Electronic Supplementary Information

Stereoselective synthesis of amino-substituted cyclopentafullerenes promoted by magnesium perchlorate/ferric perchlorate

Wan Ma,‡^a Kun Wang,‡^a Cheng Huang,‡^a Hui-Juan Wang,^b Fa-Bao Li,*^a Rui Sun,^a Li Liu,^a Chao-Yang Liu,*^b and Abdullah M. Asiri^c

^a Ministry of Education Key Laboratory for the Synthesis and Application of Organic

Functional Molecules, Hubei Key Laboratory of Polymer Materials, Key Laboratory

of Green Preparation and Application for Functional Materials, Ministry of

Education, and School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China

E-mail: lfb0615@hubu.edu.cn

^b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of

China

E-mail: chyliu@wipm.ac.cn

^cDepartment of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

‡These authors contributed equally to this work.

Optimization of reaction conditions for	
arylamines/secondary amines	S4-S6
NOESY spectra of <i>trans/cis-3ad</i> and <i>trans/cis-3ba</i>	S7-S8
¹ H NMR spectra for reaction mixture	S9
Experimental details and spectra data	S10-S33
Typical MALDI-TOF MS of cyclopentafullerenes	S34-S35
Typical UV-vis spectra of cyclopentafullerenes	S36
¹ H NMR spectrum of compound <i>trans</i> -3aa	S37
¹³ C NMR spectrum of compound <i>trans</i> -3aa	S37-S38
¹ H NMR spectrum of compound <i>cis</i> - 3aa	S38
¹³ C NMR spectrum of compound <i>cis-3aa</i>	S39
¹ H NMR spectrum of compound <i>trans</i> - 3ab	S40
¹³ C NMR spectrum of compound <i>trans</i> - 3ab	S40-S41
¹ H NMR spectrum of compound <i>cis</i> - 3ab	S41
¹³ C NMR spectrum of compound <i>cis</i> - 3ab	S42
¹ H NMR spectrum of compound <i>trans/cis-</i> 3ac	S43
NOESY spectrum of <i>trans/cis-</i> 3ac	S43
¹³ C NMR spectrum of compound <i>trans/cis-</i> 3ac	S44
¹ H NMR spectrum of compound <i>trans</i> - 3ad	S45
¹³ C NMR spectrum of compound <i>trans</i> -3ad	S45-S46
¹ H NMR spectrum of compound <i>cis</i> - 3ad	S46
¹³ C NMR spectrum of compound <i>cis</i> -3ad	S47
¹ H NMR spectrum of compound <i>trans</i> - 3ae	S48
¹³ C NMR spectrum of compound <i>trans</i> - 3ae	S48-S49
¹ H NMR spectrum of compound <i>cis</i> - 3ae	S49
¹³ C NMR spectrum of compound <i>cis</i> - 3ae	S50
¹ H NMR spectrum of compound <i>trans</i> - 3af	S51
¹³ C NMR spectrum of compound <i>trans</i> - 3 af	S51-S52
¹ H NMR spectrum of compound <i>cis</i> - 3af	S52
¹³ C NMR spectrum of compound <i>cis</i> - 3 af	S53
¹ H NMR spectrum of compound <i>trans</i> - 3ba	S54
¹³ C NMR spectrum of compound <i>trans</i> - 3ba	S54-S55
¹ H NMR spectrum of compound <i>cis</i> - 3ba	S55
¹³ C NMR spectrum of compound <i>cis</i> - 3ba	S56
¹ H NMR spectrum of compound <i>trans</i> -3ca	S57
¹³ C NMR spectrum of compound <i>trans</i> -3ca	S57-S58
¹ H NMR spectrum of compound <i>cis</i> - 3ca	S58
¹³ C NMR spectrum of compound <i>cis</i> - 3ca	S59
¹ H NMR spectrum of compound <i>trans/cis-3da</i>	S60
¹³ C NMR spectrum of compound <i>trans/cis</i> -3da	S60-S61
¹ H NMR spectrum of compound <i>cis</i> -5aa	S61
¹³ C NMR spectrum of compound <i>cis</i> -5aa	S62
¹ H NMR spectrum of compound <i>cis</i> - 5 ab	S63
¹³ C NMR spectrum of compound <i>cis</i> - 5ab	S63-S64

¹ H NMR spectrum of compound <i>cis</i> - 5ac	S64
¹³ C NMR spectrum of compound <i>cis</i> - 5ac	S65
¹ H NMR spectrum of compound <i>cis</i> - 5ad	S66
¹³ C NMR spectrum of compound <i>cis</i> - 5ad	S66-S67
¹ H NMR spectrum of compound <i>cis</i> -5ae	S67
¹³ C NMR spectrum of compound <i>cis</i> -5ae	S68
¹ H NMR spectrum of compound <i>cis</i> - 5af	S69
¹³ C NMR spectrum of compound <i>cis</i> - 5af	S69-S70
¹ H NMR spectrum of compound <i>cis</i> - 5ag	S70
¹³ C NMR spectrum of compound <i>cis</i> - 5ag	S71
¹ H NMR spectrum of compound <i>cis</i> - 5ba	S72
¹³ C NMR spectrum of compound <i>cis</i> - 5ba	S72-S73
¹ H NMR spectrum of compound <i>cis</i> - 5ca	S73
¹³ C NMR spectrum of compound <i>cis</i> -5ca	S74
¹ H NMR spectrum of compound <i>trans</i> -6aa	S75
¹³ C NMR spectrum of compound <i>trans</i> -6aa	S75-S76
¹ H NMR spectrum of compound <i>trans</i> -6ad	S76
¹³ C NMR spectrum of compound <i>trans</i> -6ad	S77
¹ H NMR spectrum of compound <i>trans</i> -6ae	S78
¹³ C NMR spectrum of compound <i>trans</i> -6ae	S78-S79
¹ H NMR spectrum of compound <i>trans</i> -6ca	S79
¹³ C NMR spectrum of compound <i>trans</i> -6ca	S80
¹ H NMR spectrum of compound <i>cis</i> -7	S81
¹³ C NMR spectrum of compound <i>cis</i> -7	S81-S82
¹ H NMR spectrum of compound <i>cis/trans-ortho-</i> 8	S82
NOESY spectrum of <i>cis/trans-ortho-8</i>	S83
¹³ C NMR spectrum of compound <i>cis/trans-ortho-</i> 8	S83-S84

Optimization of reaction conditions for arylamines/secondary amines

Table S1 Optimization of reaction conditions for the reaction of C_{60} with cinnamaldehyde **1a** and aniline **2a**^{*a*}

^{*a*}Unless otherwise indicated, all reactions were performed in *o*-dichlorobenzene (ODCB) under air conditions. ^{*b*}Molar ratio refers to $C_{60}/1a/2a/additive$. ^{*c*}Isolated yield; those in parentheses were based on consumed C_{60} . ^{*d*}The reaction was conducted under nitrogen atmosphere.

Table S2 Optimization of reaction conditions for the reaction of C_{60} with cinnamaldehyde 1a and diethylamine $4a^a$

	+ CHO + 1a	N	cis-5aa		+ trans-6a	CH ₃
Entry	Additive	Molar ratio ^b	Temp . (°C)	Time (min)	Yield (%) of <i>cis-</i> 5aa ^c	Yield (%) of <i>trans-6aac</i>
1	Mg(ClO ₄) ₂	1:10:10:4:0	100	90	18 (58)	12 (39)
2	Mg(ClO ₄) ₂	1:10:10:2:0	100	90	29 (55)	22 (42)
3	Mg(ClO ₄) ₂	1:10:10:1:0	100	90	36 (55)	25 (38)
4	Mg(ClO ₄) ₂	1:10:10:0.5:0	100	60	37 (63)	20 (34)
5	Mg(ClO ₄) ₂	1:10:10:0.2:0	100	60	18 (40)	26 (58)
6	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:10:0.5:0.5	100	50	28 (53)	14 (26)
7	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:15:0.5:0.5	100	50	40 (59)	17 (25)
8	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:20:0.5:0.5	100	35	40 (70)	7 (12)
9	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:25:0.5:0.5	100	30	38 (72)	7 (13)
10	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:5:20:0.5:0.5	100	35	35 (81)	6 (14)
11	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:15:20:0.5:0.5	100	15	31 (45)	18 (26)
12	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:20:0.5:0.2	100	20	32 (41)	12 (15)
13	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:20:0.5:1	100	40	40 (69)	9 (16)
14	Mg(ClO ₄) ₂ /Fe(ClO ₄) ₃ ·xH ₂ O	1:10:20:0.5:0.5	80	60	40 (80)	8 (16)
15	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:20:0.5:0.5	60	110	15 (79)	trace
16 ^{<i>d</i>}	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:20:0.5:0.5	80	60	39 (78)	8 (16)
17	Mg(ClO ₄) ₂	1:10:20:0.5:0	80	40	25 (76)	4 (12)
18	$Fe(CIO_4)_3 xH_2O$	1:10:20:0:0.5	80	60	29 (35)	21 (25)
19	$Mg(CIO_4)_2/CuCl_2$	1:10:20:0.5:0.5	80	60	18 (50)	10 (28)
20	Mg(ClO ₄) ₂ /CuCl ₂ ·H ₂ O	1:10:20:0.5:0.5	80	45	20 (65)	8 (26)
21	Mg(ClO ₄) ₂ /DMAP	1:10:20:0.5:0.5	80	70	30 (51)	11 (19)
22 ^e	$Mg(CIO_4)_2/Fe(CIO_4)_3 xH_2O$	1:10:20:0.5:0.5	80	60	39 (80)	5 (10)
23 ^f	$Mg(ClO_4)_2/Fe(ClO_4)_3 \times H_2O$	1:10:20:0.5:0.5	80	60	22 (71)	6 (19)

^aUnless otherwise indicated, all reactions were performed in chlorobenzene under air conditions. ^bMolar ratio refers to C₆₀/1a/4a/Mg(ClO₄)₂/other additive. ^cIsolated yield; those in parentheses were based on consumed C60. dThe reaction was conducted under nitrogen atmosphere. ^eThe reaction was carried out in o-dichlorobenzene (10 mL). ^fThe reaction was conducted in toluene (10 mL).

