Double C-N Bond Cleavages of N-Alkyl 4-Oxopiperidinium Salts: Access to Unsymmetrical Tertiary Sulfonamides

Ying Fu, ${ }^{*, a}$ Ming-Peng Li, ${ }^{\text {a }}$ Chun-Zhao Shi, ${ }^{\text {a }}$ Fang-Rong Li, ${ }^{\mathrm{b}}$ Zhengyin Du ${ }^{*, \mathrm{a}}$ and Congde Huo ${ }^{*, a}$
${ }^{a}$ College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China.
${ }^{b}$ Pharmacy Department, Gansu University of Traditional Chinese Medicine, 743000, China.

Table of Contents:

1. General Experimental Information ... 2
2. Details of experimental procedures.. 2
3. Mechanism screenings .. 3
4. Compound characterization data.. 5
5. Copies of NMR spectra of compounds ... 19

1. General Experimental Information

Analytic methods. All reactions were carried out under air atmosphere. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer or a Bruker 600 MHz spectrometer with CDCl_{3} as solvent. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are reported in parts per million (pmm) with TMS as an internal standard. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quarte}$, quint $=$ quintet, $\mathrm{sx}=$ sextet, sept $=$ septet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad $)$, and coupling constant (J) are in Hz. High resolution mass spectra (HRMS (ESI)) were performed using a 6520B Q-TOF high-resolution mass spectrometer. Column chromatography was performed on silica gel 300-400 mesh. Analytical thin layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. All reagents were purchased from commercial sources and were used as thus.

2. Details of experimental procedures

2.1 General procedure for the syntheses of compounds 3

In a 10 mL test tube were charged with sulfonyl chloride $1(0.5 \mathrm{mmol}), \mathrm{N}-(4-$ chlorobenzyl)-N-methyl-4-oxopiperidin-1-ium chloride 2 (165 mg, 0.6 mmol), N methylmorpholine ($165 \mathrm{mg}, 1.5 \mathrm{mmol}$) and acetonitrile $(2.0 \mathrm{~mL})$. The reaction mixtures were heated to $80{ }^{\circ} \mathrm{C}$ under air for 4 h . Upon completion (TLC) and after cooling to ambient temperature, the reaction mixture was dissolved in ethyl acetate (10 mL) and washed successively with water $(2 \times 10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$. The aqueous phase was further extracted with ethyl acetate $(10 \mathrm{~mL})$ and washed as previously. The organic phase was combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by silica gel column chromatography gave desired sulfonamide products 3 .

2.2 General procedure for the syntheses of compounds 5

In a 10 mL test tube were charged with N -substituted 4-piperidinone 4 (0.6 mmol), organohalide $6(0.6 \mathrm{mmol})$ and $\mathrm{MeCN}(2 \mathrm{~mL})$. The reaction mixtures were stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion (TLC), N-methylmorpholine ($165 \mathrm{mg}, 1.5 \mathrm{mmol}$) and sulfonyl chloride (0.5 mmol) were added and the reaction mixtures were heated to $80{ }^{\circ} \mathrm{C}$ under air for 4 h . After cooling to ambient temperature, the reaction mixture was dissolved in ethyl acetate $(10 \mathrm{~mL})$ and washed successively with water $(2 \times 10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$. The aqueous phase was further extracted with ethyl acetate (10 mL) and washed as previously. The organic phase was combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by silica gel column chromatography gave desired sulfonamide products 5 .

3. Mechanism screenings

3.1 Decomposition of $\mathbf{T s C l}$ in the presence of \mathbf{N}-methylmorpholine

4-Methylbenzenesulfonyl chloride ($191 \mathrm{mg}, 1.0 \mathrm{mmol}$) and N -Methylmorpholine (152 $\mathrm{mg}, 1.5 \mathrm{mmol})$ were heated in $\mathrm{MeCN}(2 \mathrm{~mL})$ to $80^{\circ} \mathrm{C}$ under air for 48 h to yield $\mathbf{1 2}$ in 14.6% (18 mg) yield.
${ }^{1} \mathbf{H}$ NMR(400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0$ Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 144.4,141.9,140.3,136.3,130.0,129.2,127.4,124.4$, 21.5, 21.3.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$269.06067; Found 269.06067.

