Supporting Information

Complexation of 5-aminovaleric acid zwitterion in aqueous/methanol solution by heterotopic tri-cationic receptor

Wojciech Walczak, Maciej Zakrzewski, Grzegorz Cichowicz and Piotr Piątek*

Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Table of Contents:

- 1. Synthetic route to receptor 1 with experimental procedures and NMR spectra
- 2. The calculated structure of 1•5-AVA complex
- 3. NMR titration experiments
- 4. UV-Vis titration experiments
- 5. Fluorescein : receptor 1 complex stoichiometry studies
- 6. References

1. Synthetic route to receptor 1 with experimental procedures and NMR spectra

Scheme 1. Synthetic route to 1

(4-(aminomethyl)phenyl)methanol (3)

Figure 2.¹³C NMR of compound 3.

N,N'-diBoc-N''-(4-hydroxymethyl)-benzylguanidine (4)

Figure 4¹³C NMR of compound 4.

N,N'-diBoc-N''-(4-bromomethyl)-benzylguanidine (5)

Figure 5. ¹H NMR of compound 5.

Figure 7. ¹H NMR of compound 6.

Figure 8. ¹³C NMR of compound 6.

Trifluoroacetic salt of Tri-[(4-guanidinemethyl)-benzyl]-triaza-18-crown-6 (1)

Figure 9. ¹H NMR of compound 1.

Figure 10. ¹³C NMR of compound 1.

2. The calculated structure of 1•5-AVA complex

Figure 11. Molecular modelling structure of 1•5-AVA

Atom	Distance [Å]
O(crown)…N(5-AVA)	2.78
O(crown)…N(5-AVA)	2.91
O(crown)…N(5-AVA)	2.79
N(gua)…O(5-AVA)	3.09
N(gua)…O(5-AVA)	3.63
N(gua)…O(5-AVA)	3.33
N(gua)…O(5-AVA)	2.78
N(gua)…O(5-AVA)	2.80
N(gua)…O(5-AVA)	3.07
N(gua)…O(5-AVA)	2.77
N(gua)…O(5-AVA)	3.85
N(gua)…O(5-AVA)	2.91

Table 1. Distances between atoms.

Theoretical calculations for 1•5-AVA were performed in Gaussian 09 (Revision D.01) [1]. The initial (starting point) geometry was obtained by preoptimization of 1•5-AVA with universal force field and steepest descent algorithm implemented in Avogadro 1.2 [2]. Geometry optimization and frequency calculation were done with aim of the ωB97xD hybrid functional and 6-311G(2df,2p) basis set [3]. Both calculations were conducted in simulated methanol environment using Polarizable Continuum Model [4]. Ultrafine integration grid method was also applied. Stationary point was found with positive values obtained of calculated frequencies. Evaluated energy for geometry all final is -7374755.61435 kJ/mol and atomic coordinates are provided below:

Atomic coordinates for **1**•5-AVA

Atom	Х	Y	Z	C5	51	-0.029526	-0.421060	-3.765686
01	3.768185	-0.681034	-0.881192	C5	52	-0.997134	-1.364130	-4.095515
C2	3.496612	-0.001569	0.158675	C5	53	1.425981	-0.792621	-3.974138
C3	2.177927	0.737815	0.180159	N	54	2.397175	-0.019518	-3.229180
C4	0.968154	-0.148300	-0.059908	C5	55	5.541858	-3.308622	0.269661
C5	-0.311462	0.642380	0.114080	N	56	6.376967	-4.209529	0.781851
C6	-1.515436	-0.228761	-0.124237	N	57	6.005922	-2.266581	-0.404104
07	4.261445	0.111763	1.136083	C5	58	2.983525	1.090763	-3.652742
H8	2.070968	1.239201	1.140789	N	59	4.012339	1.570914	-2.955195
H9	2.220030	1.517315	-0.586632	N	50	2.563862	1.725760	-4.742703
H10	0.998266	-0.588472	-1.056563	He	51	-4.125648	-4.278934	0.212165
H11	0.974160	-0.980995	0.643385	He	52	-2.442039	-4.740431	0.081804
H12	-0.343552	1.058133	1.121328	He	53	-2.089236	-3.521446	3.328321
N13	-2.777306	0.517012	0.112523	He	54	-2.499206	-4.978922	2.444744
H14	-1.531717	-0.590040	-1.147169	He	55	-0.077594	-2.152844	2.640074
H15	-1.520490	-1.091534	0.539594	He	56	-4.674388	-3.360578	2.360086
H16	-0 323193	1 493148	-0 571124	He	50 57	-4 530371	-2 063224	1 181419
H17	-2 608145	1 450782	0 509874	H	58	-3 277507	-2.067595	3 968468
H18	-3 378019	0 590350	-0 733981	H	59	-4 776149	-1 287488	3 478416
H19	-3 298919	0.036385	0.845873	H	70	1 622963	-6 328524	0.653018
N20	-2 787935	-3 1/9196	1 /0302/	H	71	3 767764	-5 /93087	0.55/593
C21	-3 103592	-3 878331	0 172674	н ⁻	7) 7)	1 105680	-/ 688111	2 088574
C21	-2 0/3011	-3 982765	2 344001	н ⁻	72 72	3 642830	-2 773622	-0.0/8718
C22	-2.043511	-1 121003	1 068111	н ⁻	7 <i>1</i>	-7 783787	-0.075511	-0.040710 1 565522
C23	0.206670	-2 072510	2 205707	ц-	75	-2.203707	0.073311	4.303322
C24	1 644623	-3.072319	1 017655	н ⁻	76	-1 882581	2 200087	4.193333
C25	-0 080703	-5 288887	1.017000	н ⁻	70	-1.002.001	2.205087	3 380682
C20	-2.002051	-2 575544	1.407314	ц-	79 70	-4.133002	J.2010JJ	1 1 2 0 5 2 2
C27	-3.558051	-1 600764	2 120605	ц-	70	-5 6205//	2 605225	1 551022
C20	-3.788042 2.12020 <i>/</i>	-1.000704	1 255540	нл Ц	20	-6 / 20062	3.095225	-0.323648
C29	2.139394	-4.372038 E 400116	1.5555540		5U 21	-0.409903	3.000249	-0.555040 0 767077
C30	2 61/12/	-5.409110	1.092122		51 57	2 155707	2 656460	1 06/70/
C21	3.014134 4.336735	-4.570900	1.110/20		52 55	1 05 2200	-3.030400	1 165200
022	4.220755	-5.449069	0.425902		55 54	-1.052590	-2.770705	-1.105500
035	-5.052501	-0.407905	2.701500		54 5 F	-2.222222		-1.5/0100
C34	-2.836031	0.433001	3.767604		55	-4.083349	-2.159551	-2.829342
C35	-2.000108	1.035200	3.30/000		50 70	-5.809321	-0.422234	
C30	-5.905441	2.745149	2.456075		57 50	-0.40/009	-0.599526	-2.2/4522
028	-4.588800	3.531502	1.299277		50	-0.52530U	1.735219	-2.2/4224
038	-4.4/0220	2.875303	0.050394		59	-5.024130	2.055101	-2.350019
C39	-5.077020	2.274142	-0.393682		90 51	-4.38/393	1.489008	-3.909039
C40	-2.903923	-3.054617	-1.085630	H	91 22	-2.100451	2.093860	-2.842440
041	-3.647097	-1.853575	-1.081414	H:	9Z 20	0.279995	1.5//5/6	-3.030094
C42	-4.862234	-1.895020	-1.782181	HS	93 D 4	-0.694229	-2.343706	-4.444946
C43	-5.553213	-0.553522	-1.665579	HS	94 25	1.509855	-1.832//1	-3.68//92
N44	-4.742041	0.610682	-2.045208	HS	7 5	1.66/29/	-0.743700	-5.039004
C45	-5.522816	1.838670	-1.836/93	HS	96	2.778413	-0.409201	-2.359695
	-4.236348	0.523128	-3.430613	HS	۶/ م	b.04/5/2	-5.056201	1.204997
C47	-2./6/6/4	0.1//499	-3.534651	HS	30	7.369021	-4.098316	0.683045
C48	-2.343552	-1.065211	-3.989396	HS	99 100	0.993825	-2.121203	-0.498834
C49	-1./98458	1.116823	-3.201142	H:	100	4.446115	2.444097	-3.189686
C50	-0.445855	0.824226	-3.314626	H	101	4.403340	1.011524	-2.214119

