Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information

Table of Contents

1. General Details.	S2
2. Methods for the synthesis of substrates 1a	S3
3. Methods for the synthesis of product 2a	S4
4. Methods for the synthesis of substrates 3a	S15
5. Methods for the synthesis of product 4a	S16
6. Tentative mechanism using $K_2S_2O_8$ only	S23
7. Gram Scale	S24
8. Formation of 3 -Substituted Indole Quinolone	S25
9. Copies of Spectra of New Products	S29
10. X-ray crystallography of compounds 2a	S70
11. X-ray crystallography of compounds 5b	S72

1. General Details.

All reactions under N₂ were performed in flame-dried glassware under an atmosphere of dry nitrogen, unless otherwise noted. Column chromatographic purification of products was carried out using silica gel (200~300 mesh). The reagents were used without further purification. ¹H NMR spectra was recorded at 400 MHz or 500 MHz, ¹³C NMR spectra was recorded at 100 MHz or 125 MHz, and in CDCl₃ or d⁶-DMSO (containing 0.03% TMS) solutions. ¹H NMR spectra were recorded with tetramethyl silane ($\delta = 0.00$ ppm) as internal reference; ¹³C NMR spectra were recorded with CDCl₃ ($\delta = 77.00$ ppm) or d⁶-DMSO ($\delta = 39.52$ ppm) as internal reference. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractometers with molybdenum cathodes.

2. Methods for the synthesis of substrates 1a

Scheme S1: Synthetic route for the synthesis of 1

Substrate **1** were prepared according to the reported literature modified.¹ A typical procedure for the synthesis of **1a** as follows: To a solution of the Indolyl alkynyl ketones $A(R^1 = H, R^3 = Ph)$ (519 mg, 2.0 mmol) in CH₃OH (10 mL) in Schlenk tube was added aniline (220 µL, 1.2 eq.) dropwise at 60 °C until the reaction was complete as monitored by thin-layer chromatography. The resulting mixture was quenched with water, and extracted with ethyl acetate (3x30 mL). The organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography on silica gel with (petroleum ether/ethyl acetate = 10:1) afforded desired substrate **1a** (670 mg, 96%) as a yellow solid.

3. Methods for the synthesis of product 2a

A typical procedure for the synthesis of **2a** as follows: Indolyl enaminone **1a** (0.2 mmol, 70.5 mg), Fe(OTf)₃ (0.02 mmol, 10.1 mg), K₂S₂O₈ (0.8 mmol, 216.3 mg) and DMSO (2.0 mL) were placed in an schlenk tube under N₂. Then the reaction mixture was allowed to react at 60 °C for 4 h. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (dichloromethane/ethyl acetate = 1:1) afforded desired compound **2a**.

9-Methyl-1,2-diphenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2a**), yellow solid, 51.8 mg, 74%. m.p. 298-300 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.91 (s, 3H), 6.41 (s, 1H), 7.12-7.21 (m, 6H), 7.25-7.28 (m, 2H), 7.31-7.36 (m, 5H), 8.59-8.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.6, 108.6, 116.2, 122.0, 122.3, 122.6, 124.0, 127.9, 128.6, 129.5, 129.8, 130.1, 130.6, 135.0, 137.3, 138.6, 144.7, 149.2, 175.9. HRMS (ESI) calcd for C₂₄H₁₉N₂O [M+H]⁺: 351.1492, found: 351.1498.

9-Methyl-2-phenyl-1-(p-tolyl)-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2b**), white solid, 67.8 mg, 62%. m.p. 273-275 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 2.91 (s, 3H), 6.39 (s, 1H), 7.11-7.14 (m, 7H), 7.17-7.21 (m, 3H), 7.29-7.32 (m, 2H), 8.57-8.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 31.6, 108.6, 116.1, 122.0, 122.3, 122.6, 123.9, 127.9, 128.5, 130.0, 130.1, 130.2, 135.1, 135.8, 137.3, 140.1, 144.8, 149.4, 175.9. HRMS (ESI) calcd for C₂₅H₂₁N₂O [M+H]⁺: 365.1648, found: 365.1643.

I-(4-Ethylphenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4-one* (**2c**), white solid, 71.6 mg, 63%. m.p. 225-226 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.19 (t, *J* = 7.6 Hz, 3H), 2.63 (q, *J* = 7.6 Hz, 2H), 2.86 (s, 3H), 6.38 (s, 1H), 7.07-7.18 (m, 10H), 7.27-7.29 (m, 2H), 8.57-8.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.9, 28.1, 31.5, 108.4, 108.5, 116.0, 121.8, 122.2, 122.5, 123.8, 127.8, 128.4, 128.7, 130.0, 130.3, 135.0, 135.9, 137.2, 144.7, 146.4, 149.4, 175.8. HRMS (ESI) calcd for C₂₆H₂₃N₂O [M+H]⁺: 379.1805, found: 379.1794.

I-(4-Butylphenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4-one* (**2d**), yellow solid, 83.0 mg, 68%. m.p. 183-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, *J* = 7.6 Hz, 3H), 1.22-1.29 (m, 2H), 1.50-1.59 (m, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 2.95 (s, 3H), 6.41 (s, 1H), 7.12-7.20 (m, 10H), 7.30-7.33 (m, 2H) 8.58-8.61 (m, 1H); ³C NMR (100 MHz, CDCl₃) δ 13.5, 21.7, 31.6, 32.9, 34.8, 108.6, 116.1, 122.0, 122.4, 122.6, 123.9, 127.8, 128.5, 129.4, 130.1, 130.2, 135.1, 136.0, 137.3, 144.8, 145.1, 149.4, 175.9. HRMS (ESI) calcd for C₂₈H₂₇N₂O [M+H]⁺: 407.2118, found: 407.2109.