Figure S1. NOESY (500 MHz, CS₂/DMSO-*d*₆) spectrum of *trans*-3ad.

Figure S2. NOESY (500 MHz, $CS_2/DMSO-d_6$) spectrum of *cis*-**3ad**, and the nuclear Overhauser effect between the two methine protons is indicated by the curved arrow.

Figure S3. NOESY (500 MHz, CS₂/DMSO-*d*₆) spectrum of *trans*-3ba.

Figure S4. NOESY (500 MHz, CS₂/DMSO-*d*₆) spectrum of *cis*-3ba, and the nuclear

Overhauser effect between the two methine protons is indicated by the curved arrow.

Figure S5. (a) ¹H NMR (400 MHz, DMSO- d_6) spectrum of the reaction mixture of C₆₀, cinnamaldehyde (**1a**), aniline (**2a**), and Mg(ClO₄)₂ for 1 h under the optimized conditions. (b) ¹H NMR (400 MHz, DMSO- d_6) spectrum of the reaction mixture of C₆₀, cinnamaldehyde (**1a**), aniline (**2a**), and Mg(ClO₄)₂ for 0 h under the optimized conditions.

Experimental details and spectra data

General procedure for the synthesis of amino-substituted cyclopentafullerenes 3. C_{60} (36.0 mg, 0.05 mmol), cinnamaldehydes 1 (0.50 mmol), arylamines 2 (0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) were added to a 50 mL round-bottom flask equipped with a reflux condenser and a magnetic stirrer. After they were completely dissolved in 6 mL of *o*-dichlorobenzene by sonication, the resulting solution was put into an oil bath preset at 180 °C and stirred under air conditions. Thin-layer chromatography (TLC) was employed to carefully monitor the reaction and to stop the reaction at the designated time. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent evaporation in vacuo was completed, the residue was separated on a silica gel column with carbon disulfide/dichloromethane as the eluent to afford first unreacted C_{60} and then amino-substituted cyclopentafullerenes **3**.

Cyclopentafullerenes *trans*-**3**aa and *cis*-**3**aa: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with **1**a (63 µL, 0.50 mmol), **2**a (46 µL, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 60 min afforded first unreacted C_{60} (20.1 mg, 56%) and then *trans*-**3**aa (4.7 mg, 10%, $R_f = 0.68$), *cis*-**3**aa (15.2 mg, 33%, $R_f = 0.59$) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. *trans*-**3**aa: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.59 (d, J = 7.2 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.9 Hz, 2H), 6.92 (d, J = 7.6 Hz, 2H), 6.74 (d, J = 8.5 Hz, 1H), 6.52 (t, J = 7.2 Hz, 1H), 5.73 (dd, J = 8.0, 5.3 Hz, 1H), 5.59 (dd, J = 14.4, 4.5 Hz, 1H), 3.80-3.73 (m, 1H), 2.92 (dd, J = 12.7, 4.5 Hz, 1H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 154.97, 154.26, 152.57, 152.53, 145.71, 145.60, 145.22 (2C), 145.08, 144.62, 144.30, 144.24, 144.22, 144.16, 144.09, 144.01 (2C), 143.98, 143.74, 143.61, 143.45, 143.37 (2C), 143.28 (5C), 143.10, 142.69, 142.55 (2C), 142.49, 141.12, 141.05, 140.75, 140.60, 140.52 (2C), 140.43, 140.28, 140.25, 140.23, 140.17, 140.10, 139.98 (3C), 139.80, 139.72, 139.63, 138.37, 137.68, 137.52, 137.45, 136.74, 135.81, 134.41, 134.14, 133.25, 127.79 (2C, aryl C), 127.56 (2C, aryl C), 127.04 (2C, aryl C), 126.10 (aryl C), 115.87 (aryl C), 111.84 (2C, aryl C), 76.15 (sp³-C of C₆₀), 73.40 (sp³-C of C₆₀), 63.50, 55.37, 35.15; FT-IR v/cm⁻¹ (KBr) 3395, 3042, 1599, 1498, 1456, 1426, 1313, 1251, 1183, 1152, 1077, 869, 783, 746, 694, 599, 570, 527; UV-vis (CHCl₃) λ_{max}/nm 256, 310, 431; HRMS (ESI) m/z: [M]⁻ Calcd for C₇₅H₁₅N 929.1205; Found 929.1183. cis-3aa: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.57 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.00-6.96 (m, 2H), 6.83 (d, J = 7.7Hz, 2H), 6.49 (t, J = 7.3 Hz, 1H), 6.05 (dd, J = 9.8, 3.5 Hz, 1H), 5.84-5.79 (m, 1H), 4.98 (dd, J = 13.9, 4.4 Hz, 1H), 3.67-3.59 (m, 1H), 3.01-2.97 (m, 1H); ¹³C NMR (125) MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 154.76, 153.09, 152.94, 152.54, 145.85, 145.79, 145.55, 145.06 (2C), 145.04, 144.18, 144.09, 144.07, 143.97, 143.95, 143.91, 143.86 (3C), 143.66, 143.56, 143.30, 143.19, 143.16, 143.10, 142.99 (2C), 142.96 (2C), 142.55, 142.35, 142.29 (2C), 140.94, 140.84, 140.52, 140.48 (2C), 140.41 (2C), 140.22 (2C), 140.11, 140.00, 139.86, 139.84, 139.75, 139.63, 139.60 (2C), 139.38, 137.72, 137.53 (2C), 137.08, 135.68, 134.33, 134.22, 133.56, 132.62, 127.50 (4C, aryl C), 127.09 (2C, aryl C), 126.05 (aryl C), 115.58 (aryl C), 111.90 (2C,

aryl *C*), 74.07 (sp³-*C* of C₆₀), 73.84 (sp³-*C* of C₆₀), 64.54, 54.35, 34.58; FT-IR *v*/cm⁻¹ (KBr) 3399, 3028, 2881, 1599, 1500, 1456, 1428, 1317, 1252, 1226, 1185, 1150, 1070, 1015, 746, 693, 664, 571, 526; UV-vis (CHCl₃) λ_{max}/nm 257, 311, 430; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₇₅H₁₅N 929.1205; Found 929.1202.

Cyclopentafullerenes trans-3ab and cis-3ab: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1a (63 µL, 0.50 mmol), 2b (61.6 mg, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in o-dichlorobenzene (6 mL) at 180 °C for 40 min afforded first unreacted C_{60} (21.4 mg, 59%) and then *trans*-**3ab** (6.7 mg, 14%, $R_f = 0.68$), *cis*-**3ab** (10.5 mg, 22%, $R_f = 0.59$) as amorphous brown solid with CS_2/CH_2Cl_2 as eluent (V/V = 10/1): mp > 300 °C. *trans*-3ab: ¹H NMR (500 MHz, $CS_2/DMSO-d_6$) δ 7.58 (d, J = 7.8 Hz, 2H), 7.29 (t, J = 6.9 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 8.9 Hz, 2H), 6.35 (d, J = 8.0 Hz, 1H), 5.65 (dd, J = 7.8, 5.7 Hz, 1H), 5.57 (dd, J = 14.3, 4.4 Hz, 1H), 3.76-3.70 (m, 1H), 3.62 (s, 1)3H), 2.94-2.90 (m, 1H); ¹³C NMR (125 MHz, $CS_2/DMSO-d_6$) (all 1C unless indicated) δ 154.96, 154.19, 152.60, 152.50, 149.97, 145.45, 145.11 (2C), 145.02, 144.54, 144.18, 144.12 (2C), 144.04, 143.98, 143.91 (2C), 143.86, 143.63, 143.51, 143.39, 143.27, 143.25, 143.18 (2C), 143.16, 143.14 (2C), 143.00, 142.58, 142.47, 142.45, 142.38, 141.00, 140.96, 140.66, 140.49, 140.42 (2C), 140.32, 140.19, 140.14, 140.12, 140.07, 139.99, 139.88 (2C), 139.84, 139.69, 139.62 (2C), 139.53, 138.26, 137.57, 137.41, 137.36, 136.65, 135.63, 134.34, 134.02, 133.08, 127.69 (2C, aryl C), 126.93 (2C, aryl C), 125.98 (aryl C), 113.05 (2C, aryl C), 113.03 (2C, aryl C), 75.96 (sp³-C of C₆₀), 73.30 (sp³-C of C₆₀), 64.34, 55.20, 53.89, 35.01; FT-IR v/cm⁻¹ (KBr) 3419,

