Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

# Organocatalytic Enantioselective Aminoalkylation of Pyrazol-3-ones with Aldimines Generated in Situ from α-Amido Sulfones.

Laura Carceller-Ferrer,<sup>a</sup> Carlos Vila,<sup>a</sup> Gonzalo Blay,<sup>a\*</sup> Isabel Fernández,<sup>a</sup> M. Carmen Muñoz,<sup>b</sup> José R. Pedro<sup>a\*</sup>

<sup>&</sup>lt;sup>a</sup> Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València (Spain).

<sup>&</sup>lt;sup>b</sup> Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain)

#### **General Experimental Methods**

Commercial reagents were used as purchased. Reactions were monitored by TLC (thin layer chromatography) analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run in a Bruker DPX300 spectrometer (Bruker, Billerica, MA, USA) at 300 MHz for <sup>1</sup>H and at 75 MHz for <sup>13</sup>C using residual non-deuterated solvent as internal standard (CHCl<sub>3</sub>: δ 7.26 for <sup>1</sup>H and 77.0 ppm for <sup>13</sup>C; DMSO-d<sub>6</sub> δ 2.50 for <sup>1</sup>H and 39.52 ppm for <sup>13</sup>C). Chemical shifts are given in ppm. The carbon type was determined by DEPT (Distortionless Enhancement by Polarization Transfer) experiments. High resolution mass spectra (ESI) were recorded on a TRIPLETOFT 5600 spectrometer (AB Sciex, Warrington, UK) equipped with an electrospray source with a capillary voltage of 4.5 kV (ESI). Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC (High performance liquid chromatography) analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary columns from Daicel. α-amidosulfones 1 derivatives were prepared as described in the literature. Pyrazolone derivatives 2 were prepared as described in the literature.<sup>2</sup>

#### General procedure for the racemic reaction with $\alpha$ -amidosulfones 1 and pyrazolones 2.

In a 5 mL vial, α-amidosulfone (1, 0.2 mmol), pyrazolone (2, 0.1 mmol), Na<sub>2</sub>CO<sub>3</sub> (0.15 mmol) and achiral catalyst (3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-((2-(dimethylamino)ethyl)amino)ciclobut-3-e-1,2-dione) (**K**, 10 mol %, 4.1 mg) in DCM (1 mL):H<sub>2</sub>O (0.5 mL). The mixture was stirred at room temperatura until completion (TLC). The mixture was extracted with DCM (3x20 mL), the combined organic layers were dried over MgSO<sub>4</sub> (anh.) and solvent was removed under reduced pressure. The residue was purified by column chromatography being eluted with hexane/Et<sub>2</sub>O 50:50 to hexane/Et<sub>2</sub>O 20:80, affording the non-acetilated intermediate, which was subjected to acetylation with Ac<sub>2</sub>O (0.2 mmols, 19 μL) and Et<sub>3</sub>N (30 mol %, 0.03 mmols, 5μL) in DCM (2 mL) at room temperature. The resulting product was purified by column chromatography being eluted with hexane/Et<sub>2</sub>O 50:50 to hexane/Et<sub>2</sub>O 20:80.

#### Procedure for the enantioselective reaction with $\alpha$ -amidosulfones 1 and pyrazolones 2.

In a 5 mL vial,  $\alpha$ -amidosulfone (1, 0.3 mmol), pyrazolone (2, 0.2 mmol), Na<sub>2</sub>CO<sub>3</sub> (0.3 mmol) and catalyst (E, 6.2 mg, 5 mol %) in DCM (1 mL):H<sub>2</sub>O (0.5 mL). The mixture was stirred at 4 °C until completion (TLC). The mixture was extracted with DCM (3x20 mL), the combined organic layers were dried over MgSO<sub>4</sub> (anh.) and solvent was removed under reduced pressure. The residue was purified by column chromatography being eluted with hexane/Et<sub>2</sub>O 50:50 to hexane/Et<sub>2</sub>O 20:80, affording the non-acetilated intermediate, which was subjected to acetylation with Ac<sub>2</sub>O (0.4 mmols, 38  $\mu$ L) and Et<sub>3</sub>N (30 mol %, 0.06 mmols, 9 $\mu$ L) in DCM (2 mL) at room temperature. The resulting product

was purified by column chromatography being eluted with hexane/Et<sub>2</sub>O 50:50 to hexane/Et<sub>2</sub>O 20:80.