1-(3,4-Dimethylphenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4one* (**2e**), white solid, 73.3 mg, 68%. m.p. 266-267 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.18 (s, 3H), 2.23 (s, 3H), 2.92 (s, 3H), 6.38 (s, 1H), 6.93-6.98 (m, 2H), 7.04-7.07 (m, 1H), 7.12-7.19 (m, 6H), 7.29-7.32 (m, 2H), 8.59-8.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.2, 19.3, 31.6, 108.5, 116.1, 121.9, 122.3, 122.6, 123.8, 127.7, 127.8, 128.5, 130.1, 130.4, 131.1, 135.2, 136.0, 137.3, 138.2, 138.6, 144.9, 149.4, 175.9. HRMS (ESI) calcd for $C_{26}H_{23}N_2O$ [M+H]⁺: 379.1805, found: 379.1800.

1-(3,5-Dimethylphenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4one (**2f**), white solid, 71.0 mg, 62%. m.p. 254-255 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 6H), 2.96 (s, 3H), 6.39 (s, 1H), 6.84 (s, 2H), 6.96 (s, 1H), 7.12-7.21 (m, 6H), 7.31-7.34 (m, 2H), 8.59-8.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.7, 31.6, 108.6, 116.1, 122.0, 122.4, 122.7, 123.9, 127.7, 128.0, 128.5, 130.1, 131.2, 135.1, 137.3, 138.2, 139.4, 144.8, 149.2, 175.9. HRMS (ESI) calcd for C₂₆H₂₃N₂O [M+H]⁺: 379.1805, found: 379.1796.

1-(4-Methoxyphenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4-one* (**2g**), white solid, 79.9 mg, 70%. m.p. 273-275 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.94 (s, 3H), 3.80 (s, 3H), 6.39 (s, 1H), 6.80-6.83 (m, 2H), 7.15-7.21 (m, 8H), 7.30-7.33 (m, 2H), 8.58-8.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.6, 55.4, 108.6, 114.4, 116.1, 122.0, 122.3, 122.6, 123.9, 127.9, 128.5, 130.1, 131.0, 131.6, 135.2, 137.3, 145.0, 149.7, 160.3, 175.9. HRMS (ESI) calcd for C₂₅H₂₁N₂O₂ [M+H]⁺: 381.1598, found: 381.1595.

2h

1-(3-Methoxyphenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2h**), white solid , 65.2 mg, 57%. m.p 253-255 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.91 (s, 3H), 3.75 (s, 3H), 6.39 (s, 1H), 6.86-6.90 (m, 3H), 7.06-7.09 (m, 1H), 7.19-7.25 (m, 6H), 7.27-7.30 (m, 2H), 8.56-8.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.5, 55.5, 108.6, 115.7, 116.0, 116.2, 122.1, 122.3, 122.6, 122.7, 124.0, 127.9, 128.7, 130.0, 135.0, 137.3, 139.5, 144.6, 149.1, 160.5, 175.9. HRMS (ESI) calcd for C₂₅H₂₁N₂O₂ [M+H]⁺: 381.1598,

found: 381.1597.

1-(3,4-Dimethoxyphenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4one* (**2i**), white solid, 74.0 mg, 60%. m.p. 263-265 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.91 (s, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 6.37 (s, 1H), 6.74-6.77 (m, 1H), 6.83-6.89 (m, 2H), 7.06-7.09 (m, 1H), 7.20-7.24 (m, 6H), 7.28-7.31 (m, 2H), 8.56-8.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.3, 55.8, 56.3, 108.2, 108.6, 110.3, 113.9, 115.9, 121,8, 122.0, 122.4, 122.9, 123.7, 127.9, 128.6, 130.1, 131.0, 135.2, 137.0, 144.6, 149.4, 149.6, 149.8, 175.7. HRMS (ESI) calcd for C₂₆H₂₃N₂O₃ [M+H]⁺: 411.1703, found: 411.1692.

I-(4-Fluorophenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4-one* (**2j**), white solid, 71.8 mg. 65%. m.p. 296-298 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.87 (s, 3H), 6.38 (s, 1H), 7.01-7.09 (m, 3H), 7.15-7.23 (m, 5H), 7.29-7.34 (m, 4H), 8.55-8.58 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.6, 108.5, 108.6, 116.1, 116.2 ($J_{C-F} = 8.0 \text{ Hz}$), 116.4, 116.6, 122.1, 122.2, 122.5, 124.0, 128.1, 128.8, 130.1, 132.5 ($J_{C-F} = 9.0 \text{ Hz}$), 134.6 ($J_{C-F} = 3.0 \text{ Hz}$), 134.8, 137.1, 144.6, 149.3, 162.9 ($J_{C-F} = 252.0 \text{ Hz}$), 175.8; ¹⁹F NMR (470.2 MHz, CDCl₃) δ -109.5 (s, 1F). HRMS (ESI) calcd for C₂₄H₁₈FN₂O [M+H]⁺: 369.1398, found: 369.1404.