3119, 3026, 2929, 1510, 1384, 1367, 1239, 1182, 1098, 1034, 821, 756, 697, 660, 570, 526; UV-vis (CHCl₃) λ_{max}/nm 257, 310, 431; HRMS (ESI) m/z: [M]⁻ Calcd for C₇₆H₁₇NO 959.1310; Found 959.1298. *cis*-**3ab**: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.57 (d, J = 7.5 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 6.78 (d, J = 8.6 Hz, 2H), 6.57 (d, J = 8.6 Hz, 2H), 5.77-5.70 (m, 2H), 4.96 (dd, J = 13.8, 4.1 Hz, 1H), 3.61 (s, 3H), 3.58-3.55 (m, 1H), 2.99-2.97 (m, 1H); ¹³C NMR (125 MHz, $CS_2/DMSO-d_6$ (all 1C unless indicated) δ 155.07 (aryl C), 153.36, 153.21, 152.77, 150.01, 146.20, 145.85, 145.33, 145.29, 145.26, 144.42, 144.33, 144.30, 144.23, 144.16, 144.15, 144.09 (3C), 143.91, 143.79, 143.53, 143.43, 143.40, 143.33, 143.25, 143.22, 143.19 (2C), 142.79, 142.60, 142.53 (2C), 141.18, 141.08, 140.76, 140.72 (2C), 140.65 (2C), 140.47 (2C), 140.36, 140.24, 140.08 (3C), 139.99, 139.86 (2C), 139.82, 139.61, 137.97, 137.73, 137.70, 137.32, 135.93, 134.60, 134.46, 133.79, 132.81 (aryl C), 127.73 (2C, aryl C), 127.24 (2C, aryl C), 126.20 (aryl C), 113.38 (2C, aryl C), 113.27 (2C, aryl C), 74.32 (sp³-C of C₆₀), 74.09 (sp³-C of C₆₀), 65.85, 54.60, 54.02, 34.93; FT-IR v/cm⁻¹ (KBr) 3364, 3028, 2942, 2890, 2825, 1602, 1510, 1457, 1428, 1357, 1288, 1237, 1181, 1146, 1099, 1069, 1037, 906, 819, 783, 762, 696, 664, 599, 571, 526; UV-vis (CHCl₃) λ_{max}/nm 257, 310, 431; HRMS (ESI) *m/z*: [M]⁻ Calcd for C₇₆H₁₇NO 959.1310; Found 959.1281.

Cyclopentafullerenes *trans/cis*-**3ac:** According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1a** (63 μ L, 0.50 mmol), **2c** (70 μ L, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 30 min afforded first unreacted C₆₀ (29.8 mg, 83%) and then *trans/cis*-**3ac** (7.9 mg,

16%, *trans/cis* = 1/5.6, R_f = 0.66) as an amorphous brown solid with CS₂ as eluent: mp > 300 °C. *cis*-**3ac**: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.54 (d, J = 7.5 Hz, 2H), 7.26 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 6.76 (s, 2H), 5.26-5.20 (m, 1H), 4.79 (dd, J = 13.7, 4.2 Hz, 1H), 3.65 (d, J = 12.2 Hz, 1H), 3.43 (q, J = 12.4 Hz, 1H), 2.92-2.88 (m, 1H), 2.42 (s, 6H), 2.21 (s, 3H); ¹³C NMR (125 MHz, $CS_2/DMSO-d_6$) (all 1C unless indicated) δ 154.46, 153.65, 152.49, 150.94, 146.47, 145.66, 145.25, 145.21, 144.83, 144.43, 144.31 (2C), 144.25 (2C), 144.14, 144.10, 144.02, 143.98, 143.86, 143.73, 143.68, 143.40, 143.34 (3C), 143.21, 143.14 (2C), 142.62, 142.59, 142.54, 142.48, 141.14, 141.09, 140.75, 140.70, 140.67, 140.60, 140.51, 140.45, 140.36, 140.24 (3C), 140.08, 140.03, 139.89, 139.81 (2C), 139.70 (2C), 137.99, 137.75, 137.50, 137.39, 135.53, 135.30, 134.19, 133.43, 132.97 (aryl C), 130.02 (aryl C), 128.61 (2C, aryl C), 128.35 (2C, aryl C), 127.71 (2C, aryl C), 127.09 (2C, aryl C), 126.17 (aryl C), 73.80 (sp³-C of C₆₀), 73.10 (sp³-C of C₆₀), 68.70, 54.82, 36.51, 19.41, 17.78 (2C); FT-IR v/cm⁻¹ (KBr) 3419, 3027, 2951, 2895, 1599, 1482, 1429, 1372, 1303, 1228, 1186, 1070, 1027, 906, 854, 762, 695, 667, 597, 571, 527; UV-vis (CHCl₃) λ_{max}/nm 257, 310, 431; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₇₈H₂₁N 971.1674; Found 971.1673.

Cyclopentafullerenes *trans*-3ad and *cis*-3ad: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1a (63 µL, 0.50 mmol), 2d (53.6 mg, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 60 min afforded first unreacted C_{60} (22.3 mg, 62%) and then *trans*-3ad (3.1 mg, 7%, $R_f = 0.47$), *cis*-3ad (13.1 mg, 28%, $R_f = 0.29$) as amorphous brown solid with

CS₂ as eluent: mp > 300 °C. *trans*-3ad: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.58 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 6.12-6.10 (m, 1H), 5.67 (dd, J = 7.2, 5.3 Hz, 1H), 5.50 (dd, J = 14.3, 4.5 Hz, 1H), 3.76-3.70 (m, 1H), 2.96 (dd, J = 12.6, 4.6 Hz, 1H), 2.18 (s, 1H), 2.18 (s, 2H)3H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 155.02, 154.30, 152.67, 152.59, 145.63, 145.21 (2C), 145.10, 144.64, 144.29, 144.24, 144.22, 144.14, 144.08, 144.01 (2C), 143.97, 143.74, 143.62, 143.48, 143.42, 143.36 (2C), 143.29 (3C), 143.27, 143.25, 143.10, 142.69, 142.56 (2C), 142.48, 141.11, 141.05, 140.76, 140.59, 140.52 (2C), 140.43, 140.29, 140.25, 140.23, 140.18, 140.10, 139.98 (3C), 139.79, 139.72, 139.63, 138.36, 137.67, 137.51, 137.43, 136.76, 135.76, 134.42, 134.13, 133.21, 128.06 (2C, aryl C), 127.78 (2C, aryl C), 127.03 (2C, aryl C), 126.08 (aryl C), 123.98 (aryl C), 112.01 (2C, aryl C), 76.18 (sp³-C of C₆₀), 73.40 (sp³-C of C₆₀), 63.77, 55.35, 35.13, 19.24; FT-IR v/cm⁻¹ (KBr) 3396, 3019, 2948, 1617, 1516, 1456, 1383, 1303, 1249, 1185, 885, 807, 695, 670, 527; UV-vis (CHCl₃) λ_{max}/nm 257, 309, 431; HRMS (ESI) *m/z*: [M]⁻ Calcd for C₇₆H₁₇N 943.1361; Found 943.1338. *cis*-**3ad**: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.56 (d, J = 7.4 Hz, 2H), 7.29 (t, J = 7.6Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 5.77-5.71 (m, 1H), 5.26 (d, J = 9.9 Hz, 1H), 4.93 (dd, J = 13.8, 4.4 Hz, 1H), 3.58-3.50 (m, 1H), 3.07-3.02 (m, 1H), 2.16 (s, 3H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) (all 1C unless indicated) δ 154.64, 152.93, 152.73, 152.36, 145.70, 145.43, 144.89, 144.86, 144.84, 143.98, 143.87 (2C), 143.78, 143.74, 143.72, 143.66 (3C), 143.46, 143.37, 143.27, 143.10, 142.99, 142.97, 142.90, 142.81, 142.78, 142.76 (2C), 142.36,

142.17, 142.09 (2C), 140.74, 140.64, 140.33, 140.29 (2C), 140.22 (2C), 140.03 (2C), 139.92, 139.81, 139.68, 139.64, 139.56, 139.42 (3C), 139.18, 137.53, 137.32, 137.31, 136.88, 135.50, 134.13, 134.03, 133.37, 132.37, 127.83 (2C, aryl *C*), 127.35 (2C, aryl *C*), 126.95 (2C, aryl *C*), 125.92 (aryl *C*), 123.52 (aryl *C*), 111.90 (2C, aryl *C*), 73.92 (sp³-*C* of C₆₀), 73.66 (sp³-*C* of C₆₀), 64.66, 54.18, 34.47, 18.97; FT-IR ν /cm⁻¹ (KBr) 3413, 3024, 2908, 1614, 1515, 1455, 1426, 1356, 1295, 1249, 1223, 1185, 1141, 1011, 807, 761, 696, 666, 653, 571, 527; UV-vis (CHCl₃) λ_{max} /nm 257, 310, 430; HRMS (ESI) *m/z*: [M]⁻ Calcd for C₇₆H₁₇N 943.1361; Found 943.1335.

Cyclopentafullerenes *trans*-**3ae** and *cis*-**3ae**: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1a** (63 µL, 0.50 mmol), **2e** (63.8 mg, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 30 min afforded first unreacted C₆₀ (25.1 mg, 70%) and then *trans*-**3ae** (5.1 mg, 11%, R_f = 0.64), *cis*-**3ae** (6.3 mg, 13%, R_f = 0.45) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. *trans*-**3ae**: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.59 (d, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 6.96 (d, *J* = 9.1 Hz, 2H), 6.92 (d, *J* = 9.1 Hz, 2H), 5.71 (dd, *J* = 8.0, 5.4 Hz, 1H), 5.58 (dd, *J* = 14.4, 4.5 Hz, 1H), 3.80-3.73 (m, 1H), 2.90 (dd, *J* = 12.5, 4.3 Hz, 1H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) (all 1C unless indicated) δ 154.40, 153.75, 152.04, 151.99, 145.07, 144.83 (2C), 144.65, 144.17 (2C), 143.90, 143.85, 143.83, 143.77, 143.70, 143.62 (2C), 143.59, 143.33, 143.19, 142.98 (2C), 142.90 (4C), 142.85, 142.71 (2C), 142.28, 142.16 (2C), 142.09, 140.72, 140.67, 140.37, 140.21, 140.13 (2C), 140.03, 139.82 (3C), 139.75, 139.70, 139.58 (3C), 139.40, 139.33, 139.23,