#### References

1- J. B. F. N. Engberts, J. Strating, Recl. Trav. Chim. Pays-Bas. 1964, 83, 733.

2-. (a) L. Carpino, *J. Am. Chem. Soc.* **1958**, *80*, 599; (b) J. Sun, C. –G. Yan, Y. Han, *Synthetic Commun.*, **2001**, *31*, 151; (c) A. Mazzanti, T. Calbet, M.Font-Bardia, A. Moyano, R. Rios, *Org. Biomol. Chem.*, **2012**, *10*, 1645.

#### Characterization data for compounds 3

#### Benzyl ((5-hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)(phenyl)methyl)carbamate

Enantiomeric excess (98%) was determined by chiral HPLC (Chiralpak® IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 23.97$  min, minor enantiomer  $t_r = 13.70$  min. Yellow Oil;  $[\alpha_D^{20}] = +4.5$  (c 1.33, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, MeOD) δ 7.66-7.56 (m, 2H), 7.45 (t, J = 7.9 Hz, 2H), 7.42-7.17 (m, 11H), 5.83 (s, 1H), 5.10 (s, 2H), 2.09 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, MeOD) δ 159.0 (C), 148.8 (C), 143.6 (C), 139.1 (C), 138.3 (C), 135.8 (C), 131.1 (CH), 130.4 (CH), 130.3 (CH), 129.8 (CH), 129.6 (CH), 129.0 (CH), 128.5 (CH), 128.4 (CH), 123.3 (CH), 107.5 (C), 68.6 (CH<sub>2</sub>), 51.7 (CH), 12.2 (CH<sub>3</sub>). **HRMS** (ESI) m/z 414.1820 [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub> requires 414.1812.

## 4-((((Benzyloxy)carbonyl)amino)(phenyl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (96%) was determined by chiral HPLC (Chiralpak® IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 16.67$  min, minor enantiomer  $t_r = 14.63$  min. Yellow Oil;  $[\alpha_D^{20}] = -88.3$  (c 1.1, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.51-7.20 (m, 15H), 6.10 (d, J = 8.8 Hz, 1H), 5.58 (d, J = 8.6 Hz, 1H), 5.17 (s, 2H), 2.27 (s, 3H), 1.74 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 155.7 (C), 148.1 (C), 141.5 (C), 139.3 (C), 137.6 (C), 136.4 (C), 129.1 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 127.4 (CH), 127.2 (CH), 126.2 (CH), 123.0 (CH), 109.1 (C), 67.0 (CH<sub>2</sub>), 48.9 (CH), 19.8 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). HRMS (ESI) m/z 456.1898 [M+H]<sup>+</sup>, C<sub>27</sub>H<sub>26</sub>N<sub>3</sub>O<sub>4</sub> requires 456.1918.

# 4-(((tert-Butoxycarbonyl)amino)(phenyl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (66%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 7.62$  min, minor enantiomer  $t_r = 6.27$ 

min. White Solid; mp = 123-125 °C;  $[\alpha_D^{20}]$  = +4.0 (c 1.12, MeOH).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.46-7.36 (m, 4H), 7.35-7.23 (m, 6H), 6.03 (d, J = 8.4 Hz, 1H), 5.29 (d, J = 8.8 Hz, 1H), 2.27 (s, 3H), 1.76 (s, 3H), 1.48 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 168.0 (C), 155.1 (C), 148.2 (C), 141.4 (C), 139.8 (C), 137.6 (C), 129.1 (CH), 128.4 (CH), 127.3 (CH), 127.1 (CH), 126.3 (CH), 122.9 (CH), 109.5 (C), 79.7 (C), 48.4 (CH), 28.4 (CH<sub>3</sub>), 19.9 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). HRMS (ESI) m/z 422.2070 [M+H]<sup>+</sup> C<sub>24</sub>H<sub>28</sub>N<sub>3</sub>O<sub>4</sub> requires 422.2074.