1-(4-Chlorophenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2k**), yellow solid, 70.4 mg, 61%. m.p. 303-304 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.79 (s, 3H), 6.34 (s, 1H), 6.99-7.01 (m, 1H), 7.18-7.23 (m, 5H), 7.25-7.31 (m, 6H), 8.52-8.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.7, 108.5, 108.7, 116.3, 122.1, 122.4, 124.0, 128.1, 128.8, 129.7, 130.1, 131.9, 134.7, 135.9, 137.1, 137.2, 144.5, 149.1, 175.8. HRMS (ESI) calcd for C₂₄H₁₈ClN₂O [M+H]⁺: 385.1102, found: 385.1093.

I-(3-Chlorophenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2l**), yellow solid, 61.2 mg, 53%. m.p. 310-312 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.88 (s, 3H), 6.38 (s, 1H), 7.07-7.10 (m, 1H), 7.18-7.25 (m, 6H), 7.28-7.36 (m, 5H), 8.56-8.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.7, 108.5, 108.7, 116.3, 122.1, 122.3, 122.4, 124.0, 128.1, 128.9, 129.0, 130.1, 130.1, 130.3, 130.8, 134.6, 135.2, 137.1, 139.8, 144.4, 149.0, 175.8. HRMS (ESI) calcd for C₂₄H₁₈ClN₂O [M+H]⁺: 385.1102, found: 385.1100.

1-(4-Bromophenyl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one

(2m),white solid, 80.4 mg, 62%. m.p. 315-317 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.83 (s, 3H), 6.35 (s, 1H), 7.01-7.04 (m, 1H), 7.15-7.24 (m, 7H), 7.26-7.30 (m, 2H), 7.46-7.49 (m, 2H), 8.53-8.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.7, 108.3, 108.7, 116.2, 121.9, 122.0, 122.3, 123.9, 123.9, 128.1, 128.8, 130.1, 132.3, 132.6, 134.7, 137.0, 137.7, 144.3, 149.1, 175.7. HRMS (ESI) calcd for C₂₄H₁₈BrN₂O [M+H]⁺: 429.0597, found: 429.0605.

9-Methyl-1-(naphthalen-1-yl)-2-phenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4-one* (**2n**), white solid, 63.8 mg, 53%. m.p. 293-294 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.67 (s, 3H), 6.52 (s, 1H), 6.96-7.12 (m, 6H), 7.31-7.43 (m, 4H), 7.46-7.56 (m, 3H), 7.86-7.90 (m, 2H), 8.66-8.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 30.9, 108.4, 108.6, 116.5, 122.2, 122.4, 122.6, 122.7, 124.0, 124.9, 127.5, 127.6, 128.7, 128.8, 128.8, 129.4, 130.7, 132.3, 133.8, 134.7, 134.8, 137.2, 144.9, 149.8, 176.1. HRMS (ESI) calcd for C₂₈H₂₁N₂O [M+H]⁺: 401.1648, found: 401.1637.

1-(2,3-Dihydro-1H-inden-5-yl)-9-methyl-2-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**20**), white solid, 69.3 mg, 59%. m.p. 268-270 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.04-2.12 (m, 2H), 2.86-2.90 (m, 4H), 2.98 (s, 3H), 6.40 (s, 1H), 6.96-6.99 (m, 1H), 7.04 (s, 1H), 7.12-7.22 (m, 7H), 7.32-7.35 (m, 2H), 8.59-8.62 (m, 1H); ¹³C NMR (100

MHz, CDCl₃) δ 25.1, 31.7, 32.3, 32.4, 108.6, 116.1, 122.0, 122.4, 122.7, 123.9, 124.9, 126.2, 127.8, 128.2, 128.5, 130.1, 135.2, 136.4, 137.3, 145.0, 146.0, 146.3, 149.4, 175.9. HRMS (ESI) calcd for C₂₇H₂₃N₂O [M+H]⁺: 391.1805, found: 391.1799.

9-Methyl-1-phenyl-2-(p-tolyl)-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4-one* (**2p**), white solid 58.0 mg, 53%. m.p. 238-240 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.26 (s, 3H), 2.96 (s, 3H), 6.41 (s, 1H), 6.96-7.02 (m, 4H), 7.16-7.20 (m, 1H), 7.24-7.27 (m, 2H), 7.32-7.38 (m, 5H), 8.59-8.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 31.7, 108.6, 108.7, 116.3, 122.1, 122.5, 122.7, 124.0, 128.6, 129.5, 129.8, 130.0, 130.6, 132.1, 137.4, 138.6, 138.8, 144.9, 149.4, 176.1. HRMS (ESI) calcd for C₂₅H₂₁N₂O [M+H]⁺: 365.1648, found: 365.1652.

2-(4-Methoxyphenyl)-9-methyl-1-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2q**), white solid, 52.5 mg, 46%. m.p. 311-313 °C. ¹H NMR (500 MHz, CDCl₃) δ 2.95 (s, 3H), 3.76 (s, 3H), 6.42 (s, 1H), 6.70-6.72 (m, 2H), 7.05-7.08 (m, 2H), 7.17-7.19 (m, 1H), 7.26-7.28 (m, 2H), 7.33-7.39 (m, 5H), 8.61-8.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 31.9, 55.20, 108.5, 113.2, 116.3, 121.9, 122.2, 122.5, 123.8, 127.1, 129.3, 129.6, 130.4, 131.2, 137.1, 138.6, 144.6, 148.8, 159.4, 175.6. HRMS (ESI) calcd for C₂₅H₂₁N₂O₂ [M+H]⁺: 381.1598, found: 381.1601.