S16

137.98, 137.29, 137.12, 137.07, 136.25, 135.43, 134.01, 133.70, 132.90, 127.40 (2C, aryl C), 126.92 (2C, aryl C), 126.79 (2C, aryl C), 125.87 (aryl C), 119.40 (aryl C), 112.62 (2C, aryl C), 75.71 (sp³-C of C₆₀), 72.96 (sp³-C of C₆₀), 63.11, 54.95, 34.66; FT-IR v/cm⁻¹ (KBr) 3395, 3023, 2898, 2361, 1598, 1495, 1457, 1384, 1311, 1182, 1094, 903, 813, 761, 697, 615, 528; UV-vis (CHCl₃) λ_{max}/nm 256, 311, 431; HRMS (ESI) *m/z*: [M]⁻ Calcd for C₇₅H₁₄ClN 963.0815; Found 963.0753. *cis*-3ae: ¹H NMR $(500 \text{ MHz}, \text{CS}_2/\text{DMSO-}d_6) \delta 7.57 \text{ (d}, J = 7.4 \text{ Hz}, 2\text{H}), 7.30 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{H}), 7.20 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{Hz}), 7.20 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{Hz}), 7.20 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{Hz}), 7.20 \text$ J = 7.3 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 9.5 Hz, 1H), 5.84-5.78 (m, 1H), 4.99 (dd, J = 13.9, 4.3 Hz, 1H), 3.62 (q, J = 12.6 Hz, 1H), 2.98-2.94 (m, 1H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 154.68, 153.15, 152.99, 152.56, 145.81, 145.54, 145.19, 145.16 (2C), 144.77, 144.30, 144.21, 144.19, 144.06 (3C), 143.99 (2C), 143.96, 143.75, 143.65, 143.42, 143.31, 143.29, 143.23, 143.11 (4C), 142.66, 142.46, 142.42 (2C), 141.07, 140.97, 140.65, 140.61 (2C), 140.55, 140.47, 140.34, 140.33, 140.22, 140.13, 140.00, 139.96, 139.87, 139.73 (2C), 139.70, 139.50, 137.86, 137.68 (2C), 137.21, 135.75, 134.44, 134.29, 133.67, 132.84, 127.61 (2C, aryl C), 127.27 (2C, aryl C), 127.18 (2C, aryl C), 126.15 (aryl C), 119.48 (aryl C), 113.11 (2C, aryl C), 74.08 (sp³-C of C₆₀), 73.95 (sp³-C of C₆₀), 64.53, 54.38, 34.52; FT-IR v/cm⁻¹ (KBr) 3402, 3057, 3024, 2954, 1597, 1494, 1457, 1426, 1401, 1313, 1249, 1182, 1137, 1093, 1068, 1009, 813, 781, 762, 695, 668, 597, 571, 527; UV-vis (CHCl₃) λ_{max}/nm 257, 313, 430; HRMS (ESI) m/z: [M]⁻ Calcd for C₇₅H₁₄ClN 963.0815; Found 963.0748.

Cyclopentafullerenes trans-3af and cis-3af: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1a (63 µL, 0.50 mmol), 2f (86.0 mg, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in o-dichlorobenzene (6 mL) at 180 °C for 50 min afforded first unreacted C_{60} (26.4 mg, 73%) and then *trans*-**3af** (4.4 mg, 9%, $R_f = 0.80$), cis-**3af** (6.2 mg, 12%, $R_f = 0.63$) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. trans-**3af**: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.59 (d, J = 7.4 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.12 (d, J = 8.5 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.70 (dd, J = 8.2, 5.4 Hz, 1H), 5.58 $(dd, J = 14.4, 4.5 Hz, 1H), 3.80-3.73 (m, 1H), 2.89 (dd, J = 12.7, 4.5 Hz, 1H); {}^{13}C$ NMR (125 MHz, CS₂/DMSO-d₆) (all 1C unless indicated) δ 154.40, 153.77, 152.06, 151.98, 145.09, 144.85 (2C), 144.67, 144.60, 144.19, 143.93, 143.88, 143.85, 143.79, 143.72, 143.64 (2C), 143.61, 143.35, 143.21, 143.01 (2C), 142.93 (5C), 142.88, 142.74, 142.31, 142.19 (2C), 142.11, 140.75, 140.69, 140.39, 140.24, 140.16 (2C), 140.06, 139.84 (3C), 139.77, 139.73, 139.61 (3C), 139.43, 139.35, 139.25, 138.01, 137.31, 137.15, 137.10, 136.27, 135.46, 134.03, 133.72, 132.94, 129.78 (2C, aryl C), 127.42 (2C, aryl C), 126.82 (2C, aryl C), 125.90 (aryl C), 113.15 (2C, aryl C), 106.84 (aryl C), 75.73 (sp³-C of C₆₀), 72.98 (sp³-C of C₆₀), 63.03, 54.97, 34.66; FT-IR v/cm⁻¹ (KBr) 3399, 3023, 2884, 2799, 1592, 1493, 1457, 1427, 1395, 1311, 1249, 1184, 1075, 929, 810, 763, 695, 570, 528; UV-vis (CHCl₃) λ_{max}/nm 257, 312, 431; HRMS (ESI) *m/z*: [M]⁻ Calcd for C₇₅H₁₄BrN 1007.0310; Found 1007.0259. *cis*-3af: ¹H NMR $(500 \text{ MHz}, \text{CS}_2/\text{DMSO-}d_6) \delta 7.57 \text{ (d}, J = 7.5 \text{ Hz}, 2\text{H}), 7.30 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{H}), 7.20 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{Hz}), 7.20 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{Hz}), 7.20 \text{ (t}, J = 7.6 \text{ Hz}, 2\text{Hz}), 7.20 \text$ *J* = 7.3 Hz, 1H), 7.05 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.57 (d, *J* = 9.4 Hz,

S18

1H), 5.83-5.78 (m, 1H), 4.99 (dd, J = 13.9, 4.2 Hz, 1H), 3.63 (q, J = 12.6 Hz, 1H), 3.10-2.93 (m, 1H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) (all 1C unless indicated) δ 154.59, 153.08, 152.91, 152.50, 145.72, 145.46, 145.11 (2C), 145.09 (2C), 144.22, 144.11 (2C), 143.98 (3C), 143.91 (3C), 143.68, 143.58, 143.34, 143.23, 143.21, 143.16, 143.03 (4C), 142.59, 142.39, 142.34 (2C), 140.99, 140.90, 140.58, 140.53 (2C), 140.47, 140.39, 140.27, 140.25, 140.14, 140.05, 139.93, 139.88, 139.79, 139.66 (2C), 139.62, 139.43, 137.78, 137.62 (2C), 137.13, 135.68, 134.36, 134.22, 133.60, 132.78, 130.05 (2C, aryl *C*), 127.55 (2C, aryl *C*), 127.14 (2C, aryl *C*), 126.12 (aryl *C*), 113.56 (2C, aryl *C*), 106.75 (aryl *C*), 73.99 (sp³-*C* of C₆₀), 73.87 (sp³-*C* of C₆₀), 64.33, 54.29, 34.42; FT-IR ν /cm⁻¹ (KBr) 3403, 3064, 3026, 2950, 2883, 1591, 1492, 1457, 1426, 1398, 1311, 1248, 1182, 1139, 1071, 1008, 810, 781, 761, 695, 653, 570, 526; UV-vis (CHCl₃) λ_{max} /nm 257, 312, 430; HRMS (ESI) *m*/*z*: [M]⁻ Calcd for C₇₅H₁₄BrN 1007.0310; Found 1007.0251.

Cyclopentafullerenes *trans*-**3ba** and *cis*-**3ba**: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1b** (88.1 mg, 0.50 mmol), **2a** (46 µL, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 40 min afforded first unreacted C₆₀ (25.2 mg, 70%) and then *trans*-**3ba** (4.6 mg, 10%, R_f = 0.77), *cis*-**3ba** (7.8 mg, 16%, R_f = 0.67) as amorphous brown solid with CS₂/CH₂Cl₂ as eluent (V/V = 10/1): mp > 300 °C. *trans*-**3ba**: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.49 (d, *J* = 8.6 Hz, 2H), 7.01 (t, *J* = 7.7 Hz, 2H), 6.91 (d, *J* = 8.2 Hz, 2H), 6.80 (d, *J* = 8.2 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.52 (t, *J* = 7.2 Hz, 1H), 5.72-5.70 (m, 1H), 5.54 (dd, *J* = 14.3, 4.3 Hz, 1H), 3.74-3.68 (m, 1H), 3.71 (s, 3H), 2.88 (dd, J = 12.6, 4.3 Hz, 1H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 156.77 (aryl C), 154.88, 154.28, 152.58, 152.40, 145.52, 145.42, 144.98 (2C), 144.89, 144.59, 144.06, 143.99 (2C), 143.92, 143.85, 143.77 (2C), 143.73, 143.52, 143.39, 143.23, 143.12, 143.03 (6C), 142.86, 142.46, 142.33 (2C), 142.28, 140.88, 140.81, 140.52, 140.36, 140.28 (2C), 140.20, 140.06, 140.03, 139.98 (2C), 139.87, 139.76 (2C), 139.72, 139.56, 139.53, 139.41, 138.11, 137.51, 137.36, 137.18, 135.59, 134.11, 133.85, 133.04, 128.49 (2C, aryl C), 128.30 (aryl C), 127.36 (2C, aryl C), 115.63 (aryl C), 112.24 (2C, aryl C), 111.60 (2C, aryl C), 75.89 (sp³-C of C₆₀), 73.41 (sp³-C of C₆₀), 63.21, 54.53, 53.83, 35.23; FT-IR ν /cm⁻¹ (KBr) 3395, 2922, 2851, 1601, 1507, 1461, 1427, 1311, 1251, 1180, 1149, 1034, 829, 746, 690, 666, 570, 527; UV-vis (CHCl₃) λ_{max}/nm 257, 308, 431; HRMS (ESI) m/z: [M]⁻ Calcd for C₇₆H₁₇NO 959.1310; Found 959.1257. *cis*-**3ba**: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.47 (d, J = 8.6 Hz, 2H), 6.97 (t, J = 7.8 Hz, 2H), 6.83-6.79 (m, 4H), 6.47 (t, J = 7.3 Hz, 1H), 6.15 (d, J = 9.3 Hz, 1H), 5.83-5.78 (m, 1H), 4.93 (dd, J = 13.8, 4.4 Hz, 1H), 3.71 (s, 3H), 3.58 (q, J = 12.6 Hz, 1H), 2.96-2.92 (m, 1H); ¹³C NMR (125 MHz, $CS_2/DMSO-d_6$ (all 1C unless indicated) δ 156.63 (aryl C), 154.52, 153.10, 152.89, 152.42, 145.55 (2C), 145.32, 144.82, 144.76 (2C), 143.88 (2C), 143.80, 143.77, 143.65, 143.63, 143.56 (2C), 143.54, 143.38, 143.28, 143.00, 142.87 (2C), 142.81, 142.71 (2C), 142.67 (2C), 142.26, 142.07, 142.03, 142.01, 140.65, 140.55, 140.19 (3C), 140.13 (2C), 139.96 (2C), 139.83, 139.72, 139.56 (2C), 139.50, 139.36, 139.32 (2C), 139.11, 137.50, 137.20 (2C), 136.86, 134.05, 133.89, 133.20, 132.36, 128.17 (2C, aryl C), 127.27 (2C, aryl C), 127.14 (aryl C), 115.32 (aryl C), 112.26 (2C, aryl