# Ethyl N-((5-hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)(phenyl)methyl)methanimidoperoxoate

Enantiomeric excess (88%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 15.13$  min, minor enantiomer  $t_r = 12.97$  min. White Solid; mp = 135-137 °C;  $[\alpha_D^{20}] = +1.0$  (c 1.3, MeOH).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.46-7.38 (m, 4H), 7.37-7.23 (m, 6H), 6.07 (d, J = 8.7 Hz, 1H), 5.48 (d, J = 8.4 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.76 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 168.0 (C), 156.0 (C), 148.2 (C), 141.5 (C), 139.6 (C), 137.6 (C), 129.2 (CH), 128.5 (CH), 127.5 (CH), 127.2 (CH), 126.3 (CH), 123.0 (CH), 109.4 (C), 61.2 (CH<sub>2</sub>), 48.8 (CH), 19.9 (CH<sub>3</sub>), 14.6 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). **HRMS** (ESI) m/z 394.1754 [M+H]<sup>+</sup> C<sub>22</sub>H<sub>24</sub>N<sub>3</sub>O<sub>4</sub> requires 394.1761.

#### 4-((((Benzyloxy)carbonyl)amino)(p-tolyl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (86%) was determined by chiral HPLC (Chiralpak® ADH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 9.46$  min, minor enantiomer  $t_r = 6.97$  min. White Solid; mp = 124-126 °C;  $[\alpha_D^{20}] = -67.9$  (c 0.93, MeOH).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.49-7.26 (m, 10H), 7.21 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.06 (d, J = 8.6 Hz, 1H), 5.57 (d, J = 8.6 Hz, 1H), 5.17 (s, 2H), 2.34 (s, 3H), 2.26 (s, 3H), 1.78 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 155.6 (C), 148.0 (C), 141.4 (C), 137.6 (C), 136.7 (C), 136.4 (C), 136.3 (C), 129.1 (CH), 128.4 (CH), 128.1 (CH), 128.09 (CH), 127.3 (CH), 126.1 (CH), 122.9 (CH), 109.2 (C), 66.9 (CH<sub>2</sub>), 48.8 (CH), 21.0 (CH<sub>3</sub>), 19.8 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). **HRMS** (ESI) m/z 470.2065 [M+H]+, C<sub>28</sub>H<sub>28</sub>N<sub>3</sub>O<sub>4</sub> requires 470.2074.

### 4-((((Benzyloxy)carbonyl)amino)(m-tolyl)methyl)-3-methyl-1-phenyl-1<math>H-pyrazol-5-yl acetate

Enantiomeric excess (94%) was determined by chiral HPLC (Chiralpak® IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 21,43$  min, minor enantiomer  $t_r = 14,45$ min. Yellow Oil;  $[\alpha_D^{20}] = -85,9$  (c 0.96, MeOH).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.49-7.17 (m, 12H), 7.16-7.00 (m, 2H), 6.06 (d, J = 8.8 Hz, 1H), 5.57 (d, J = 8.8 Hz, 1H), 5.18 (s, 2H), 2.34 (s, 3H), 2.28 (s, 3H), 1.76 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 155.7 (C), 148.1 (C), 141.5 (C), 139.2 (C), 138.0 (C), 137.6 (C), 136.4 (C), 129.1 (CH), 129.0 (CH), 128.5 (CH), 128.3 (CH), 128.1 (CH), 127.9 (CH), 127.4 (CH), 126.9 (CH), 123.3 (CH), 122.9 (CH), 109.2 (C), 66.9 (CH<sub>2</sub>), 48.9 (CH), 21.4 (CH<sub>3</sub>), 19.8 (CH<sub>3</sub>), 13.0 (CH<sub>3</sub>). HRMS (ESI) m/z 470.2079 [M+H]+,  $C_{28}H_{28}N_3O_4$  requires 470.2074.

## 4-((((Benzyloxy)carbonyl)amino)(o-tolyl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (74%) was determined by chiral HPLC (Chiralpak® ADH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 11.67$  min, minor enantiomer  $t_r = 18.00$  min. Orange Oil;  $[\alpha_D^{20}] = -102.5$  (c 0.95, MeOH).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.42-7.24 (m, 12H), 7.22-7.16 (m, 2H), 6.07 (d, J = 8.5 Hz, 1H), 5.63 (d, J = 8.5 Hz, 1H), 5.19 (d, J = 12.3 Hz, 1H), 5.12 (d, J = 12.2 Hz, 1H), 2.31 (s, 3H), 2.19 (s, 3H), 1.72 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 155.3 (C), 148.1 (C), 141.4 (C), 137.44 (C), 137.37 (C), 136.4 (C), 135.6 (C), 130.8 (CH), 129.0 (CH), 128.4 (CH), 128.1 (CH), 127.4 (CH), 127.3 (CH), 125.7 (CH), 124.8 (CH), 122.9 (CH), 107.8 (C), 66.9 (CH<sub>2</sub>), 47.2 (CH), 19.9 (CH<sub>3</sub>), 19.1 (CH<sub>3</sub>), 12.8 (CH<sub>3</sub>). **HRMS** (ESI) m/z 470.2063 [M+H]<sup>+</sup>, C<sub>28</sub>H<sub>28</sub>N<sub>3</sub>O<sub>4</sub> requires 470.2074.