2-(4-Chlorophenyl)-9-methyl-1-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2r**), white solid, 34.7 mg, 30%. m.p. 300-301 °C. ¹H NMR (500 MHz, CDCl₃) δ 2.99 (s, 3H), 6.41 (s, 1H), 7.09-7.12 (m, 2H), 7.18-7.20 (m, 2H), 7.28-7.30 (m, 3H), 7.36-7.38 (m, 2H), 7.40-7.44 (m, 3H), 8.60-8.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 31.9, 108.5, 116.3, 122.1, 122.3, 122.4, 124.0, 128.1, 129.6, 129.9, 130.2, 131.2, 133.2, 134.7, 137.1, 138.2, 144.5, 147.6, 175.3. HRMS (ESI) calcd for C₂₄H₁₈ClN₂O [M+H]⁺: 385.1102, found: 385.1106.

2,9-Dimethyl-1-phenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2s**), white solid, 19.1 mg, 22%. m.p. 256-257 °C. ¹H NMR (500 MHz, DMSO) δ 1.98 (s, 3H), 2.93 (s, 3H), 6.15 (s, 1H), 7.21-7.24 (m, 1H), 7.26-7.31 (m, 1H), 7.41-7.43 (m, 1H), 7.66-7.70 (m, 5H), 8.26-8.28 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 20.8, 31.9, 107.2, 109.9, 113.8, 120.9, 121.7, 122.5, 123.5, 130.3, 130.5, 130.8, 137.1, 138.2, 144.7, 145.8, 175.0. HRMS (ESI) calcd for C₁₉H₁₇N₂O [M+H]⁺: 289.1335, found: 289.1335.

1,2-Bis(4-methoxyphenyl)-9-methyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (2t),

white solid, 60.4 mg, 49%. m.p. 313-315 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.86 (s, 3H), 3.73 (s, 3H), 3.80 (s, 3H), 6.39 (s, 1H), 6.67-6.69 (m, 2H), 6.81-6.84 (m, 2H), 7.02-7.08 (m, 3H), 7.14-7.16 (m, 2H), 7.25-7.28 (m, 3H), 8.53-8.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.6, 55.0, 55.4, 108.3, 108.6, 113.3, 114.4, 115.8, 121.9, 122.2, 122.4, 123.9, 127.3, 130.9, 131.4, 131.6, 137.3, 145.0, 149.7, 159.7, 160.3, 175.5. HRMS (ESI) calcd for C₂₆H₂₃N₂O₃ [M+H]⁺: 411.1703, found: 411.1716.

8,9-Dimethyl-1,2-diphenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (**2u**), white solid, 56.9 mg, 52%. m.p. 296-297 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.59 (s, 3H), 3.16 (s, 3H), 6.40 (s, 1H), 7.04-7.07 (m, 1H), 7.09-7.12 (m, 2H), 7.16-7.22 (m, 6H), 7.31-7.33 (m, 3H), 8.45-8.48 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.0, 35.1, 109.4, 116.7, 120.4, 120.6, 122.3, 123.9, 127.8, 127.9, 128.6, 129.2, 129.5, 129.8, 130.0, 135.2, 137.3, 139.4, 147.0, 149.4, 175.9. HRMS (ESI) calcd for C₂₅H₂₁N₂O [M+H]⁺: 365.1648, found: 365.1639.

6-*Methoxy*-9-*methyl*-1,2-*diphenyl*-1,9-*dihydro*-4*H*-*pyrido*[2,3-*b*]*indo*l-4-one (**2v**), white solid, 53.7 mg, 47%. m.p.314-316 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.87 (s, 3H), 3.94 (s, 3H), 6.37 (s, 1H), 6.91-6.94 (m, 1H), 7.01-7.04 (m, 1H), 7.14-7.21 (m, 5H), 7.25-7.28 (m, 2H), 7.33-7.35 (m, 3H), 8.11-8.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.7,

55.9, 104.1, 108.6, 109.5, 113.6, 115.8, 123.1, 127.9, 128.6, 129.4, 129.8, 130.1, 130.6, 131.9, 135.0, 138.5, 144.8, 149.1, 155.9, 175.9. HRMS (ESI) calcd for C₂₅H₂₁N₂O₂ [M+H]⁺: 381.1598, found: 381.1610.

6-chloro-9-methyl-1,2-diphenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (2w), white solid, 56.5 mg, 49%. m.p. 310-313 oC. 1H NMR (400 MHz, CDCl3) δ 2.90 (s, 3H), 6.35 (s, 1H), 6.94-6.97 (m, 1H), 7.16-7.19 (m, 6H), 7.36-7.39 (m, 5H), 8.48-8.50 (m, 1H); ¹³C NMR (100 MHz, CDCl3) δ 31.8, 107.8, 109.6, 116.1, 121.4, 123.5, 123.9, 127.4, 127.9, 128.7, 129.5, 130.0, 130.1, 130.7, 134.8, 135.5, 138.3, 145.0, 149.6, 175.6. HRMS (ESI) calcd for C₂₄H₁₈ClN₂O [M+H]+: 385.1102, found: 385.1097.

4. Methods for the synthesis of substrates 3a

Scheme S2: Synthetic route for the synthesis of 3

Substrate **3** were prepared according to the reported literature modified.² A typical procedure for the synthesis of **3a** as follows: To a solution of 1-iodo-2-nitrobenzene **C** (R⁴= H) (218 mg, 1.5 mmol) in dry THF (3 mL) was added PhMgCl (0.80 mL, 2 M in THF, 1.6 mmol) at -40 °C, and the mixture was stirred at -40 °C for 15 min. To the dark mixture was then added a solution **B** (R¹= H, R²= Me) (125 mg, 0.50 mmol) in THF (3 mL) at -40 °C, and the resulting mixture was stirred at room temperature for 30 min and then quenched with a saturated aqueous solution of NaCl.² The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. Purification of the crude residue by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) gave **D**.