3.2 Trapping radicals with TEMPO

A solution of 4-methylbenzenesulfonyl chloride ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($163.5 \mathrm{mg}, 0.6 \mathrm{mmol}$), N-Methylmorpholine ($151 \mathrm{mg}, 1.5$ mmol) and TEMPO $(156 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ were heated to $80^{\circ} \mathrm{C}$ under air for 4 h. Then the reaction solution was submitted to HRMS examination. The main radical species or intermediates that are detected by HRMS analysis are listed below.
(1) 5-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pent-1-en-3-one (10)

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$240.19581; Found 240.19580.

(2) 2,2,6,6-tetramethylpiperidin-1-yl 4-methylbenzenesulfonate (11)

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 312.16279$; Found 312.16223.

Compoind 11 was also isolated from above reaction system as a main product in 42% isolated yield.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29$ $(\mathrm{s}, 3 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13}$ C NMR (151 HMz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 145.5,138.4,128.6,125.9,56.1,34.6,27.1,21.2$, 16.3.
(3) 1-(4-Chlorophenyl)-N-methylmethanamine (V)

HRMS (ESI) m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NClNa}[\mathrm{M}+\mathrm{Na}]^{+} 178.03940$; Found 178.0389.

4. Compound characterization data

N-(4-Chlorobenzyl)- N,4-dimethylbenzenesulfonamide (3a)

The reaction of 4-methylbenzenesulfonyl chloride ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($163.5 \mathrm{mg}, 0.6 \mathrm{mmol}$) and N-Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords 3a in $76 \%(117 \mathrm{mg})$ yield. White solid; $\mathrm{Mp}: 82-84{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.9,134.5,134.4,133.9,130.0,129.9,129.0,127.7$, 53.7, 34.6, 21.8.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{NClNaS}[\mathrm{M}+\mathrm{Na}]^{+}$332.04880; Found 332.04868.

N -(4-Chlorobenzyl)- N -methylbenzenesulfonamide (3b)

The reaction of benzenesulfonyl chloride ($87.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and N -Methylmorpholine ($151 \mathrm{mg}, 1.5$ $\mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 b}$ in $71 \%(104 \mathrm{mg})$ yield. White solid; Mp: $61-63{ }^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.56$ (m, 2H), $7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 137.3,134.2,133.8,132.8,129.6,129.2,128.8,127.4$, 53.5, 34.4 .

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NClNaS}[\mathrm{M}+\mathrm{Na}]^{+} 318.03260$; Found 318.03262.

N-(4-Chlorobenzyl)-2,4,6-triisopropyl- N-methylbenzenesulfonamide (3c)

The reaction of 2,4,6-triisopropylbenzenesulfonyl chloride ($151 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-ch lorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride (327.6 mg, 1.2 mmol) and N -Methylmor pholine ($151 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords 3 c in $45 \%(94 \mathrm{mg})$ yield. White s olid; Mp: $127-128{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ $(\mathrm{s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{dd}, J=4.2,3.6$ Hz, 18H).
${ }^{13} \mathbf{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 153.3,151.6,134.3,133.7,130.4,130.1,128.7,123.9$, 51.4, 34.2, 33.0, 29.4, 24.8, 23.5.

HRMS (ESI) (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{NClS}[\mathrm{M}+\mathrm{H}]^{+}$422.19150; Found 422.19150.

The reaction of 2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl chloride (144 m $\mathrm{g}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{~m}$ mol) and N-Methylmorpholine ($151 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 d}$ in 73% (148 mg) yield. White solid; Mp: $124-126{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.23$ ($\mathrm{s}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 160.1,140.8,135.4,134.7,133.6,129.9,128.7,125.9$, $125.2,118.2,86.9,52.0,43.2,32.6,28.5,19.3,17.7,12.5$.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{NClS}[\mathrm{M}+\mathrm{H}]^{+}$408.13947; Found 408.13858.

N-(4-Chlorobenzyl)-4-methoxy- N-methylbenzenesulfonamide (3e)

The reaction of 4-methoxybenzenesulfonyl chloride ($103 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and N-Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 e}$ in $80 \%(130 \mathrm{mg})$ yield. White solid; $\mathrm{Mp}: 132-134{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 163.0,134.3,133.7,129.7,129.5,128.8,114.3,55.6$, 53.5, 34.4 .

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{NClS}[\mathrm{M}+\mathrm{H}]^{+}$326.06122; Found 326.06107.