# 4-((((Benzyloxy)carbonyl)amino)(4-methoxyphenyl)methyl)-3-methyl-1-phenyl-1<math>H-pyrazol-5-yl acetate

Enantiomeric excess (27%) was determined by chiral HPLC (Chiralpak® IC), hexane-

iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_T = 27.57$  min, minor enantiomer  $t_T = 25.21$  min. White Solid; mp = 113-115 °C;  $\lceil \alpha_D^{20} \rceil = -8.3$  (c 0.95, MeOH).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.48-7.27 (m, 10H), 7.23 (d, J = 8.2 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.03 (d, J = 8.7 Hz, 1H), 5.57 (d, J = 8.7 Hz, 1H), 5.17 (s, 2H), 3.79 (s, 3H), 2.24 (s, 3H), 1.81 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 168.0 (C), 158.8 (C), 155.7 (C), 148.1 (C), 141.5 (C), 137.7 (C), 136.5 (C), 131.5 (C), 129.2 (CH), 128.6 (CH), 128.2 (CH), 127.5 (CH), 127.5 (CH), 123.0 (CH), 113.9 (CH), 109.3 (C), 67.0 (CH<sub>2</sub>), 55.4 (CH<sub>3</sub>), 48.7 (CH), 20.0 (CH<sub>3</sub>), 13.2 (CH<sub>3</sub>). HRMS (ESI) m/z 486.2030 [M+H]<sup>+</sup>, C<sub>28</sub>H<sub>28</sub>N<sub>3</sub>O<sub>5</sub> requires 486.2023.

## 4-((((Benzyloxy)carbonyl)amino)(3-methoxyphenyl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (99%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 33.99$  min, minor enantiomer  $t_r = 24.67$  min. Yellow Oil;  $[\alpha_D^{20}] = -19.7$  (c 0.67, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CHCl<sub>3</sub>) δ 7.47 -7.27 (m, 10H), 7.24 (d, J = 8.0 Hz, 1H), 6.94-6.87 (m, 1H), 6.86 (d, J = 1.5 Hz, 1H), 6.80 (dd, J = 8.2, 2.5 Hz, 1H), 6.05 (d, J = 8.7 Hz, 1H), 5.57 (d, J = 8.7 Hz, 1H), 5.17 (s, 2H), 3.77 (s, 3H), 2.27 (s, 3H), 1.80 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 168.0 (C), 159.7 (C), 155.6 (C), 148.0 (C), 141.5 (C), 141.1 (C), 137.5 (C), 136.4 (C), 129.5 (CH), 129.1 (CH), 128.5 (CH), 128.12 (CH), 128.06 (CH), 127.4 (CH), 122.9 (CH), 118.5 (CH), 112.6 (CH), 112.0 (CH), 109.1 (C), 66.9 (CH<sub>2</sub>), 55.2 (CH<sub>3</sub>), 48.9 (CH), 19.8 (CH<sub>3</sub>), 13.0 (CH<sub>3</sub>). **HRMS** (ESI) m/z 486.2028 [M+H]<sup>+</sup>, C<sub>28</sub>H<sub>28</sub>N<sub>3</sub>O<sub>5</sub> requires 486.2023.