Then corresponding compound **D** (270 mg, 0.5 mmol) was dissolved in DMSO (5 mL) and IBX (420 mg, 1.50 mmol) was added under air and stirred overnight. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with EtOAc (20 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the crude residue by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) gave **E**.

Finally, to a solution of compound E (134 mg, 0.5 mmol) in mixed solvent (EtOH/ $H_2O=4:1$) in a

Schlenk tube was added Fe (280 mg, 5 mmol), HCl (20 μ L), and the mixture was stirred under 100 °C for 1h. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with EtOAc (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the crude residue by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) gave **3a** (92.2 mg, 78 %) as a yellow solid.

5. Methods for the synthesis of product 4a

A typical procedure for the synthesis of **4a** as follows: The substrate **3a** (0.2 mmol, 50.1 mg), Fe(OTf)₃ (0.02 mmol, 10.1 mg), K₂S₂O₈ (0.8 mmol, 216.3 mg) and DMSO (2.0 mL) were placed in an schlenk tube under N₂. Then the reaction mixture was allowed to react at 60 °C for 2 h. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (20 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) afforded desired compound **4a**.

10-Methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (**4a**), yellow solid, 38.8 mg, 78% . m.p. 225-227 °C. ¹H NMR (400 MHz, DMSO) δ 4.27 (s, 3H), 7.21-7.29 (m, 2H), 7.50-7.59 (m, 2H), 7.66-7.72 (m, 2H), 8.22 (d, *J* = 6.8 Hz, 1H), 8.34 (d, *J* =7.2 Hz,

1H), 12.46 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.1, 110.7, 115.4, 118.0, 119.4, 121.0, 121.3, 122.1, 124.0, 125.6, 128.1, 129.7, 131.2, 139.2, 140.1, 169.1. HRMS (ESI) calcd for C₁₆H₁₂N₂NaO [M+Na]⁺: 271.0842, found: 271.0838.

9,10-Dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (**4b**), white solid, 40.4 mg, 77%. m.p. 256-257 °C. ¹H NMR (400 MHz, DMSO) δ 2.80 (s, 3H), 4.58 (s, 3H), 7.07-7.12 (m, 1H), 7.21-7.28 (m, 2H), 7.63-7.70 (m, 2H), 8.05 (d, *J* = 7.6 Hz), 8.33 (d, *J* = 8.0 Hz), 12.31 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 19.7, 33.7, 116.5, 117.8, 119.0, 119.7, 120.9, 122.2, 122.8, 124.1, 125.7, 130.0, 130.6, 131.2, 139.1, 139.5, 169.1. HRMS (ESI) calcd for C₁₇H₁₄N₂NaO [M+Na]⁺: 285.0998, found: 285.0992.

7-*Methoxy*-10-*methyl*-5,10-*dihydro*-11H-*indolo*[3,2-*b*]*quinolin*-11-*one* (**4c**), white solid, 47.3 mg, 85%. m.p. 265-268 °C. ¹H NMR (400 MHz, DMSO) δ 3.85 (s, 3H), 4.24 (s, 3H), 7.17-7.26 (m, 2H), 7.52 (d, J = 9.2 Hz, 1H), 7.61-7.66 (m, 1H), 7.83 (d, J = 8.4 Hz, 1H), 8.03 (s, 1H), 8.31 (d, J = 8.4 Hz, 1H), 13.08 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.2, 55.6, 103.0, 111.7, 115.4, 118.0, 118.8, 120.6, 122.6, 123.7, 125.5, 129.6, 131.0, 135.8, 139.3, 153.5, 169.1. HRMS (ESI) calcd for C₁₇H₁₄N₂NaO₂ [M+Na]⁺: 301.0947, found: 301.0944.

8-*Chloro-10-methyl-5*,10-*dihydro-11H-indolo[3,2-b]quinolin-11-one* (**4d**), yellow solid, 37.9 mg, 67 %. m.p. 170-172 °C. ¹H NMR (400 MHz, DMSO) δ 4.25 (s, 3H), 7.25-7.29 (m, 1H), 7.50-7.53 (m, 1H), 7.61-7.67 (m, 3H), 8.24-8.32 (m, 2H), 12.37 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.3, 112.6, 116.2, 118.0, 120.5, 121.1, 122,8, 123.6, 124.0, 125.7, 127.9, 128.7, 131.6, 138.3, 139.2, 169.3. HRMS (ESI) calcd for C₁₆H₁₂ClN₂O [M+H]⁺: 283.0633, found: 283.0634.

3,10-Dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (4e), brown solid, 38.3 mg, 73%. m.p. 177-179 °C. ¹H NMR (400 MHz, DMSO) δ 2.47 (s, 3H), 4.26 (s, 3H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.21-7.25 (m, 1H), 7.45 (s, 1H), 7.50-7.60 (m, 2H), 8.21 (d, *J* = 8.4 Hz, 2H), 12.32 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 21.4, 31.1, 110.7, 115.5, 117.2, 119.4, 121.3, 122.0, 122.1, 122.9, 125.6, 128.0, 129.48, 139.5, 140.0, 141.4, 169.1. HRMS (ESI) calcd for C₁₇H₁₄N₂NaO [M+Na]⁺: 285.0998, found: 285.0995.

