, 66.14, 121.26, 127.35, 131.8, 133.34, 135.17, 141.18, 173.77.

e.e. >98% determined by HPLC on Daicel Chiralpak OD-H column; mobile phase: 80:20 Hexane/2-Propanol; flow rate: 0,8 mL/min; pressure: 70 bar; detection wavelength 210 nm; t_R 11.27 min (major), t_R 13.86 min (minor).

During high resolution EI mass analysis the ester portion is lost:

HRMS (EI): calcd for C15H19BrNO2S•: 356,03199, found: 356,032810

References

¹A. Avenoza, J. H. Busto, N. Canal, J. I. Garcia, G. Jimenez-Oses, J. M. Peregrina, M. Perez-Fernandez, *New J. Chem.*, **2007**, *31*, 224-229.

² L. Navarre, R. Martinez, J.-P. Genet, S. Darses, J. Am. Chem. Soc., 2008, 130, 6159-6169

³ M. Crossley, A. Stamford, Aust. J. Chem., 1994, 47, 1695-1711.

⁴S. Wang, Y. Otani, X. Liu, M. Kawahata, K. Yamaguchi, T. Ohwada, J. Org. Chem., 2014, 79, 5287-5300.

COMPOUND 3a

Instrument 1 20/06/11 16.13.54 cece

Page 1 of 1

Sample Name	: niki ad	15etoh		Via	1: 1
Acq. Operator	: cece				
Acq. Method	: C:\HPCH	EM\1\METHODS	S\CECE.M		
Last changed Applyzic Mothor	: 10/06/1	1 16.59.35 Em/1/metuodo	by cece		
Last changed	· 20/06/1	1 15 47 24	by cace		
Last changed	(modifi	ed after loa	ding)		
DAD1 B, Sig=23	30,4 Ref=450,80 (NIKI	16B.D)			
mAU					602
					19
250					
200					
-					
200					
-					-
-					
150 -					
North					
100 -					
-					
50 -					-
				85	G/t
-				4.40	16.4
0	~~~~				
2.5	5 5	7.5	10 12.5	15	17.5
		======================================	Report		
		Area Percent	Report		
	 :	Area Percent Signal	Report		
Sorted By Multiplier	 : :	Area Percent Signal 1.0000	Report		
Sorted By Multiplier Dilution	 - - : :	Area Percent Signal 1.0000 1.0000	Report		
Sorted By Multiplier Dilution	 : : :	Area Percent Signal 1.0000 1.0000	Report		
Sorted By Multiplier Dilution	 : : Β. Siα=230	Area Percent Signal 1.0000 1.0000	Report		
Sorted By Multiplier Dilution Signal 1: DAD1	: : : B, Sig=230	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8	Report		
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime T	: : B, Sig=230 ype Width	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area	Report Height	Area	
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime T # [min]	B, Sig=230 ype Width [min]	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s]	Report Height [mAU]	Area %	
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime T # [min]	B, Sig=230 ype Width [min]	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 	Report Height [mAU]	Area %	
======================================	B, Sig=230 ype Width [min] 	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 	Report Height [mAU] 2.12607 7.53633	Area % 0.3454 1.6561	
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime Ty # [min] 1 14.405 Bi 2 15.385 Vy 3 16.475 V	B, Sig=230 ype Width [min] 	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 1	Report Height [mAU] 2.12607 7.53633 10.55948	Area % 0.3454 1.6561 2.2544	
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime Ty # [min] 1 14.405 Bi 2 15.385 VY 3 16.475 VY 4 17.600 VY	B, Sig=230 ype Width [min] P 0.3213 V 0.4278 V 0.4264 V 0.5818	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 	Report Height [mAU] 2.12607 7.53633 10.55948 17.44588	Area % 0.3454 1.6561 2.2544 5.3348	
<pre>Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime T: # [min] 1 14.405 B: 2 15.385 V' 3 16.475 V' 4 17.600 V' 5 19.602 V!</pre>	B, Sig=230 ype Width [min] P 0.3213 V 0.4278 V 0.4264 V 0.5818 3 0.5904	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 44.70756 214.34973 291.79514 690.49756 1.17020e4	Report Reight [mAU] 2.12607 7.53633 10.55948 17.44588 290.22021	Area % 0.3454 1.6561 2.2544 5.3348 90.4094	
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime Ty # [min] 1 14.405 B 2 15.385 V 3 16.475 V 4 17.600 V 5 19.602 V	B, Sig=230 ype Width [min] P 0.3213 V 0.4278 V 0.4264 V 0.5818 3 0.5904	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 	Report Reight [mAU] 2.12607 7.53633 10.55948 17.44588 290.22021	Area % 	
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime Ty # [min] 	E, Sig=230 ype Width [min] P 0.3213 V 0.4278 V 0.4264 V 0.5818 3 0.5904	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 	Report Reight [mAU] 2.12607 7.53633 10.55948 17.44588 290.22021 327.88798	Area % 0.3454 1.6561 2.2544 5.3348 90.4094	
Sorted By Multiplier Dilution Signal 1: DAD1 Peak RetTime T: # [min] 1 14.405 B: 2 15.385 V 3 16.475 V 4 17.600 V 5 19.602 V Totals : Results obtain	B, Sig=230 ype Width [min] P 0.3213 V 0.4278 V 0.4264 V 0.5818 3 0.5904 hed with en	Area Percent Signal 1.0000 1.0000 ,4 Ref=450,8 Area [mAU*s] 	Report Reight [mAU] 2.12607 7.53633 10.55948 17.44588 290.22021 327.88798 grator!	Area % 	