H102	3.052907	2.528340	-5.094398
H103	2.320728	-2.380613	2.142095
H104	-3.073076	-1.814882	-4.267246
H105	1.716791	1.458893	-5.209816
H106	5.344171	-1.530261	-0.665243
H107	-4.460789	1.774048	2.470336
H108	-1.010765	1.296818	3.078094
N109	-2.521748	2.510396	2.305601
C110	-1.794644	3.787374	2.345493
C111	-0.323295	3.748947	1.998668
C112	0.089169	4.007888	0.695857
C113	0.653158	3.590293	2.977748
C114	1.998731	3.718566	2.670521
C115	1.432924	4.138747	0.385248
C116	2.401770	4.012761	1.372894
C117	3.856841	4.240895	1.053490
N118	4.612538	2.993830	1.024893
C119	5.859870	2.896231	0.577618
N120	6.442936	1.703992	0.525993
N121	6.514957	3.980216	0.166466
H122	4.196276	2.135595	1.369281
H123	7.396990	1.612834	0.230764
H124	5.891106	0.877115	0.746729
H125	7.459775	3.908602	-0.163557
H126	6.153293	4.901863	0.324532
H127	2.738627	3.622366	3.455603
H128	0.359097	3.405343	4.003206
H129	-0.653523	4.138068	-0.081791
H130	1.728650	4.362933	-0.632112
H131	3.934407	4.725012	0.078778
H132	4.288486	4.913642	1.799164
H133	-1.906901	4.239718	3.342675
H134	-2.264765	4.464737	1.639377
H135	-4.825084	-0.194335	-4.009170
H136	-0.756104	-6.121959	1.219863

3. ¹H NMR titrations experiments

¹H NMR titration experiments were performed on a 300 MHz BrukerAvance spectrometer, at 298K. All solutions were buffered at pH 8.0 with TRIS (10 mM) in 30% water in methanol (v/v). In each case 0.5 mL of 3.1×10^{-3} M solution of receptor **1** was added to 5 mm NMR tube. Then to the receptor solution titrant solution of zwitterion in receptor solution (from 5.9 $\times 10^{-2}$ to 6.3×10^{-2} M) was added. After each addition of titrant, a spectrum was registered. Titration isotherms for Bg, Ar and in some cases -CH₂- crown ethers protons were fitted to a 1:1 binding model. All measurements were carried out in at least duplicate using independent samples. The resulting titration data were analyzed using BindFit (v0.5) package, available online at http://supramolecular.org.

Figure 12. Partial ¹H NMR titration experiment of **1** upon titrant (8-Alanine) addition ($C_{titrant} = 6.2 \times 10^{-2} M$, $C_{recentor} = 3.1 \times 10^{-3} M$).

Figure 13. Partial ¹H NMR titration experiment of **1** upon titrant (GABA) addition ($C_{titrant} = 6.3 \times 10^{-2} M$, $C_{receptor} = 3.1 \times 10^{-3} M$).

Figure 14. Partial ¹H NMR titration experiment of **1** upon titrant (5-AVA) addition ($C_{titrant} = 5.9 \times 10^{-2}$ M, $C_{receptor} = 3.1 \times 10^{-3}$ M).

Figure 15. Partial ¹H NMR titration experiment of **1** upon titrant (6-ACA) addition ($C_{titrant} = 6.3 \times 10^{-2}$ M, $C_{receptor} = 3.1 \times 10^{-3}$ M).

Figure 16. ¹*H NMR titration binding isotherm of* **1** *with* β*-Alanine.*

Figure 17. ¹H NMR titration binding isotherm of **1** with GABA.