3-Methoxy-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (4f), white

solid, 34.0 mg, 61%. m.p. 181-183 °C. ¹H NMR (500 MHz, DMSO) δ 3.89 (s, 3H), 4.23 (s, 3H), 6.85-6.88 (m, 1H), 7.01-7.03 (m, 1H), 7.20-7.23 (m, 1H), 7.47-7.51 (m, 1H), 7.53-7.55 (m, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.21 (d, *J* = 9.0 Hz, 1H), 12.29 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.1, 55.5, 98.3, 110.7, 111.7, 115.4, 118.6, 119.4, 121.0, 121.8, 127.4, 127.8, 129.3, 139.8, 141.1, 162.0, 169.0. HRMS (ESI) calcd for C₁₇H₁₄N₂NaO₂ [M+Na]⁺: 301.0947, found: 301.0946.

10-Methyl-5,10-dihydro-11H-[1,3]dioxolo[4,5-g]indolo[3,2-b]quinolin-11-one (**4g**), yellow solid, 28.7 mg, 49%. m.p. 213-214 °C. ¹H NMR (400 MHz, DMSO) δ 4.25 (s, 3H), 6.15 (s, 2H), 7.11 (s, 1H), 7.21-7.25 m, 1H), 7.50-7.55 (m, 1H), 7.58-7.61 (m, 2H), 8.15 (d, *J* = 8.0 Hz, 1H), 12.41 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.0, 96.2, 101.6, 102.1, 110.7, 115.4, 119.1, 119.4, 120.9, 121.8, 127.7, 128.9, 136.3, 139.9, 144.2, 151.4, 168.0. HRMS (ESI) calcd for C₁₇H₁₃N₂O₃ [M+H]⁺: 293.0921, found: 293.0925.

4h

2-*Chloro-10-methyl-5*,*10-dihydro-11H-indolo[3,2-b]quinolin-11-one* (**4h**), yellow solid, 24.4 mg, 43%. m.p. 200-201 °C. ¹H NMR (400 MHz, DMSO) δ 4.25 (s, 3H), 7.24-7.29 (m, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.56-7.63 (m, 2H), 7.84 (s, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 12.51 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.1, 110.9, 115.2, 119.7, 120.0, 121.1, 122.2, 122.89, 124.0, 124.6, 128.0, 128.4, 129.6, 139.9, 140.2,

168.6. HRMS (ESI) calcd for $C_{16}H_{12}CIN_2O [M+H]^+$: 283.0633, found: 283.0634.

2-Bromo-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (4i), white solid, 34.1 mg, 52%. m.p. 225-227 °C. ¹H NMR (400 MHz, DMSO) δ 4.26 (s, 3H), 7.24-7.29 (m, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.54-7.65 (m, 2H), 7.85 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.8 Hz, 1H), 12.55 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.1, 110.9, 115.2, 119.8, 120.0, 121.2, 122.2, 122.9, 124.0, 124.6, 128.0, 128.4, 129.6, 140.0, 140.2, 168.7. HRMS (ESI) calcd for C₁₆H₁₁BrN₂NaO [M+Na]⁺: 348.9947, found: 348.9959.

8-*Chloro-3*,10-*dimethyl-5*,10-*dihydro-11H-indolo[3*,2-*b]quinolin-11-one* (**4j**), brown solid, 38.0 mg, 64%. m.p. 205-207 °C. ¹H NMR (400 MHz, DMSO) δ 2.46 (s, 3H), 4.25 (s, 3H), 7.08 (d, *J* = 8.4 Hz, 1H), 7.51 (d, *J* = 8.8 Hz, 1H), 7.63-7.65 (m, 2H), 8.18 (d, *J* = 8.4 Hz, 1H), 8.64 (s, 1H), 13.38 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 21.3, 31.3, 112.4, 116.5, 117.3, 121.6, 122.0, 122.6, 122.9, 123.4, 125.5, 127.7, 128.8, 138.3, 139.7, 141.3, 169.2. HRMS (ESI) calcd for C₁₇H₁₃ClN₂NaO [M+Na]⁺: 319.0609, found: 319.0615.

5,10-Dihydro-11H-indolo[3,2-b]quinolin-11-one (4k), yellow solid, 35.7 mg, 76%.

m.p. >330 °C. ¹H NMR (400 MHz, DMSO) δ 7.20 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.2 Hz, 1H), 7.44-7.53 (m, 2H), 7.66-7.75 (m, 2H), 8.19 (d, J = 8.0 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 11.71 (s, 1H), 12.49 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 21.4, 111.2, 112.9, 116.3, 117.3, 119.2, 121.1, 122.8, 123.4, 125.6, 127.6, 129.1, 138.9, 139.8, 141.2, 168.0. HRMS (ESI) calcd for C₁₅H₁₁N₂O [M+H]⁺: 235.0866, found: 235.0861.

3-Methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (**4I**), white solid, 30.3 mg, 61%. m.p. 315-317 °C. ¹H NMR (400 MHz, DMSO) δ 2.54 (s, 3H), 7.15-7.26 (m, 2H), 7.45-7.55 (m, 3H), 8.21-8.30 (m, 2H), 11.70 (s, 1H), 12.36 (s, 1H); ¹³C NMR (125 MHz, DMSO) δ 21.9, 113.0, 116.4, 117.4, 119.3, 121.2, 121.4, 122.8, 123.5, 125.6, 127.7, 129.1, 138.9, 139.8, 141.1, 167.8. HRMS (ESI) calcd for C16H12N2NaO [M+Na]+: 271.0842, found: 271.0845.