COMPOUND 3b

Instrument 1 08/02/11 11.05.16 cece

Page 1 of 1

Instrument 1 08/02/11 11.33.53 cece

Page 1 of 1

COMPOUND 3c

Data File C:\HPCHEM\1\DATA\AA48PM.D

Acq. (Acq. N Last (tion Date e Name Dperator Method changed	: 16/03/1 : aa48+- : cece : C:\HPCH : 16/03/1 (modifi	1 14.37.23 ib15etoh EM\1\METHOE 1 14.25.24 ed after 1c	DS\CECE.M by cece pading)	Via	al: 1
Analys Last o	sis Method changed	: C:\HPCH : 16/03/1	EM\1\METHOD 1 14.55.40	by cece		
	DAD1 C, Sig=230	(MOCLII 4 Ref=450,80 (AA4	ed after lo 8PM.D)	ading)		
mAU			7.514	-7.822		
2500						
2000	-					-
1500						
	-					
1000	-		5.649 33			
500	-)	8.385 777 9.170		
0 -	-		hr.W	- Mon	^	
	2	4	6	8 10	12	14 16
			Area Percen	======================================		
sorted	By		Area Percen Signal	======================================		
====== Sorted Multip Diluti	By Dlier .on		Area Percen Signal 1.0000 1.0000	======================================		
====== Sorted Multip Diluti Signal	By Dlier .on 1: DAD1 C	: : : : : :	Area Percen Signal 1.0000 1.0000 ,4 Ref=450,	======================================		
====== Sorted Multip Diluti Signal Peak R #	By Dlier on 1: DAD1 C etTime Typ [min]	: : : : : : : : : : : : : : : : : : :	Area Percen Signal 1.0000 1.0000 ,4 Ref=450, Area [mAU*s]	<pre>====================================</pre>	Area %	
====== Sorted Multip Diluti Signal Peak R - 1 2 2	By blier on 1: DAD1 C RetTime Typ [min] 	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Area Percen Signal 1.0000 1.0000 ,4 Ref=450, Area [mAU*s] 6633.15137 4963.80029	<pre>t Report 80 Height [mAU] 658.62531 538.39240</pre>	Area % 7.7389 5.7912	
====== Sorted Multip Diluti Signal Peak R # - 1 2 3 4 5	By blier on 1: DAD1 C RetTime Typ [min] 	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Area Percen Signal 1.0000 1.0000 ,4 Ref=450, Area [mAU*s] 6633.15137 4963.80029 3.05986e4 3.20138e4 3170.91260	<pre>t Report t Report 80 Height [mAU] 658.62531 538.39240 2802.65430 2733.74878 247.96135</pre>	Area % 7.7389 5.7912 35.6993 37.3504 3.6995	
====== Sorted Multip Diluti Signal Peak R # - 1 2 3 4 5 6 7	By blier on 1: DAD1 C RetTime Typ [min] 	: : : : : : : : : : : : : : : : : : :	Area Percen Signal 1.0000 1.0000 ,4 Ref=450, Area [mAU*s] 6633.15137 4963.80029 3.05986e4 3.20138e4 3170.91260 2516.69897 5815.18164	<pre>t Report t Report 80 Height [mAU] 658.62531 538.39240 2802.65430 2733.74878 247.96135 175.89311 447.21347</pre>	Area % 7.7389 5.7912 35.6993 37.3504 3.6995 2.9362 6.7845	