# 4-((((Benzyloxy)carbonyl)amino)(4-fluorophenyl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (91%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r$  = 14.09 min, minor enantiomer  $t_r$  = 10.35 min. White Solid; mp = 100-102 °C;  $[\alpha_D^{20}]$  = -34.6 (c 0.92, MeOH).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.47-7.28 (m, 12H), 7.03 (t, J = 8.6 Hz, 2H), 6.05 (d, J = 8.6 Hz, 1H), 5.55 (d, J = 8.7 Hz, 1H), 5.17 (s, 2H), 2.25 (s, 3H), 1.81 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.8 (C), 161.95 (d,  $J_{C-F}$  = 245.9 Hz, C), 155.7 (C), 147.9 (C), 141.4 (C), 137.5 (C), 136.3 (C), 135.2 (C), 129.1 (CH), 128.5 (CH), 128.2 (CH), 128.1 (CH), 127.9 (d,  $J_{C-F}$  = 8.0 Hz, CH), 127.5 (CH), 123.0 (CH), 115.25 (d,  $J_{C-F}$  = 21.3 Hz,

CH), 109.01 (C), 67.1 (CH<sub>2</sub>), 48.5 (CH), 19.9 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). <sup>19</sup>**F NMR** (282 MHz, CDCl<sub>3</sub>) δ -115.52 (s). **HRMS** (ESI) m/z 479.1731 [M+H]<sup>+</sup>, C<sub>27</sub>H<sub>25</sub>FN<sub>3</sub>O<sub>4</sub> requires 479.1724.

# 4-((((Benzyloxy)carbonyl)amino)(4-bromophenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl acetate

Enantiomeric excess (88%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 16.57$  min, minor enantiomer  $t_r = 12.43$  min. White Solid; mp = 129-130 °C;  $\lceil \alpha_D^{20} \rceil = -27.4$  (c 0.94, MeOH).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.46 (d, J = 8.5 Hz, 2H), 7.43-7.28 (m, 10H), 7.20 (d, J = 7.9 Hz, 2H), 6.03 (d, J = 8.5 Hz, 1H), 5.58 (d, J = 8.6 Hz, 1H), 5.17 (s, 2H), 2.25 (s, 3H), 1.81 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 167.8 (C), 155.6 (C), 147.9 (C), 141.4 (C), 138.6 (C), 137.4 (C), 136.2 (C), 131.4 (CH), 129.1 (CH), 128.5 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.5 (CH), 122.9 (CH), 121.0 (C), 108.7 (C), 67.1 (CH<sub>2</sub>), 48.5 (CH), 19.9 (CH<sub>3</sub>), 13.0 (CH<sub>3</sub>). **HRMS** (ESI) m/z 534.1002 [M+H]<sup>+</sup>, C<sub>27</sub>H<sub>25</sub>BrN<sub>3</sub>O<sub>4</sub> requires 534.1023.

# $4-((((Benzyloxy)carbonyl)amino)(3-chlorophenyl)methyl)-3-methyl-1-phenyl-1 \\ H-pyrazol-5-yl acetate$

Enantiomeric excess (96%) was determined by chiral HPLC (Chiralcel® ADH), hexane-iPrOH 80:20, 0.7 mL/min, major enantiomer  $t_r = 23.81$  min, minor enantiomer  $t_r = 25.51$  min. Colorless Oil;  $[\alpha_D^{20}] = -93.3$  (c 1.84, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.44-7.26 (m, 13H), 7.22-7.15 (m, 1H), 6.05 (d, J = 8.5 Hz, 1H), 5.61 (d, J = 8.5 Hz, 1H), 5.17 (s, 2H), 2.27 (s, 3H), 1.82 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 155.6 (C), 147.9 (C), 141.8 (C), 141.4 (C), 137.4 (C), 136.2 (C), 134.4 (C), 129.7 (CH), 129.1 (CH), 128.5 (CH), 128.2 (CH), 128.1 (CH), 127.5 (CH), 127.4 (CH), 126.2 (CH), 124.6 (CH), 123.0 (CH), 108.7 (C), 67.1 (CH<sub>2</sub>), 48.5 (CH), 19.8 (CH<sub>3</sub>), 13.0 (CH<sub>3</sub>). **HRMS** (ESI) m/z 490.1521 [M+H]<sup>+</sup>, C<sub>27</sub>H<sub>25</sub>ClN<sub>3</sub>O<sub>4</sub> requires 490.1528.