Figure 18. ¹*H NMR titration binding isotherm of* **1** *with 5-AVA.*

Figure 19. ¹*H NMR titration binding isotherm of* **1** *with 6-ACA.*

Amino Acid	K _a [M ⁻¹]
β-Alanine	70
4-Aminobutyric acid	210
5-Aminovaleric acid	1 090
6-Aminocaproic acid	550

Figure 20. Job plot for determination of **1**/5-AVA ratio.

4. UV-Vis titration experiments

UV-Vis Titrations of Indicator and Receptor.

The UV-Vis titration was performed using Thermo Spectronic Unicam UV500 Spectrophotometer at 298K. All solutions were buffered at pH 8.0 with TRIS (10 mM) in 30% water in methanol (v/v). A solution of fluorescein (3.8×10^{-5} M) was prepared in the cuvette, and into this was titrated a stock solution of **1** (1.9×10^{-3} M) and fluorescein, thereby keeping the host concentration constant. All measurements were carried out in at least duplicate using independent samples. The resulting titration data were analyzed using HypSpec package.

Figure 21. UV-Vis fluorescein spectrum changes upon titrant (1) addition ($C_{receptor}$ =1.9 x10⁻³ M, $C_{fluorescein}$ =3.8 x10⁻⁵ M).

Figure 22. Job plot for determination of fluorescein/1 ratio.

UV-Vis Titration of Receptor/Indicator Ensemble and Guest.

The UV-Vis titration was performed using Thermo Spectronic Unicam UV500 Spectrophotometer at 298K. All solutions were buffered at pH 8.0 with TRIS buffer (10 mM)

in 30% water in methanol (v/v). A solution of fluorescein (3.8×10^{-5} M) and receptor **1** (3.8×10^{-4} M) was prepared in the cuvette, and into this was titrated a stock solution of indicator, host, and guest, keeping the indicator and host concentrations constant. The data were taken at the appropriate wavelength to determine the association constants. The guests concentration in the stock solution was from 6.2×10^{-3} to 6.8×10^{-3} M. All measurements were carried out in at least duplicate using independent samples. The resulting titration data were analyzed using HypSpec package.

Figure 23. UV-Vis fluorescein-1 complex spectrum changes upon titrant (β -Alanine) addition ($C_{titrant}$ =6.4 x10⁻³ M, $C_{receptor}$ =3.8 x10⁻⁴ M, $C_{filuorescein}$ =3.8 x10⁻⁵ M).

Figure 24. UV-Vis fluorescein-1 complex spectrum changes upon titrant (GABA) addition (C_{titrant}=6.2 ×10⁻³ M, C_{receptor}=3.8 ×10⁻⁴ M, C_{fluorescein}=3.8 ×10⁻⁵ M).

Figure 25. UV-Vis fluorescein-1 complex spectrum changes upon titrant (5-AVA) addition ($C_{titront}$ =6.4 x10⁻³ M, $C_{receptor}$ =3.8 x10⁻⁴ M, $C_{fluorescein}$ =3.8 x10⁻⁵ M).

Figure 26. UV-Vis fluorescein-1 complex spectrum changes upon titrant (6-ACA) addition ($C_{titrant}$ =6.4 ×10⁻³ M, $C_{receptor}$ =3.8 ×10⁻⁴ M, $C_{fluorescein}$ =3.8 ×10⁻⁵ M).

Figure 27. UV-Vis titration binding isotherm of fluorescein-**1** complex with GABA (λ =493 nm).

Figure 28. UV-Vis titration binding isotherm of fluorescein-1 complex with 5-AVA (λ =493 nm).

Amino Acid	K _a [M ⁻¹]
β-Alanine	_a
4-Aminobutyric acid	114
5-Aminovaleric acid	690
6-Aminocaproic acid	_a

Table 3. UV-Vis spectroscopy K_a values for interactions of **1** with various amino acids (298 K, TRIS buffer pH=8.0, 30% H₂O/MeOH), errors of <10%. ^aThe Absorbance changes were too small to be calculated Ka.