5,10-Dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (**4m**),³ yellow solid, 14.2 mg, 27%. m.p. 190-191 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.24-4.26 (m, 6H), 7.19-7.24 (m, 1H), 7.29-7.33 (m, 1H), 7.51-7.60 (m, 2H), 7.70-7.75 (m, 1H), 7.85-7.88 (m, 1H), 8.33-8.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 31.1, 35.7, 110.3, 114.3, 115.8, 119.4, 121.0, 122.8, 123.0, 125.1, 126.8, 127.4, 131.4, 131.5, 140.4, 169.9. HRMS (ESI) calcd for C₁₇H₁₄N₂NaO [M+Na]⁺: 285.0998, found: 285.0994. Substrate **3m** were prepared according to the reported literature modified.⁴ A typical procedure for the synthesis of **3m** as follows: To a solution of **3a** (250 mg, 1.0 mmol) in DMF (3 mL) was added NaH (36 mg, 1.5 mmol) at 0 °C slowly. The mixture was stirred for 30 minutes, and CH₃I (1.3 mmol, 81 μ L) was added dropwise to the above solution via syringe. The reaction was stirred for 3.0 h at room temperature. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash column chromatography (petroleum ether/ethyl acetate = 10 : 1) to afford the compound **3m** (127.6 mg, 51%)as a yellow liquid.

6. Tentative mechanism using $K_2S_2O_8$ only

Scheme **S3**. Tentative mechanism to 2a using $K_2S_2O_8$ only

7. Gram Scale

In a schlenk tube indolyl Amine ketene **1a** (3.0 mmol, 1.057 g), Fe(OTf)₃ (0.3 mmol, 0.151 g), K₂S₂O₈ (12 mmol, 3.244 g) and DMSO (30.0 mL) were stirred at 60 °C. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (50 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (dichloromethane/ethyl acetate = 1:1) afforded desired compound **2a** (yellow solid, 0.610 g, 58%)

8. Formation of 3 -Substituted Indole Quinolone

Substrate **5a** were prepared according to the reported literature modified.⁵ A typical procedure for the synthesis of **5a** as follows: To a mixture of **2a** (0.20 mmol, 85.9 mg), Togni reagent (0.30 mmol, 94.8 mg) ,CuI (0.02 mmol, 3.8 mg), N,N-dimethylformamide (DMF, 2.0 mL) was added under nitrogen at 80 °C for 30 h. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) afforded desired compound **5a** (yellow solid, 44.4 mg, 53%)

9-methyl-1,2-diphenyl-3-(trifluoromethyl)-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (5a), yellow solid, 44.4 mg, 53%. m.p. 303-304 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.87 (s, 3H), 7.05-7.09 (m, 2H), 7.14-7.19 (m, 6H), 7.30-7.36 (m, 5H), 8.60-8.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.6, 108.7, 108.9, 122.3, 122.44, 124.5, 127.5, 127.6, 128.8, 129.3, 129.4, 129.8 (q, *J* = 2.0 Hz), 130.5, 132.5 (q, *J* = 181 Hz), 137.2, 137.6, 143.4, 149.6, 171.7. ¹⁹F NMR (470.2 MHz, CDCl₃) δ -54.8 (s, 3F). HRMS (ESI) calcd for C₂₅H₁₈F₃N₂O [M+H]⁺: 419.1366, found: 419.1374.

Substrate **5b** were prepared according to the reported literature modified.⁶ A typical procedure for the synthesis of **5b** as follows: To a mixture of **2a** (0.2 mmol, 70.1mg),iodine (0.01 mmol, 2.5 mg), N-bromosuccinimide (NBS, 0.30 mmol, 53.4 mg) and K₂CO₃ (0.3 mmol 41.5 mg), N,N-dimethylformamide (DMF, 2.0 mL) was added under nitrogen at 100 °C for 24 h. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by Ammonium chloride in aqueous solution, and the water layers were extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) afforded desired compound **5b** (yellow solid, 67.0 mg, 78%)

3-bromo-9-methyl-1,2-diphenyl-1,9-dihydro-4H-pyrido[2,3-b]indol-4-one (5b), yellow solid, 67.0 mg, 78%. m.p. 323-325 °C. ¹H NMR (400 MHz, DMSO) δ 2.87 (s, 3H), 7.22-7.26 (m, 4H), 7.30-7.38 (m, 5H), 7.45-7.48 (m, 1H), 7.53-7.56 (m, 2H), 8.36-8.39 (m, 1H); ¹³C NMR (100 MHz, DMSO) δ 31.6, 106.0, 110.1, 112.4, 121.1, 122.1, 122.2, 124.4, 128.3, 129.0, 129.4, 130.3, 130.5, 131.3, 135.6, 137.7, 138.7, 143.8, 147.6, 169.0. HRMS (ESI) calcd for C₂₄H₁₈BrN₂O [M+H]⁺: 429.0597, found: 429.0602.