C), 111.64 (2C, aryl *C*), 73.86 (sp³-*C* of C₆₀), 73.77 (sp³-*C* of C₆₀), 64.24, 53.76, 53.43, 34.62; FT-IR v/cm⁻¹ (KBr) 3391, 3022, 2946, 2889, 2826, 1601, 1508, 1457, 1430, 1308, 1251, 1180, 1033, 830, 747, 687, 651, 525; UV-vis (CHCl₃) λ_{max}/nm 256, 308, 430; HRMS (ESI) *m/z*: [M]⁻ Calcd for C₇₆H₁₇NO 959.1310; Found 959.1256.

Cyclopentafullerenes trans-3ca and cis-3ca: According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1c (88.6 mg, 0.50 mmol), 2a (46 μ L, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in o-dichlorobenzene (6 mL) at 180 °C for 40 min afforded first unreacted C₆₀ (21.3 mg, 59%) and then *trans*-3ca (7.6 mg, 16%, $R_f = 0.71$), *cis*-3ca (10.9 mg, 22%, $R_f = 0.65$) as amorphous brown solid with CS_2/CH_2Cl_2 as eluent (V/V = 10/1): mp > 300 °C. *trans*-3ca: ¹H NMR (500 MHz, $CS_2/DMSO-d_6$) δ 8.16 (d, J = 8.6 Hz, 2H), 7.87 (d, J = 8.6 Hz, 2H), 7.02 (t, J = 7.8 Hz, 2 2H), 6.93-6.89 (m, 3H), 6.53 (t, J = 7.2 Hz, 1H), 5.83-5.77 (m, 2H), 3.85-3.79 (m, 1H), 2.96 (dd, J = 12.6, 4.5 Hz, 1H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 154.17, 153.01, 152.05, 150.98, 145.26, 145.08, 144.90 (2C), 144.84, 144.22 (2C), 143.97, 143.91, 143.85, 143.78, 143.73, 143.66 (2C), 143.63 (2C), 143.28, 143.20, 143.06, 142.98 (4C), 142.91 (3C), 142.78, 142.35, 142.23, 142.12, 142.02, 140.77, 140.71, 140.42, 140.25, 140.19, 140.15, 140.07, 139.90, 139.86 (2C), 139.68 (2C), 139.62, 139.54, 139.50, 139.41, 139.39, 139.29, 138.10, 137.38, 137.21, 137.11, 135.33, 134.43, 134.24, 132.77, 128.65 (2C, aryl C), 127.28 (2C, aryl C), 121.69 (2C, aryl C), 115.66 (aryl C), 111.50 (2C, aryl C), 75.88 (sp³-C of C₆₀), 72.58 (sp³-C of C₆₀), 63.17, 54.45, 34.77; FT-IR v/cm⁻¹ (KBr) 3394, 2954, 2883, 1600, 1519, 1501, 1427, 1344, 1315, 1252, 1184, 855, 748, 694, 670, 570, 527;

S21

UV-vis (CHCl₃) λ_{max}/nm 257, 313, 431; HRMS (ESI) m/z: [M]⁻Calcd for C₇₅H₁₄N₂O₂. 974.1055; Found 974.0982. cis-3ca: ¹H NMR (500 MHz, CS₂/DMSO-d₆) δ 8.16 (d, J = 8.5 Hz, 2H), 7.85 (d, J = 8.5 Hz, 2H), 6.98 (t, J = 7.8 Hz, 2H), 6.84 (d, J = 8.0 Hz, 2H), 6.49 (t, J = 7.2 Hz, 1H), 6.29 (d, J = 9.5 Hz, 1H), 5.92-5.86 (m, 1H), 5.19 (dd, J = 13.8, 4.4 Hz, 1H), 3.68 (q, J = 12.7 Hz, 1H), 3.03-2.99 (m, 1H); ¹³C NMR (125) MHz, $CS_2/DMSO-d_6$ (all 1C unless indicated) δ 154.18, 151.89, 151.79, 151.57, 145.41, 145.39, 145.06, 144.81, 144.73, 144.66, 144.22, 143.76 (2C), 143.72, 143.56 (2C), 143.50 (3C), 143.36, 143.21, 143.13, 142.96, 142.92 (2C), 142.84, 142.72 (3C), 142.58 (2C), 142.22, 142.03, 141.84 (2C), 140.59, 140.49, 140.14 (3C), 140.04, 139.99, 139.86, 139.75 (2C), 139.58, 139.49, 139.40 (2C), 139.21 (2C), 139.18, 139.04, 137.42, 137.24, 137.18, 136.77, 134.31, 133.82, 133.61, 132.21, 128.43 (2C, aryl C), 127.20 (2C, aryl C), 121.70 (2C, aryl C), 115.31 (aryl C), 111.55 (2C, aryl C), 73.68 (sp³-C of C₆₀), 72.92 (sp³-C of C₆₀), 64.05, 53.16, 34.00; FT-IR ν /cm⁻¹ (KBr) 3394, 2921, 2851, 1597, 1515, 1462, 1428, 1343, 1314, 1252, 1181, 1147, 1104, 1011, 852, 779, 747, 693, 593, 570, 525; UV-vis (CHCl₃) λ_{max}/nm 257, 307, 430; HRMS (ESI) *m/z*: [M]⁻ Calcd for C₇₅H₁₄N₂O₂ 974.1055; Found 974.0985.

Cyclopentafullerenes *trans/cis*-3da: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1c (71 µL, 0.50 mmol), 2a (46 µL, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 40 min afforded first unreacted C₆₀ (30.2 mg, 84%) and then *trans/cis*-3ca (6.1 mg, 13%, *trans/cis* = 1/4, R_f = 0.73) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. *cis*-3da: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.92 (br.s, 2H), 7.47 (t, *J* =

7.3 Hz, 2H), 7.34 (t, J = 7.1 Hz, 1H), 6.95 (t, J = 7.6 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 6.45 (t, J = 7.1 Hz, 1H), 6.20 (d, J = 9.5 Hz, 1H), 5.77-5.70 (m, 1H), 5.01 (d, J = 7.5Hz, 1H), 3.84-3.76 (m, 1H), 1.16 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 157.64, 154.80, 153.21, 152.60, 146.26, 146.08, 145.62, 145.14, 145.06, 144.76, 144.17, 144.01, 143.92 (3C), 143.87 (2C), 143.72, 143.57, 143.30 (2C), 143.12 (2C), 143.06, 143.00 (2C), 142.95, 142.91, 142.79, 142.56, 142.39 (2C), 142.25, 140.94, 140.90, 140.53, 140.49, 140.37, 140.34, 140.14, 140.03 (2C), 140.01, 139.97, 139.81 (3C), 139.71 (2C), 139.53, 139.46, 137.93, 137.91, 137.69, 137.55 (2C), 135.62, 133.57, 133.38, 132.25, 128.88 (2C, aryl *C*), 127.43 (2C, aryl *C*), 127.17 (2C, aryl *C*), 125.98 (aryl *C*), 115.41 (aryl *C*), 111.57 (2C, aryl *C*), 73.83 (sp³-*C* of C₆₀), 71.26 (sp³-*C* of C₆₀), 68.28, 59.49, 40.96, 12.14; FT-IR ν/cm^{-1} (KBr) 3407, 3012, 2883, 1599, 1501, 1455, 1429, 1384, 1311, 1252, 1185, 1144, 939, 748, 670, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 256, 310, 431; HRMS (ESI) m/z: [M]⁻ Calcd for C₇₆H₁₇N 943.1361; Found 943.1302.

General Procedure for the Synthesis of Cyclopentafullerenes 5. A mixture of C_{60} (36.0 mg, 0.05 mmol), cinnamaldehydes 1 (0.50 mmol), secondary amines 4 (1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·*x*H₂O (8.9 mg, 0.025 mmol) was added to a 50 mL round-bottom flask equipped with a reflux condenser and a magnetic stirrer. After they were completely dissolved in 10 mL of chlorobenzene by sonication, the resulting solution was put into an oil bath preset at 80 °C and stirred under air conditions. Thin-layer chromatography (TLC) was employed to carefully monitor the reaction and to stop the reaction at the designated time. The reaction

mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent evaporation in vacuo was completed, the residue was separated on a silica gel column with carbon disulfide/dichloromethane as the eluent to afford first unreacted C_{60} and then cyclopentafullerenes 5.