Instrument 1 16/03/11 15.37.54 cece

Page 1 of 1

COMPOUND 3d

COMPOUND 3e

Sample Name: aa72 ad15etoh

Instrument 1 13/05/11 12.17.10 cece

Page 1 of 1

COMPOUND 3f

COMPOUND 3g

COMPOUND 3h

COMPOUND 3j

COMPOUND 3i

COMPOUND 3k

3.85 ppm H₃C 0-C 4.64 ppm H-3b 1.93 ppm 3.42 ppm H 7a CH₃ 1.93 ppm CH₃ 1.93 ppm CH₃ 1.14 ppm

Measurable nOe correlations:

- methyl 3a (1.14 ppm) and H-7a (3.42 ppm)
- methyl 3a (1.14 ppm) and H-3b (1.93 ppm)
- H-2 (4.64 ppm) and H-3a (2.39 ppm)
- H-3b (1.93ppm) and H-7a (3.42 ppm)
- OCH_3 (3.85 ppm) and proton H-3b (1.93 ppm)

COMPOUND 6

File C:\HPCHEM\1\DATA\CR8PPB.D

Sample Name: cr8pp odh 20ipa

_____ Injection Date : 26/02/19 9.38.53 : cr8pp odh 20ipa Sample Name Vial : 1 Acq. Operator : 1 Acq. Method : C:\HPCHEM\1\METHODS\CECE.M Last changed : 26/02/19 9.41.00 by 1 (modified after loading) Analysis Method : C:\HPCHEM\1\METHODS\CECE.M Last changed : 26/02/19 10.31.48 by 1 (modified after loading) DAD1 A, Sig=210,4 Ref=off (CR8PPB.D) MAU 11.726 1200 1000 800 600 400 200 13.861 0 2.5 5 7.5 10 12.5 15 17.5 Area Percent Report Sorted By • Signal Multiplier 1.0000 : Dilution 1.0000 : Signal 1: DAD1 A, Sig=210,4 Ref=off Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] olo 1 11.726 PBA 0.3911 3.23234e4 1277.89795 99.9243 2 13.861 BP 0.1997 24.49681 1.52283 0.0757 3.23479e4 1279.42078 Totals : Results obtained with enhanced integrator! Instrument 1 26/02/19 10.31.53 1 Page 1 of 1

350 351 352 353 354 355 356 357 35	D	<u></u>	10	15	20	25	30	З 5 	40	45	50	л л 	60	65	70	75	0	00 55 	E06	95 356.03281	100% J 358.(AutoSpec EI+ Magnet BpI:4133727 TIC:172 Sample Text: File Text:BENAGLIA	File:CR77 Ident:49 Acq:21-JUN-2019 09:4
8 359 360 361	_	360.03699			359.04024																3065	88498 Flags:HJ	9:31 +1:11 Ca
. 362 363																						ALL	1:HEPTACOS
364																							A
365																							
366 3																							-
367 3																							
868																							
369		TIIL								<u>ء</u> 1111			.										
/m	0 0 F 0	2.1E5	4.1E5	-6.2E5	_8.3E5	1.0E6	1.2E6	_1.4E6	_1.7E6	1.9E6	2.1E6	2.3E6	2.5E6	2.7E6	2.9E6	3.1E6	3.3E6	-3.5E6	3.7E6	3.9E6	-4.1E6		