Figure 29. a) Solution of fluorescein; b) Solution of fluorescein after addition 20 eq of **1**; c) Displacement of fluorescein after addition 20 eq of GABA; d) Displacement of fluorescein after addition 20 eq of 5-AVA. All solutions were prepared in 30% water/ methanol (v/v), 10 mM TRIS, pH=8.0. Radiating on 366 nm wavelength.

Figure 30. Emission titration of fluorescein with receptor **1** ($C_{Fluorescin}$ =7.7 x10⁻⁶ M, $C_{receptor}$ =4.5 x10⁻⁴ M), excitation wavelength 494,8 nm, solvent 30% H₂O/MeOH, 10 mM Tris Buffer.

5. Fluorescein : receptor 1 complex stoichiometry studies

Figure 31. Job plot for determination of fluorescein/**1** ratio. UV-Vis measurements $C_{receptor}$ =1.9 x10⁻³ M, $C_{fluorescein}$ =3.8 x10⁻⁵ M, solvent 30% H₂O/MeOH, 10 mM Tris Buffer

Figure 32. Job plot for determination of fluorescein/**1** ratio. Fluorescent measurements $C_{Fluorescin}$ =7.7 x10⁻⁶ M, $C_{receptor}$ =4.5 x10⁻⁴ M), , solvent 30% H₂O/MeOH, 10 mM Tris Buffer

Figure 33. Partial ¹H NMR titration experiment of Fluorescein upon titrant (Receptor **1**) addition ($C_{fluorescein} = 5.7 \times 10^{-3}$ M, $C_{receptor} = 1.4 \times 10^{-2}$ M).

Figure 34. ¹H NMR titration binding isotherm of fluorescein with receptor **1**.

Figure 35. Job plot fluorescein/receptor **1.** NMR measurements $C_{fluorescein} = 5.7 \times 10^{-3}$ M, $C_{receptor} = 1.4 \times 10^{-2}$ M, solvent 30% D_2O/CD_3OD , 10 mM Tris Buffer

Based on Uv/Vis ($C_{receptor}=1.9 \times 10^{-3}$ M, $C_{fluorescein}=3.8 \times 10^{-5}$ M) and Fluorescence ($C_{Fluorescin}=7.7 \times 10^{-6}$ M, $C_{receptor}=4.5 \times 10^{-4}$ M) titration isotherms and Job plots we can conclude that under these experiments conditions complexes of 3:1 Indicator: receptor **1** stoichiometry predominates. However, during NMR experiment performed in much higher concentration ($C_{fluorescein}=5.7 \times 10^{-3}$ M, $C_{receptor}=1.4 \times 10^{-2}$ M, the complex stoichiometry is not well defined and probably the predominant form of the complex is changing during the titration. However, at pH 8 the dianion form of fluorescein is predominant, therefore the formation of the complexes with a different stoichiometry than 1:1 is feasible.

Nevertheless the stoichiometry of fluorescein-receptor **1** complex should not affect the stoichiometry of receptor-5-AVA complex. This kind of multicomponent ensembles are known in the literature.⁴ However during the titration fluorescein signal are observed as an average band corresponding to complexes between fluorescein/receptor of different stoichiometry. Based on the displacement isotherms and their very good fit to the 1:1 model, it can be assume that predominant form of complex receptor/zwitterion are 1:1.⁵ In other words the response of the multicomponent ensemble to zwitterionic quest can be presented as typical 1:1 complex isotherm.

6. References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
- Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva Zurek and Geoffrey R Hutchison; "Avogadro: An advanced semantic chemical editor, visualization, and analysis platform" Journal of Cheminformatics 2012, 4:17.
- (a) J. Chaia, M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620 (b) A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-48 (c) M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265-69.

- 4. Jiasheng Wu, Bomi Kwon, Weimin Liu, Eric V. Anslyn, Pengfei Wang and Jong Seung Kim; *Chromogenic/Fluorogenic Ensemble Chemosensing Systems; Chem. Rev. 2015, 115, 15, 7893-7943*
- 5. D. Brvnn Hibberta and Pall Thordarson: *The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis;* Chem. Commun., 2016,52, 12792-12805