Substrate **5c** were prepared according to the reported literature modified.⁷ A typical procedure for the synthesis of **5c** as follows: To a mixture of **5b** (0.20 mmol, 85.9 mg), boronic acid (0.6 mmol, 73.2 mg) ,Pd(PPh₃)₄ (0.02 mmol, 23.1 mg), K₃PO₄ (1.2 mmol, 254.7 mg), 1,4-dioxane (2 mL) was added under nitrogen and reflux for 30 h. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by Ammonium chloride in aqueous solution, and the water layers were extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) afforded desired compound **5c** (white solid, 62.3 mg, 73%)

9-methyl-1,2,3-triphenyl-1,9-dihydro-4H-pyrido[*2,3-b*]*indol-4-one* (**5c**), white solid, 62.3 mg, 73%. m.p. 313-315 °C. ¹H NMR (500 MHz, CDCl₃) δ 3.02 (s, 3H), 5.32 (s, 1H), 6.95-6.99 (m, 4H), 7.05-7.09 (m, 1H), 7.12-7.16 (m, 4H), 7.24-7.29 (m, 4H), 7.33-7.34 (m, 2H), 7.36-7.39 (m, 2H), 8.64-8.67 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 31.8, 108.4, 122.1, 122.3, 123.1, 123.8, 126.2, 127.2, 127.4, 127.7, 129.2, 129.4, 130.5, 131.2, 131.4, 134.0, 135.4, 137.3, 138.9, 144.1, 146.5, 174.3. HRMS (ESI) calcd for C₃₀H₂₃N₂O

Note and references:

- (1) J. Yang, C. Wang, X. Xie, H. Li, and Y. Li, Eur. J. Org. Chem. 2010, 4189.
- (2) S. Suetsugu, C. Tsukano, and Y. Takemoto. Eur. J. Org. Chem. 2016, 108
- (3) D. S. Jang, E. J. Park, Y-H. Kang, B-N. Su, M. E. Hawthorne, J. S. Vigo, J. G. Graham, F. Cabieses, H. H. S. Fong, R.G. Mehta, J. M. Pezzuto, and A. D. Kinghorn, *Arch Pharm Res.* 2003, 26, 585.
- (4) J. Huang, C. Wan, M.-F. Xu, and Q. Zhu, Eur. J. Org. Chem. 2013, 1876
- (5) Z. Fang, Y. Ning, P. Mi, P. Liao, and X. Bi, Org. Lett. 2014, 16, 1522.
- (6) Z. He, W. Liu, and Z. Li, Chem. Asian J. 2011, 6, 1340
- (7) T. Zhao, and B. Xu, Org. Lett. 2010, 12, 212.

9. Copies of Spectra of New Products

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

S42

S56

f1 (ppm)

S64

100 90 f1 (ppm)

10. X-ray crystallography of compounds 2a

9-Mthyl-1,2-diphenyl-1,9-dihydro-4*H***-pyrido**[**2,3-***b*]**indol-4-one**(**2a**, **CCDC: 1943909**) (Ortep ellipsoids are depicted at the 50% level)

Table S1. Crystal data and structure refinement for 2a.

Identification code	2a
Empirical formula	C ₂₄ H ₁₈ N ₂ O
Formula weight	350.40
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system Space group	Orthorhombic P b c m
Unit cell dimensions	$a = 9.9294(3) \text{ Å}$ $\alpha = 90^{\circ}.$
	b = 22.8248(8) Å β =90°. c = 8.0346(3) Å γ = 90°.
Volume	1820.93(11) Å ³
Z	4
Density (calculated)	1.278 Mg/m ³
Absorption coefficient	0.079 mm ⁻¹
F(000)	736
Crystal size	0.200 x 0.150 x 0.100 mm ³
Theta range for data collection	2.237 to 25.000°.
Index ranges	-11<=h<=11, -27<=k<=27, -9<=l<=9
Reflections collected	44964
Independent reflections	1722 [R(int) = 0.0633]
Completeness to theta = 25.242°	96.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5617
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1722 / 0 / 153
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0510, $wR2 = 0.1542$
R indices (all data)	R1 = 0.0574, wR2 = 0.1661
Extinction coefficient	0.126(17)

Largest diff. peak and hole	0.190 and -0.128 e.Å ⁻³
-----------------------------	------------------------------------

11. X-ray crystallography of compounds 5b

3-Bomo-9-methyl-1,2-diphenyl-1,9-dihydro-4*H***-pyrido**[**2,3-***b*]**indol-4-one (5b, CCDC: 1943920)** (Ortep ellipsoids are depicted at the 50% level)

Table S2. Crystal data and structure refinement for **5b**.

Identification code	5b
Empirical formula	C ₂₄ H ₁₈ BrN ₂ O
Formula weight	471.77
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system Space group	Orthorhombic P c a 21
Unit cell dimensions	$a = 29.0281(10) \text{ Å} \qquad \alpha = 90^{\circ}.$ $b = 11.0265(3) \text{ Å} \qquad \beta = 90^{\circ}.$ $c = 12.8199(4) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	41034(2)Å ³
Z	8
Density (calculated)	1.527 Mg/m ³
Absorption coefficient	2.153 mm ⁻¹
F(000)	1912
Crystal size	0.180 x 0.150 x 0.120 mm ³
Theta range for data collection	2.535 to 25.999°.
Index ranges	-35<=h<=35, -12<=k<=13, -15<=l<=15
Reflections collected	37638
Independent reflections	8004 [R(int) = 0.0511]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5705
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8004 / 13 / 535
Goodness-of-fit on F ²	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0355, wR2 = 0.0744
R indices (all data)	R1 = 0.0431, wR2 = 0.0783
Extinction coefficient	0.018(4)
Largest diff. peak and hole	1.375 and -1.337 e.Å ⁻³