The reaction of 4-(trifluoromethyl)benzenesulfonyl chloride ($121 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride (327.6 mg, 1.2 mmol) and N Methylmorpholine ($151 \mathrm{mg}, 1.5 \mathrm{mmol}$) in MeCN (2 mL) affords $\mathbf{3 f}$ in $55 \%(100 \mathrm{mg})$ yield. White solid; Mp: 86-88 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 141.1,135.2$ - 133.1 (m), 129.6, 129.0, 127.8, 126.4 $(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.1,122.3,110.0,53.4,34.4$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):-63.52$.
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~F}_{3} \mathrm{ClS}[\mathrm{M}+\mathrm{HCOO}]^{-} 408.02842$; Found 408.02881 .

N-(4-Chlorobenzyl)-N-methyl-2-(trifluoromethoxy)benzenesulfonamide (3g)

The reaction of 2-(trifluoromethoxy)benzenesulfonyl chloride ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride (163.8 mg, 0.6 mmol) and N Methylmorpholine ($151 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 g}$ in $41 \%(77 \mathrm{mg})$ yield. Colorless liquid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.07(\mathrm{dt}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=8.4,7.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 2.72$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 146.1,134.4(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 133.8,132.0,131.2$, $129.5,128.8,126.5,121.1,120.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 119.4,53.2,34.0$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):-56.34$.
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NClF}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 402.01545$; Found 402.01499 .

N-(4-Chlorobenzyl)-4-fluoro- N-methylbenzenesulfonamide (3h)

The reaction of 4-fluorobenzenesulfonyl chloride ($97 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and N-Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 h}$ in $55 \%(86 \mathrm{mg})$ yield. White solid; $\mathrm{Mp}: 80-82{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 165.7(\mathrm{~d}, J=254.9 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 130.1$, $130.0,129.6,128.9,116.5,116.4,53.5,34.4$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):-103.08--109.20(\mathrm{~m})$.
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NClFNaS}[\mathrm{M}+\mathrm{Na}]^{+}$336.02318; Found 336.02358.

4-Chloro- N -(4-chlorobenzyl)- N -methylbenzenesulfonamide (3i)

The reaction of 4-chlorobenzenesulfonyl chloride ($105 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and N-Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords 3 i in $53 \%(87 \mathrm{mg})$ yield. White solid; Mp: $143-144{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 139.4,135.9,133.9,133.9,129.6,129.5,128.9,128.8$, 53.5, 34.3.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NCl}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$351.99363; Found 351.99355.

The reaction of 4-bromobenzenesulfonyl chloride ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and N-Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 j}$ in $65 \%(120 \mathrm{mg})$ yield. White solid; $\mathrm{Mp}: 102-103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.71-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 136.5,134.0,133.9,132.5,129.7,128.9,128.9,127.8$, 53.5, 34.4.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NBrClNaS}[\mathrm{M}+\mathrm{Na}]^{+}$395.9437; Found 395.9423.

N-(4-Chlorobenzyl)-3,4-difluoro- N-methylbenzenesulfonamide (3k)

The reaction of 3,4-difluorobenzenesulfonyl chloride ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride $(327.6 \mathrm{mg}, 1.2 \mathrm{mmol})$ and N -Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 k}$ in $54 \%(89 \mathrm{mg})$ yield. White solid; Mp : $78-79^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{tt}, J=8.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 163.8(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 162.0,134.1,133.5,129.6$, $129.0,110.8(\mathrm{dd}, J=21.5,6.5 \mathrm{~Hz}), 108.4(\mathrm{t}, J=25.0 \mathrm{~Hz}), 53.5,34.4$.
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-105.65(\mathrm{dd}, J=8.5,5.8 \mathrm{~Hz})$.
HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{NClF}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$354.01375; Found 354.01356.

N -(4-Chlorobenzyl)- N -methylnaphthalene-2-sulfonamide (3n)

The reaction of naphthalene-2-sulfonyl chloride (113 mg, 0.5 mmol), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and N -Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 n}$ in $55 \%(95 \mathrm{mg})$ yield. White solid; $\mathrm{Mp}:>200^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 139.4,134.8,134.4,134.2,133.8,132.3,129.7,129.4$, $129.2,128.8,128.8,127.9,127.6,53.6,34.4$.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{NClS}[\mathrm{M}+\mathrm{H}]^{+}$346.06630; Found 346.06596.

N-(4-Chlorobenzyl)- N-methylthiophene-2-sulfonamide (30)

The reaction of thiophene-2-sulfonyl chloride ($90 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride $(327.6 \mathrm{mg}, 1.2 \mathrm{mmol})$ and N -Methylmorpholine (151 mg , $1.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords 30 in $45 \%(67 \mathrm{mg})$ yield. Yellow viscous oil.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.62(\mathrm{dd}, J=1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=1.2,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=3.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 146.5,135.0,133.6,131.4,130.1,129.7,128.8,127.9$, 54.4, 32.8.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NClS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$302.00707; Found 302.00732.

