A Synthetic Route to 1,4-Disubstituted Tetrahydro-β-carbolines and Tetrahydropyranoindoles via Ring-Opening/Pictet-Spengler Reaction of Aziridines and Epoxides with Indoles/Aldehydes

Imtiyaz Ahmad Wani,^{a,b} Gaurav Goswami,^a Sahid Sk,^a Abhijit Mal,^a Masthanvali Sayyad^a and

Manas K. Ghorai*a

^aDepartment of Chemistry, Indian Institute of Technology, Kanpur, 208016, India ^bCurrent Address: Department of Chemistry, Amar Singh College, 190008, J&K, India mkghorai@iitk.ac.in

Supporting Information

SL No	Contents	Page No
1	X-ray crystal structures	S1
2	X-ray crystallographic analysis of 5p , 7c	S2
3	References	S3
4	¹ H and ¹³ C{ ¹ H} NMR spectra	S5
5	HPLC chromatograms	S35

Table of Contents

1. X-ray crystal structures:

Figure:S1 ORTEP diagram of compound 5p (50% thermal ellipsoid)

Figure:S2 ORTEP diagram of compound 7c (50% thermal ellipsoid)

2. X-ray crystallographic analysis of 5p and 7c

The crystals used in the analyses were glued to a glass fiber and mounted on SMART APEX diffractometer. The instrument was equipped with CCD area detector and data were collected using graphite-monochromated Mo K α radiation (λ = 0.71069 Å) at low temperature (100K). Cell constants were obtained from the least-squares refinement of three-dimensional centroids through the use of CCD recording of narrow ω rotation frames, completing almost all-reciprocal space in the stated θ range. All data were collected with SMART 5.628 and were integrated with the SAINT¹ program. An empirical absorption correction was applied to collect reflections with SADABS² using XPREP.³ The structure was solved using SIR-97⁴ and refined using SHELXL-97.⁵ The space group of the compounds was determined based on the lack of systematic absence and intensity statistics. Full matrix least squares/difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All the hydrogen atoms are fixed by using geometrical constrains using idealized geometries and have been defined isotropically.

Compound	5p	7c	
Formula	C ₃₁ H ₂₅ Br ₂ Cl N2 O ₂ S	C ₂₄ H ₁₉ Br ₂ N O	
Formula weight	684.86	497.22	
CCDC No.	1854875	1854884	
Crystal colour, habit	White, Prism	White, Prism	
T/K	100(2)	100(2)	
Crystal system	Monoclinic	Monoclinic	
Space group	<i>P</i> -2 ₁ (no. 4)	<i>P</i> -2 ₁ (no. 4)	

Table S1. X-ray crystallographic data and structure refinement

a∕Å	10.2533(9)	7.571(3)			
b/Å	29.303(2	13.464(4)			
c/Å	10.6278(10)	20.373(7)			
$lpha'^{ m o}$	90	90.00			
$eta^{\prime \mathrm{o}}$	116.562(2)	99.227(10)			
<i>)</i> ⁄/°	90	90.00			
V/Å ³	2856.1(4)	2050.0(12)			
Ζ	4	4			
$D_{\rm c}/{\rm g~cm^{-3}}$	1.593	1.611			
μ/mm ⁻¹	3.037	3.969			
Reflections measured	28773	16217			
Unique reflections	5063	2175			
Reflections used $I > 2\sigma(I)$]	7094	3680			
R_1^a , wR_2^b $[I > 2\sigma(I)]$	$R_1 = 0.0503^a$	$R_1 = 0.0805^a$			
	$wR_2 = 0.0925^b$	$wR_2 = 0.1836^b$			
R_1^a , wR_2^b (all data)	$R_1 = 0.0864^a$	$R_1 = 0.1459^a$			
	$wR_2 = 0.1032^b$	$wR_2 = 0.2111^b$			
GOF on F^2	1.013	1.052			
${}^{a}R1 = \Sigma \parallel F_{\rm o} \mid - \mid F_{\rm c} \mid \mid / \Sigma \mid F_{\rm o} \mid. {}^{b}wR2 = \{\Sigma[w(\mid Fo \mid^{2} - \mid Fc \mid^{2})^{2}]/\Sigma [w(\mid Fo \mid^{2})^{2}]\}^{1/2}$					

3. References

- 1. SAINT+ 6.02ed.; Bruker AXS, Madison, WI, 1999.
- 2. Sheldrick, G. M. SADABS, Empirical Absorption Correction Program, University of Göttingen, Göttingen, Germany, 1997.
- 3. XPREP, 5.1ed. Siemens Industrial Automation Inc., Madison, WI, 1995.

- 4. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G.G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Cryst.* 1999, *32*, 115.
- 5. Sheldrick, G. M. SHELXL-97: Program for Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997.

4. ¹H and ¹³C{¹H} NMR spectra

Figure:S4 ¹³C{¹H} NMR spectrum of 3a (CDCl₃, 125 MHz)

S7

Figure:S9 ¹H NMR spectrum of 5c (CDCl₃, 500 MHz)

Figure:S12 ¹³C{¹H} NMR spectrum of 5d (CDCl₃, 125 MHz)

Figure:S16¹³C{¹H} NMR spectrum of 5f (CDCl₃, 125 MHz)

Figure:S18 ¹³C{¹H} NMR spectrum of 5g (CDCl₃, 125 MHz)

Figure:S20 ¹³C{¹H} NMR spectrum of 5h (CDCl₃, 125 MHz)

Figure:S22 ¹³C{¹H} NMR spectrum of 5i (CDCl₃, 125 MHz)

Figure:S24 ¹³C{¹H} NMR spectrum of 5j (CDCl₃, 125 MHz)

Figure:S26 ¹³C{¹H} NMR spectrum of 5k (CDCl₃, 125 MHz)

Figure:S34 ¹³C{¹H} NMR spectrum of 50 (CDCl₃, 125 MHz)

Figure:S36 ¹³C{¹H} NMR spectrum of 5p (CDCl₃, 125 MHz)

Figure:S38 ¹³C{¹H} NMR spectrum of 5q (CDCl₃, 125 MHz)

S24

Figure:S48 ¹³C{¹H} NMR spectrum of 5v (CDCl₃, 100 MHz)

Figure:S50 ¹³C{¹H} NMR spectrum of 7a (CDCl₃, 125 MHz)

Figure:S52 ¹³C{¹H} NMR spectrum of 7b (CDCl₃, 125 MHz)

5. Selected HPLC chromatogram for *ee* determination:

Figure:S59 HPLC chromatogram of racemic compound 5a (AD-H column; 90:10

Figure:S60 HPLC chromatogram of chiral compound **5a** (>99% *ee*; AD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure:S61 HPLC chromatogram of racemic compound 5k (OD-H column; 95:5

Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure:S562 HPLC chromatogram of chiral compound **5k** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure:S63 HPLC chromatogram of racemic compound **5m** (AD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure:S64 HPLC chromatogram of chiral compound **5m** (AD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)