Cyclopentafullerene *cis*-**5aa and Fulleropyrrolidine** *trans*-**6aa:** According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1a** (63 µL, 0.50 mmol), **4a** (103 µL, 1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·*x*H₂O (8.9 mg, 0.025 mmol) in chlorobenzene (10 mL) at 80 °C for 60 min afforded first unreacted C₆₀ (17.9 mg, 50%) and then *cis*-**5aa**¹ (18.3 mg, 40%, R_f = 0.82) and *trans*-**6aa**^{2,3} (3.8 mg, 8%, R_f = 0.24) as amorphous brown solid with CS₂ as eluent: mp > 300 °C.

Cyclopentafullerene *cis*-5**ab** and **Fulleropyrrolidine** *trans*-6**ab**: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1a** (63 µL, 0.50 mmol), **4b** (137 µL, 1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·*x*H₂O (8.9 mg, 0.025 mmol) in chlorobenzene (10 mL) at 80 °C for 55 min afforded first unreacted C₆₀ (22.7 mg, 63%) and then *cis*-5**ab** (13.9 mg, 30%, R_f = 0.97) and *trans*-6**ab**³ (trace, R_f = 0.68) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 5.04 (dd, *J* = 12.5, 4.5 Hz, 1H), 4.86 (dd, *J* = 13.4, 4.5 Hz, 1H), 3.60 (q, *J* = 12.6 Hz, 1H), 3.06 (br.s, 2H), 2.99-2.93 (m, 2H), 2.89-2.84 (m, 1H), 1.71-1.61 (m, 2H), 1.56-1.50 (m, 2H), 0.91-0.86 (m, 6H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) δ 155.39, 154.80, 153.00, 152.70,

146.17, 145.78, 145.40, 145.23, 144.81, 144.49, 144.43, 144.41, 144.34 (2C), 144.24, 144.19, 144.09, 144.03, 144.01, 143.85, 143.52, 143.45, 143.39 (2C), 143.35, 143.30 (2C), 143.17, 142.84, 142.70, 142.61, 142.52, 141.36, 141.20, 140.84, 140.79 (2C), 140.68, 140.61, 140.48 (2C), 140.39, 140.33, 140.20, 140.16, 139.99, 139.95 (2C), 139.85, 139.78, 138.15, 137.70, 137.64, 137.44, 136.09 (aryl *C*), 134.40, 134.00, 133.16, 132.61, 127.77 (2C, aryl *C*), 127.22 (2C, aryl *C*), 126.22 (aryl *C*), 75.07, 74.31, 73.36, 55.42, 29.59, 21.01 (2C), 10.72 (2C); FT-IR ν/cm^{-1} (KBr) 2958, 2926, 2865, 2793, 1516, 1459, 1427, 1376, 1189, 1088, 1013, 759, 696, 573, 547, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 257, 311, 431; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₇₅H₂₃N 937.1831; Found 937.1832.

Cyclopentafullerene *cis*-5ac and Fulleropyrrolidine *trans*-6ac: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1a** (63 µL, 0.50 mmol), **4c** (169 µL, 1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·xH₂O (8.9 mg, 0.025 mmol) in chlorobenzene (10 mL) at 80 °C for 50 min afforded first unreacted C₆₀ (17.4 mg, 48%) and then *cis*-5ac (21.5 mg, 45%, R_f = 0.97) and *trans*-6ac³ (trace, R_f = 0.84) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. *cis*-5ac: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.57 (d, *J* = 7.3 Hz, 2H), 7.29 (t, *J* = 7.0 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 5.03-4.99 (m, 1H), 4.84-4.81 (m, 1H), 3.57 (q, *J* = 12.6 Hz, 1H), 3.09 (br.s, 2H), 2.94 (br.s, 2H), 2.87-2.83 (m, 1H), 1.63-1.61 (m, 2H), 1.45 (br.s, 2H), 1.33-1.26 (m, 4H), 0.87 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) (all 1C unless indicated) δ 155.40, 154.90, 153.13, 152.77, 146.22, 145.88, 145.45, 145.28, 144.88, 144.54, 144.49, 144.46, 144.39 (2C),

144.28, 144.23, 144.15, 144.08 (2C), 143.91, 143.57, 143.51, 143.46, 143.44, 143.39, 143.35 (2C), 143.21, 142.89, 142.76, 142.67, 142.57, 141.41, 141.25, 140.88, 140.85 (2C), 140.73, 140.62, 140.55, 140.53, 140.43, 140.39, 140.25, 140.21, 139.99 (3C), 139.94, 139.84, 138.15, 137.73, 137.70, 137.48, 136.17, 134.41, 134.07, 133.25, 132.64, 127.83 (2C, aryl *C*), 127.28 (2C, aryl *C*), 126.26 (aryl *C*), 75.13, 74.32, 73.34, 55.49, 29.78 (2C), 29.42, 19.43 (2C), 13.06 (2C); FT-IR ν /cm⁻¹ (KBr) 2954, 2925, 2858, 1539, 1498, 1458, 1427, 1372, 1269, 1221, 1185, 1013, 896, 828, 760, 695, 573, 527; UV-vis (CHCl₃) λ_{max} /nm 257, 311, 431; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₇₇H₂₇N 965.2144; Found 965.2142.

Cyclopentafullerene *cis*-5ad and Fulleropyrrolidine *trans*-6ad: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1a (63 μL, 0.50 mmol), 4d (129 μL, 1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·xH₂O (8.9 mg, 0.025 mmol) in chlorobenzene (10 mL) at 80 °C for 15 min afforded first unreacted C₆₀ (14.3 mg, 40%) and then *cis*-5ad (20.1 mg, 42%, R_f = 0.88) and *trans*-6ad³ (4.4 mg, 9%, R_f = 0.10) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. *cis*-5ad: ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) δ 7.59 (d, *J* = 7.2 Hz, 2H), 7.32-7.28 (m, 4H), 7.22-7.13 (m, 4H), 5.08 (d, *J* = 11.2 Hz, 1H), 4.85 (d, *J* = 12.6 Hz, 1H), 4.31 (d, *J* = 13.3 Hz, 1H), 4.13 (d, *J* = 13.3 Hz, 1H), 3.62 (q, *J* = 12.5 Hz, 1H), 2.95-2.93 (m, 1H), 2.78 (s, 3H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) (all 1C unless indicated) δ 155.33, 154.68, 152.93, 152.71, 145.94, 145.88, 145.51, 145.38, 144.96, 144.55 (3C), 144.47 (2C), 144.35, 144.30, 144.23, 144.19, 144.13, 143.97, 143.64, 143.60, 143.55, 143.51, 143.48, 143.43 (2C), 143.33, 142.92, 142.83,

142.77, 142.63, 141.45, 141.33, 140.98, 140.92 (2C), 140.82, 140.73, 140.62, 140.57, 140.52, 140.45, 140.33, 140.28, 140.15, 140.13, 140.07, 140.06, 139.93, 138.19, 137.98, 137.86, 137.61, 137.44, 136.17, 134.58, 134.41, 133.36, 132.88, 127.93 (2C, aryl *C*), 127.36 (4C, aryl *C*), 126.98 (2C, aryl *C*), 126.35 (aryl *C*), 125.94 (aryl *C*), 75.83, 74.24, 73.57, 55.39, 29.06; FT-IR *v*/cm⁻¹ (KBr) 3027, 2922, 2848, 2787, 1602, 1538, 1494, 1454, 1427, 1359, 1217, 1184, 1071, 1027, 967, 907, 739, 696, 573, 527; UV-vis (CHCl₃) λ_{max} /nm 257, 310, 431; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₇₇H₁₉N 957.1518; Found 957.1515.

Cyclopentafullerene *cis*-5ae and Fulleropyrrolidine *trans*-6ae: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1a** (63 µL, 0.50 mmol), **4e** (192 µL, 1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·xH₂O (8.9 mg, 0.025 mmol) in chlorobenzene (10 mL) at 80 °C for 150 min afforded first unreacted C₆₀ (18.1 mg, 50%) and then *trans*-6ae³ (5.9 mg, 11%, R_f = 0.89) and *cis*-5ae (15.4 mg, 30%, R_f = 0.75) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. *cis*-5ae: ¹H NMR (500 MHz, CS₂/DMSO-*d₆*) δ 7.58 (d, *J* = 7.3 Hz, 2H), 7.38 (d, *J* = 7.1 Hz, 4H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.22-7.12 (m, 7H), 5.08 (dd, *J* = 12.6, 4.5 Hz, 1H), 4.76 (dd, *J* = 13.5, 4.4 Hz, 1H), 3.96-3.92 (m, 2H), 3.66 (q, *J* = 12.6 Hz, 1H), 3.03-2.99 (m, 1H); ¹³C NMR (125 MHz, CS₂/DMSO-*d₆*) (all 1C unless indicated) δ 154.40, 154.12, 151.95, 151.42, 145.26, 145.22, 144.84, 144.72, 143.25, 142.99, 142.95, 142.85, 142.81, 142.74 (3C), 142.66, 142.18 (2C), 142.07, 141.94, 140.72, 140.65, 140.33, 140.25 (2C), 140.14, 140.06, 139.99, 139.88 (2C),

139.76, 139.67 (2C), 139.52, 139.35 (4C), 137.33, 137.11 (2C), 136.98, 136.79, 136.74, 135.54, 134.11, 133.89, 132.54, 131.91, 127.38 (2C, aryl *C*), 127.05 (aryl *C*), 126.89 (4C, aryl *C*), 126.50 (5C, aryl *C*), 125.92 (aryl *C*), 125.58 (2C, aryl *C*), 73.01, 72.96, 71.50, 54.76, 27.82; FT-IR ν /cm⁻¹ (KBr) 3025, 2921, 2847, 2798, 1493, 1454, 1428, 1365, 1184, 1151, 1070, 1025, 970, 905, 782, 739, 696, 572, 526; UV-vis (CHCl₃) λ_{max} /nm 257, 312, 432; HRMS (MALDI-TOF) *m*/*z*: [M]⁻ Calcd for C₈₃H₂₃N 1033.1831; Found 1033.1831.