Methyl 2-(N-(4-chlorobenzyl)- N-methylsulfamoyl)thiophene-3-carboxylate (3p)

The reaction of methyl 2-(chlorosulfonyl)thiophene-3-carboxylate ($120 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(4-chlorobenzyl)-1-methyl-4-oxopiperidin-1-ium chloride ($327.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and N-Met hylmorpholine ($151 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{MeCN}(2 \mathrm{~mL})$ affords $\mathbf{3 p}$ in $45 \%(80 \mathrm{mg})$ yield. White solid; Mp: 107-109 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.51(\mathrm{~s}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 160.0,141.7,134.7,133.7,131.5,129.6,129.1,128.8$, 110.0, 53.7, 53.0, 34.4.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{NClNaS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$381.9950; Found 381.9945.

N-Ethyl- N,4-dimethylbenzenesulfonamide (5a) ${ }^{[1]}$

According to general procedure $2.2,5$ a was obtained in $76 \%(81 \mathrm{mg})$ isolated yield. White solid; Mp: 28-30 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.08$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.2,134.7,129.6,127.3,44.8,33.9,21.4,13.0$.

N-Allyl- $N, 4$-dimethylbenzenesulfonamide (5b) ${ }^{[2]}$

According to general procedure 2.2 , $\mathbf{5 b}$ was obtained in $42 \%(47 \mathrm{mg})$ yield as a colorless liquid.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.86$ $-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.13(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.3,134.5,132.6,129.6,127.5,119.1,53.0,34.2$, 21.5.

Ethyl 2-(N,4-dimethylphenylsulfonamido)acetate (5c)

According to general procedure $2.2, \mathbf{5 c}$ was obtained in $47 \%(63 \mathrm{mg})$ yield as a colorless liquid.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ (qt, $J=7.1,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 169.5,141.4,140.5,129.6,126.4,61.2,52.6,34.5$, 21.3, 14.1.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 272.09511$; Found 272.09481.

N,4-Dimethyl- N-(2-oxo-2-phenylethyl)benzenesulfonamide (5d) ${ }^{[3]}$

According to general procedure 2.2, 5d was obtained in $44 \%(66 \mathrm{mg})$ isolated yield. Yellowish solid; Mp: 111-113 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.98(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 193.7,143.6,134.8,134.7,133.8,129.6,128.8,128.3$, 127.6, 56.1, 35.6, 21.5.

According to general procedure 2.2 , $\mathbf{5 e}$ was obtained in $62 \%(74 \mathrm{mg})$ isolated yield as a yellowish viscous oil.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 142.8,137.3,129.5,127.0,49.3,42.6,22.0,21.4$, 14.1, 11.1.

$\boldsymbol{N}, \mathbf{N}$-Diethyl-4-methylbenzenesulfonamide (5f) ${ }^{[5]}$

According to general procedure 2.2 , $\mathbf{5 f}$ was obtained in $72 \%(81 \mathrm{mg})$ isolated yield. White solid; Mp: 59-61 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.22$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 142.9,137.4,129.5,127.0,42.0,21.4,14.1$.

N -(4-Chlorobenzyl)- N -ethyl-4-methylbenzenesulfonamide (5g)

According to general procedure $2.2, \mathbf{5 g}$ was obtained in $46 \%(74 \mathrm{mg})$ isolated yield. White solid; Mp: 56-58 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.3,137.1,135.2,133.5,129.7,129.5,128.7,127.1$, 50.5, 42.5, 21.5, 13.4.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{NClS}[\mathrm{M}+\mathrm{H}]^{+} 324.08195$; Found 324.08194.

N-(4-Chlorobenzyl)-4-methyl- N-propylbenzenesulfonamide (5h)

According to general procedure $2.2, \mathbf{5 h}$ was obtained in $53 \%(89 \mathrm{mg})$ isolated yield. White solid; Mp: 79-81 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.11-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.40$ $-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.71(\mathrm{t}, J=15 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.3,134.0,135.4,133.5,129.7,129.5,128.7,127.1$, 51.3, 50.1, 21.5, 21.4, 11.1.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NSCl}[\mathrm{M}+\mathrm{H}]^{+}$338.09760; Found 338.09756.

N-Benzyl- N-(4-chlorobenzyl)-4-methylbenzenesulfonamide (5i)

According to general procedure $2.2, \mathbf{5 i}$ was obtained in $42 \%(80 \mathrm{mg})$ isolated yield. White solid; Mp: 179-180 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ $-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}$, 2H), $4.26(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.4,137.5,135.4,134.4,133.4,129.8,129.7,128.5$, $128.5,128.4,127.7,127.2,50.9,50.0,21.5$.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{NSCl}[\mathrm{M}+\mathrm{H}]^{+}$386.09760; Found 386.09756.

4-Methoxy- N-(2-oxo-2-phenylethyl)- N-propylbenzenesulfonamide (5j)

According to general procedure $2.2, \mathbf{5 j}$ was obtained in $45 \%(78 \mathrm{mg})$ isolated yield as a yellowish viscous oil.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.95(\mathrm{dd}, J=1.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=9, .0 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, 3H), $3.22-3.19(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 194.2,162.8,134.9,133.7,129.6,128.8,128.0,114.0$, 55.5, 52.9, 50.0, 21.2, 11.1.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 348.12641$; Found 348.12607.

N-(4-Chlorobenzyl)- N-ethylbenzenesulfonamide (5k)

According to general procedure 2.2 , $\mathbf{5 k}$ was obtained in $56 \%(86 \mathrm{mg})$ isolated yield as a colorless liquid.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{dd}$, $J=8.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 140.1,135.1,133.6,132.5,129.5,129.2,128.7,127.0$, 50.5, 42.6, 13.4 .

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{NSCl}[\mathrm{M}+\mathrm{H}]^{+} 310.06630$; Found 310.06590.

N-Ethyl- N-(2-oxo-2-phenylethyl)naphthalene-2-sulfonamide (51)

According to general procedure 2.2, 5I was obtained in $40 \%(70 \mathrm{mg})$ isolated yield as a yellowish viscous oil.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 194.0,136.8,134.9,134.8,133.8,132.1,129.2,129.2$, $128.8,128.7,128.6,128.0,127.9,127.3,122.9,52.3,43.2,13.4$.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 354.11584$; Found 354.11576.

N, N-Diethylthiophene-2-sulfonamide (5m) ${ }^{[6]}$

According to general procedure $2.2,5 \mathrm{~m}$ was obtained in $64 \%(70 \mathrm{mg})$ yield as a brownish oil.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.55(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 140.8,131.3,131.1,127.2,42.6,14.2$.

Methyl 2-(N-(4-chlorobenzyl)- N-ethylsulfamoyl)thiophene-3-carboxylate (5n)

According to general procedure 2.2 , $\mathbf{5 n}$ was obtained in $47 \%(87 \mathrm{mg})$ isolated yield as a colorless liquid.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.50(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $0.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 156.0,143.6,135.4,133.4,132.8,131.6,129.4,129.1$, 128.7, 53.0, 50.3, 42.0, 13.1 .

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{NClS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$374.02820; Found 374.02796.

N-Methyl- N-(2-oxo-2-phenylethyl)cyclopropanesulfonamide (50)

According to general procedure 2.2 , $\mathbf{5 0}$ was obtained in $46 \%(58 \mathrm{mg})$ isolated yieldas a yellowish viscous oil.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{tt}, J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 2 \mathrm{H})$, $1.03(\mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 194.6,134.6,134.0,128.9,127.9,56.4,35.9,28.9$, 5.1.

HRMS (ESI) m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{NNaS}[\mathrm{M}+\mathrm{H}]^{+}$276.06649; Found 276.06619.

References:

[1] Y. Cai; R. Zhang, Synlett, 2017, 28, 1630.
[2] W. Zhang, Z. Zou, Y. Wang, Angew.Chem. 2019, 131, 634.
[3] S.-H. Su, M.-D. Su, RSC Adv., 2016, 6, 80712.
[4] F.Zhang, D. Zheng, Org. Lett., 2018, 20, 1167.
[5] Z.Zhang, Y.-H. Liu, Tetrahedron, 2019, 75, 2763.
[6] Y. Fu, Q.-S. Xu, C.-Z. Shi, Adv. Syn. Catal., 2018, 360, 3502.

5. Copies of NMR spectra of compounds

N-(4-Chlorobenzyl)- $N, 4$-dimethylbenzenesulfonamide (3a)

※゙
$\stackrel{8}{\circ}$

Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 3a in CDCl_{3}.