Cyclopentafullerene cis-5af: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1a (63 µL, 0.50 mmol), 4f (108 µL, 1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·xH₂O (8.9 mg, 0.025 mmol) in ODCB (6 mL) at 180 °C for 120 min afforded first unreacted C₆₀ (20.6 mg, 57%) and then *cis*-**5af** (8.5 mg, 18%, $R_f = 0.87$) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. *cis*-**5af**: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.64 (d, J = 7.5 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 7.13 (t, J = 7.9 Hz, 2H), 7.06 (d, J =8.4 Hz, 2H), 6.65 (t, J = 7.2 Hz, 1H), 6.19 (dd, J = 12.3, 4.5 Hz, 1H), 5.07 (dd, J =13.4, 4.4 Hz, 1H), 3.97 (q, J = 12.5 Hz, 1H), 3.35 (s, 3H), 2.93-2.89 (m, 1H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) δ 154.20, 154.00, 152.80, 152.35, 148.49 (aryl C), 145.35, 145.29, 145.20 (2C), 145.02, 144.40, 144.35, 144.32 (2C), 144.28, 144.19, 144.14, 144.10 (2C), 143.89, 143.81, 143.52, 143.48 (2C), 143.38, 143.33, 143.25 (3C), 142.73, 142.62, 142.55, 142.51, 141.28, 141.18, 140.79, 140.76 (2C), 140.69, 140.54, 140.47, 140.39, 140.30 (2C), 140.14, 140.11, 140.02, 139.97, 139.91, 139.77 (2C), 138.16 (2C), 137.81, 137.43, 135.81, 134.43, 134.34,

133.59, 132.83, 127.81 (2C, aryl *C*), 127.73 (2C, aryl *C*), 127.25 (2C, aryl *C*), 126.31 (aryl *C*), 116.81 (aryl *C*), 112.61 (2C, aryl *C*), 73.86, 73.77, 71.60, 54.28, 33.06, 31.81; FT-IR *v*/cm⁻¹ (KBr) 3026, 2807, 1594, 1503, 1426, 1400, 1314, 1242, 1184, 1156, 1121, 1089, 1009, 963, 748, 693, 572, 526; UV-vis (CHCl₃) λ_{max}/nm 256, 307, 430; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₇₆H₁₇N 943.1361; Found 943.1362.

Cyclopentafullerene *cis*-5ag: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1a (63 µL, 0.50 mmol), 4g (126 µL, 1.00 mmol), $Mg(ClO_4)_2$ (5.6 mg, 0.025 mmol) and $Fe(ClO_4)_3 \cdot xH_2O$ (8.9 mg, 0.025 mmol) in ODCB (6 mL) at 180 °C for 100 min afforded first unreacted C₆₀ (27.2 mg, 76%) and then *cis*-**5**ag (6.8 mg, 14%, $R_f = 0.91$) as amorphous brown solid with CS₂ as eluent: mp > 300 °C. cis-5ag: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.64 (d, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.6 Hz, 2H), 7.06 (d, J =8.1 Hz, 2H), 6.63 (t, J = 6.9 Hz, 1H), 6.19 (dd, J = 12.1, 3.9 Hz, 1H), 5.05 (dd, J =13.3, 3.9 Hz, 1H), 4.14-4.07 (m, 1H), 3.94 (q, J = 12.3 Hz, 1H), 3.76-3.69 (m, 1H), 2.99-2.96 (m, 1H), 1.31 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 1C unless indicated) & 154.18, 153.71, 152.73, 152.14, 146.12 (aryl C), 145.05 (3C), 144.91, 144.77, 144.11, 144.05, 144.02 (2C), 143.97, 143.89, 143.84, 143.81 (2C), 143.61, 143.52, 143.18 (3C), 143.09, 143.04, 142.98, 142.93, 142.90, 142.45, 142.32, 142.24 (2C), 140.99, 140.89, 140.48 (3C), 140.40, 140.27, 140.17, 140.11, 140.02 (2C), 139.85 (2C), 139.71, 139.69, 139.61, 139.47, 139.40, 137.80 (2C), 137.54, 137.13, 135.55, 134.09, 134.05, 133.32, 132.31, 127.58 (4C, aryl C), 127.03 (2C, aryl C), 126.12 (aryl C), 116.54 (aryl C), 113.40 (2C, aryl C), 73.56 (2C), 70.78, 54.06,

32.21, 12.38; FT-IR v/cm⁻¹ (KBr) 3028, 2968, 2923, 2848, 1595, 1539, 1497, 1456, 1427, 1373, 1305, 1268, 1231, 1189, 1157, 1122, 1094, 1009, 745, 696, 573, 527; UV-vis (CHCl₃) λ_{max} /nm 257, 310, 431; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₇₇H₁₉N 957.1518; Found 957.1516.

Cyclopentafullerene *cis*-**5ba and Fulleropyrrolidine** *trans*-**6ba**: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1b** (81.1 mg, 0.50 mmol), **4a** (103 μ L, 1.00 mmol), Mg(ClO₄)₂ (5.6 mg, 0.025 mmol) and Fe(ClO₄)₃·*x*H₂O (8.9 mg, 0.025 mmol) in chlorobenzene (10 mL) at 80 °C for 120 min afforded first unreacted C₆₀ (21.3 mg, 59%) and then *cis*-**5ba**^{1,4} (16.2 mg, 34%, R_f = 0.31) and *trans*-**6ba**^{2,3} (trace, R_f = 0.06) as amorphous brown solid with CS₂ as eluent: mp > 300 °C.

Cyclopentafullerene *cis*-5ca and Fulleropyrrolidine *trans*-6ca: According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with 1c (88.6 mg, 0.50 mmol), 4a (103 μ L, 1.00 mmol), Mg(ClO₄)₂ (11.2 mg, 0.05 mmol) and Fe(ClO₄)₃·*x*H₂O (17.8 mg, 0.05 mmol) in chlorobenzene (10 mL) at 80 °C for 35 min afforded first unreacted C₆₀ (6.8 mg, 19%) and then *cis*-5ca¹ (6.4 mg, 13%, R_f = 0.15) and *trans*-6ca^{2,3} (20.0 mg, 42%, R_f = 0.12) as amorphous brown solid with CS₂ as eluent: mp > 300 °C.

Reaction of C_{60} with Cinnamaldehyde (1a) and Triethylamine in the Presence of Mg(ClO₄)₂. By following the same experimental procedure as for the reaction of C_{60} with amines 2/4, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1a (63 µL, 0.50 mmol), triethylamine (69 µL, 0.50 mmol) and Mg(ClO₄)₂ (44.7 mg, 0.20 mmol) in *o*- dichlorobenzene (6 mL) at 180 °C for 60 min afforded first unreacted C_{60} (20.6 mg, 57%) and then *cis*-**5aa**¹ (9.9 mg, 22%, $R_f = 0.82$) and *trans*-**6aa**^{2,3} (1.5 mg, 3%, $R_f = 0.24$) as amorphous brown solid with CS₂ as eluent: mp > 300 °C.

Cyclopentafullerene cis-7: By following the same experimental procedure as for the reaction of C_{60} with amines 2/4, the reaction of *cis*-3aa (11.6 mg, 0.0125 mmol) with benzoyl chloride (29 µL, 0.250 mmol) and DMAP (7.6 mg, 0.0625 mmol) in chlorobenzene (5 mL) at 120 °C for 24 h afforded first unreacted cis-3aa (2.3 mg, 20%, $R_f = 0.98$) and then *cis*-7 (10.2 mg, 79%, $R_f = 0.36$) as an amorphous brown solid (mp > 300 °C) with CS₂/CH₂Cl₂ as eluent (V/V = 10/1). *cis*-7: ¹H NMR (500 MHz, $CS_2/DMSO-d_6$) δ 7.48 (d, J = 7.4 Hz, 2H), 7.28-7.17 (m, 7H), 7.10-7.00 (m, 6H), 5.12 (dd, J = 13.6, 4.2 Hz, 1H), 3.47-3.40 (m, 1H), 2.90-2.86 (m, 1H); ¹³C NMR (125 MHz, CS₂/DMSO-d₆) (all 1C unless indicated) δ 169.84 (C=O), 156.28, 153.70, 152.86, 152.21, 145.64 (2C), 145.59, 145.22, 145.04, 144.70, 144.61, 144.56 (3C), 144.46, 144.39 (3C), 144.25, 144.02, 143.87, 143.72, 143.66, 143.57, 143.50, 143.49, 143.42, 143.04, 142.91, 142.79 (2C), 141.48 (2C), 141.23, 141.03 (3C), 140.96, 140.91, 140.79, 140.69, 140.57, 140.34, 140.24, 140.16, 140.11, 140.03, 139.95, 139.60 (aryl C), 138.21, 138.10, 137.83, 137.82, 135.88 (aryl C), 135.02, 134.89, 134.54, 134.32, 132.43 (aryl C), 129.80 (2C, aryl C), 128.07 (aryl C), 128.01 (2C, aryl C), 127.78 (2C, aryl C), 127.39 (2C, aryl C), 127.03 (2C, aryl C), 126.61 (aryl C), 126.51 (aryl C), 126.39 (2C, aryl C), 74.43, 73.36, 66.37, 54.32, 33.29; FT-IR v/cm⁻¹ (KBr) 2920, 2849, 1644, 1593, 1491, 1453, 1426, 1337, 1267, 1218, 1180, 1155, 1108, 1073, 1016, 783, 762, 734, 697, 574, 527; UV-vis (CHCl₃) λ_{max}/nm 257, 310,

S31

433; HRMS (MALDI-TOF) *m/z*: [M]⁻ Calcd for C₈₂H₁₉NO 1033.1467; Found 1033.1468.