Figure $\mathrm{S} 2 .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz}) \mathrm{NMR}$ spectra of 3 b in CDCl_{3}.

Figure $\mathrm{S3} .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 3 c in CDCl_{3}.

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz}) \mathrm{NMR}$ spectra of 3 d in CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 3 e in CDCl_{3}.

$\underbrace{\text { 下as. }}$
$\stackrel{8}{\square}$
$\underset{\substack{\text { 符 }}}{ }$

8

Figure S6. ${ }^{1} \mathrm{H}(600 \mathrm{MHz}),{ }^{13} \mathrm{C}(151 \mathrm{MHz})$ and ${ }^{19} \mathrm{~F}(\mathbf{3 7 6} \mathrm{M})$ NMR spectra of 3 f in CDCl_{3}.

Figure S7. ${ }^{1} \mathrm{H}(600 \mathrm{MHz}),{ }^{13} \mathrm{C}(151 \mathrm{MHz})$ and ${ }^{19} \mathrm{~F}(376 \mathrm{M})$ NMR spectra of 3 g in CDCl_{3}.

Figure S8. ${ }^{1} \mathrm{H}(600 \mathrm{MHz}),{ }^{13} \mathrm{C}(151 \mathrm{MHz})$ and ${ }^{19} \mathrm{~F}(376 \mathrm{M})$ NMR spectra of 3 h in CDCl_{3}.

4-Chloro- N -(4-chlorobenzyl)- N -methylbenzenesulfonamide (3i)

Figure S9. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathbf{C}(151 \mathrm{MHz})$ NMR spectra of 3 i in CDCl_{3}.
4-bromo- N-(4-chlorobenzyl)- N-methylbenzenesulfonamide (3j)

 $\stackrel{t}{\dot{+}}$ $\stackrel{8}{\circ}$

Figure S10. ${ }^{\mathbf{1}} \mathbf{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathbf{C}(151 \mathrm{MHz})$ NMR spectra of $\mathbf{3 j}$ in CDCl_{3}.

Figure S11. ${ }^{1} \mathrm{H}(600 \mathrm{MHz}),{ }^{13} \mathrm{C}(151 \mathrm{MHz})$ and ${ }^{19} \mathrm{~F}(376 \mathrm{M})$ NMR spectra of 3 k in CDCl_{3}.

$\stackrel{\text { 厄/ }}{\ddagger}$ $\stackrel{\square}{9}$
$\stackrel{\circ}{i}$
i

Figure S12. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 3 n in CDCl_{3}.
N-(4-Chlorobenzyl)- N-methylthiophene-2-sulfonamide (30)

Figure S13. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 3 o in CDCl_{3}.
Methyl2-(N-(4-chlorobenzyl)- N-methylsulfamoyl)thiophene-3-carboxylate (3p)

Figure S14. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 3 p in CDCl_{3}.

Figure S15. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 a in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 b in CDCl_{3}.
Ethyl N-methyl- N-tosylglycinate (5c)

Figure S17. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz}) \mathrm{NMR}$ spectra of 5 c in CDCl_{3}.
$N, 4-$ Dimethyl- N-(2-oxo-2-phenylethyl)benzenesulfonamide (5d)

Figure S18. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 d in CDCl_{3}.

Figure S19. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 e in CDCl_{3}.
\mathbf{N}, \mathbf{N}-diethyl-4-methylbenzenesulfonamide (5f)

Figure S20. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 f in CDCl_{3}.

Figure S21. ${ }^{\mathbf{1}} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 g in CDCl_{3}.

Figure S22. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 h in CDCl_{3}.

発范
$\stackrel{8}{8}$

Figure S23. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 i in CDCl_{3}.

4-Methoxy- N-(2-oxo-2-phenylethyl)- N-propylbenzenesulfonamide (5j)

Figure S24. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 j in CDCl_{3}.

へ人

$\stackrel{\stackrel{\rightharpoonup}{e}}{\stackrel{\text { N}}{+}}$

Figure S25. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 k in CDCl_{3}.

Figure S26. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 I in CDCl_{3}.

Figure S27. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz}) \mathrm{NMR}$ spectra of 5 m in CDCl_{3}.

Figure S28. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 5 n in CDCl_{3}.

Figure S29. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 50 in CDCl_{3}.
2,2,6,6-Tetramethylpiperidin-1-yl 4-methylbenzenesulfonate (11)

Figure S30. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectra of 11 in CDCl_{3}.