Cyclopentafullerene 8: By following the same experimental procedure as for the reaction of C_{60} with amines 2/4, the reaction of *cis*-3aa (11.6 mg, 0.0125 mmol) with paraformaldehyde (0.8 mg, 0.0250 mmol) and TsOHH₂O (2.4 mg, 0.0125 mmol) in chlorobenzene (5 mL) at 40 °C for 1.5 h afforded first unreacted *cis*-3aa (2.5 mg, 22%, $R_f = 0.98$) and then 8 (7.5 mg, 63%, *cis-ortho*-8/*trans-ortho*-8 = 10.5/1, $R_f = 0.86$) as an amorphous brown solid (mp > 300 °C) with CS_2/CH_2Cl_2 as eluent (V/V = 10/1). *cis-ortho*-8: ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.63 (d, J = 7.4 Hz, 2H), 7.31 (t, J= 7.7 Hz, 2H), 7.24-7.16 (m, 2H), 7.11 (t, J = 8.0 Hz, 1H), 6.91-6.82 (m, 2H), 5.84 (dd, J = 12.4, 4.6 Hz, 1H), 5.56 (d, J = 10.6 Hz, 1H), 4.95-4.87 (m, 1H), 4.67 (d, J = 10.6 Hz, 1H),10.6 Hz, 1H), 3.91 (q, J = 12.8 Hz, 1H), 3.03-2.98 (m, 1H); ¹³C NMR (125 MHz, $CS_2/DMSO-d_6$ (all 1C unless indicated) δ 154.55, 154.38, 152.87, 152.08, 146.08, 145.79. 145.71, 145.63, 145.26, 144.88, 144.75 (3C), 144.70, 144.63 (2C), 144.49, 144.47, 144.33, 144.17 (2C), 144.01, 143.88 (2C), 143.85 (2C), 143.72, 143.67 (2C), 143.12, 143.03 (2C), 142.99, 141.68, 141.60, 141.22 (2C), 141.14, 141.10, 140.90 (2C), 140.77, 140.75, 140.66, 140.60, 140.55, 140.40 (2C), 140.37, 140.23, 140.18, 138.74, 138.35, 138.21, 137.89, 136.03, 135.24, 134.83, 133.84, 133.69, 128.17 (2C, aryl C), 127.52 (2C, aryl C), 126.55 (aryl C), 126.38 (aryl C), 124.04 (aryl C), 123.73 (aryl C), 120.03 (aryl C), 118.07 (aryl C), 74.90, 74.18, 73.69, 66.54, 55.12, 32.35; FT-IR v/cm⁻¹ (KBr) 2919, 2849, 1603, 1491, 1455, 1427, 1270, 1225, 1179, 1056,

S32

1030, 921, 750, 697, 575, 526; UV-vis (CHCl₃) λ_{max}/nm 257, 307, 431; HRMS (MALDI-TOF) m/z: [M]⁻ Calcd for C₇₆H₁₇NO 959.1310; Found 959.1311.

Transformation of *cis*-**3aa in the Presence of Mg(ClO₄)₂.** By following the same experimental procedure as for the reaction of C₆₀ with amines **2/4**, the reaction of *cis*-**3aa** (18.6 mg, 0.02 mmol) with Mg(ClO₄)₂ (9.0 mg, 0.04 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 60 min afforded first *trans*-**3aa** (4.3 mg, 24%, R_f = 0.68) and then unreacted *cis*-**3aa** (11.5 mg, 62%, R_f = 0.59) as amorphous brown solid with CS₂ as eluent: mp > 300 °C.

Transformation of *trans*-**3aa in the Presence of Mg(ClO₄)₂.** By following the same experimental procedure as for the reaction of C₆₀ with amines **2**/**4**, the reaction of *trans*-**3aa** (18.6 mg, 0.02 mmol) with Mg(ClO₄)₂ (9.0 mg, 0.04 mmol) in *o*-dichlorobenzene (6 mL) at 180 °C for 60 min afforded first C₆₀ (1.3 mg, 9%) and then unreacted *trans*-**3aa** (1.7 mg, 8%, R_f = 0.68), *cis*-**3aa** (7.4 mg, 40%, R_f = 0.59) as amorphous brown solid with CS₂ as eluent: mp > 300 °C.

References

1 M. Zhang, H.-Y. Zhang, H.-J. Wang, F.-B. Li, Y. Huang, L. Liu, C.-Y. Liu, A. M. Asiri and K. A. Alamry, *New J. Chem*, 2018, **42**, 9291.

2 M. Zhang, H.-J. Wang, F.-B. Li, X.-X. Zhong, Y.-S. Huang, L. Liu, C.-Y. Liu, A. M. Asiri and K. A. Org. Biomol. Chem., 2018, 16, 2975.

3 W. Ma, D. Zhang, H.-J. Wang, F.-B. Li, L. Liu, X.-F. Liu, C.-Y. Liu, A. M. Asiri and K. A. Alamry, *ChemistrySelect*, 2019, 4, 5240.

4 G.-W. Wang, X.-P. Chen and X. Cheng, Chem. Eur. J, 2006, 12, 7246.

Typical MALDI-TOF MS of cyclopentafullerenes

Typical UV-vis spectra of cyclopentafullerenes

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-3aa

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-3aa

10 200 110 100 fl (ppm)

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-3aa

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-3aa

146.0 145.5 145.0 144.5 144.0 143.5 143.0 142.5 142.0 141.5 141.0 140.5 140.0 139.5 fl (ppm)

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-**3ab**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-**3ab**

S41

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans/cis*-**3ac**

NOESY (500 MHz, CS₂/DMSO-*d*₆) spectrum of *trans/cis*-3ac

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans/cis*-**3ac**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-3ad

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-**3ad**

¹H NMR (500 MHz, $CS_2/DMSO-d_6$) spectrum of compound *cis*-3ad

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**3ad**

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-3ae

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-3ae

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-3ae

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-3ae

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-**3af**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-**3af**

S52

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**3af**

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-**3ba**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-**3ba**

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**3ba**

<1.4581 <1.4581	6, 9363 6, 9701 6, 9383 6, 9383 7, 9383 6, 9383 7, 93857 7, 93857 7, 938577 7, 9385777777777777777777777777777777777777	6. 1614 6. 1428 6. 1428 5. 82915 5. 82915 5. 7365 5. 7365 5. 7763	4. 9489 4. 9103 4. 9125	1. 1062 1. 1062 1. 5946 1. 5679 2. 5679	2 9613 2 9524 2 9432 2 9432 2 9432 2 9432 2 9432 2 9432 2 9437 2 9457 2 9477 2 94777 2 94777 2 94777 2 94777 2 94777 2 94777 2 94777 2 94777 2 947777 2 947777 2 94777777777777777777777777777777777777	2.403	 0.0000

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-3ca

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**3ca**

$<^{8.1699}_{8.1528}$	6 9943 6 9185 6 9185 6 9188 6 9189 6 9187 6 9187 7 8897 8 8977 8 89777 8 89777 8 89777 8 89777 8 89777 8 89777 8 89777 8 89777 8 89777	5. 2011 5. 2001 5. 1728		2.0129 2.0129 2.0149 2.0005 2.0005 2.0005 2.1249	2. 4085	-1.2161	0001
-----------------------	---	-------------------------------	--	--	---------	---------	------

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans/cis*-**3da**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans/cis*-**3da**

- 166, 237 - 166, 217 - 166, 217 - 166, 217 - 166, 217 - 166, 217 - 166, 217 - 166, 217 - 166, 217 - 161, 217 - 161, 217 - 161, 217 - 161, 217 - 161, 217 - 161, 217 - 161, 217 - 163, 217 - 164,

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-5aa

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-5aa

S62

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ab**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ab**

¹H NMR (500 MHz, CS₂/DMSO- d_6) spectrum of compound *cis*-**5ac**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ad**

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ae**

-4. 7518 -4. 7518 -4. 7518

5870 3825 3684	2 7939 2 793	2214	1919	1671	1365
VV	122	111	55	55	22

-1.2245

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ae**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5**af

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ag**

6.110 6.110 6.110 6.110 6.110 6.110 6.110 6.110 6.110 6.110 6.110 6.110 6.110	5.0671 5.0596 5.0128	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.4176		0.0000
---	----------------------------	---------------------------------------	--------	--	--------

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ag**

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ba**

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ba**

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ca**

8. 1520 8. 1384 8. 1384 8. 1384 8. 1384 7. 38854 7. 38854 7. 38959

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-**5ca**

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6aa

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6aa

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6ad

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6ad

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6ae

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6ae

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6ca

5, 3874 5, 3688 5, 9881 5, 0501 5, 0572

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *trans*-6ca

¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis*-7

¹H NMR (500 MHz, CS₂/DMSO-*d*₆) spectrum of compound *cis/trans-ortho*-8

NOESY (500 MHz, CS₂/DMSO-*d*₆) spectrum of *cis/trans-ortho*-8

¹³C NMR (125 MHz, CS₂/DMSO- d_6) spectrum of compound *cis/trans-ortho*-**8**