### 4-((((Benzyloxy)carbonyl)amino)(naphthalen-1-yl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (56%) was determined by chiral HPLC (Chiralcel® ODH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 16,16$  min, minor enantiomer  $t_r = 9,87$  min. White Solid; mp =64-66 °C;  $[\alpha_D^{20}] = +99.6$  (c 1.84, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.84-7.65 (m, 3H), 7.49-7.26 (m, 11H), 7.25-7.17 (m, 3H), 6.59 (d, J = 8.5 Hz, 1H), 5.62 (d, J = 8.5 Hz, 1H), 5.14 (d, J = 12.3 Hz, 1H), 5.08 (d, J = 12.2 Hz, 1H), 2.31 (s, 3H), 1.58 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 168.1 (C), 155.4 (C), 147.8 (C), 141.5 (C), 137.4 (C), 136.4 (C), 134.8 (C), 133.9 (C), 130.5 (C), 129.0 (CH), 128.7 (CH), 128.52 (CH), 128.50 (CH), 128.4 (CH), 128.1 (CH), 127.4 (CH), 126.4 (CH), 125.8 (CH), 124.9 (CH), 123.4 (CH), 123.0 (CH), 122.9 (CH), 108.9 (C), 67.0 (CH<sub>2</sub>), 47.1 (CH), 19.9 (CH<sub>3</sub>), 13.0 (CH<sub>3</sub>). HRMS (ESI) m/z 506.2081 [M+H]<sup>+</sup>, C<sub>31</sub>H<sub>28</sub>N<sub>3</sub>O<sub>4</sub> requires 506.2074.

## 4-((((Benzyloxy)carbonyl)amino)(thiophen-3-yl)methyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (94%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 24,65$  min, minor enantiomer  $t_r = 16,96$  min. White Solid; mp = 124-126 °C;  $[\alpha_D^{20}] = -1.3$  (c 1,05, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.56-7.27 (m, 10H), 7.24 (d, J = 4.5 Hz, 1H), 7.04-6.82 (m, 2H), 6.25 (d, J = 8.9 Hz, 1H), 5.72 (d, J = 8.9 Hz, 1H), 5.17 (s, 2H), 2.29 (s, 3H), 1.90 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 168.0 (C), 155.6 (C), 147.7 (C), 144.3 (C), 141.6 (C), 137.6 (C), 136.3 (C), 129.2 (CH), 128.6 (CH), 128.23 (CH), 128.20 (CH), 127.6 (CH), 126.9 (CH), 124.9 (CH), 124.6 (CH), 123.1 (CH), 108.9 (C), 67.17 (CH<sub>2</sub>), 46.1 (CH), 20.0 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). HRMS (ESI) m/z 462.1486 [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>24</sub>N<sub>3</sub>O<sub>4</sub>S requires 462.1482.

# 4-((((Benzyloxy)carbonyl)amino)(thiophen-2-yl)methyl)-3-methyl-1-phenyl-1<math>H-pyrazol-5-yl acetate

Enantiomeric excess (54%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 26,96$  min, minor enantiomer  $t_r = 15,43$  min. White Solid; mp = 133-134 °C;  $[\alpha_D^{20}] = +48.3$  (c 1.74, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.51-7.20 (m, 11H), 7.11 (s, 1H), 6.94 (dd, J = 5.0, 0.9 Hz, 1H), 6.07 (d, J = 8.7 Hz, 1H), 5.64 (d, J = 8.4 Hz, 1H), 5.17 (s, 2H), 2.28 (s, 3H), 1.86 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 168.1 (C), 155.7 (C), 147.9 (C), 141.5 (C), 141.2 (C), 137.6 (C), 136.4 (C), 129.2 (CH), 128.6 (CH), 128.2 (CH), 127.5 (CH), 126.8 (CH), 126.3 (CH), 123.02 (CH), 123.02 (CH), 120.9 (CH), 108.7 (C), 67.1 (CH<sub>2</sub>), 46.2 (CH), 19.9 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). **HRMS** (ESI) m/z 462.1489 [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>24</sub>N<sub>3</sub>O<sub>4</sub>S requires 462.1482.

## 4-((((Benzyloxy)carbonyl)amino)(phenyl)methyl)-1-(4-methoxyphenyl)-3-methyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (88%) was determined by chiral HPLC (Chiralcel® ODH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_{\Gamma}$  = 12,55 min, minor enantiomer  $t_{\Gamma}$  = 11,10 min. White Solid; mp = 44-45 °C;  $[\alpha_D^{20}]$  = -81.0 (c 1.03, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.49-7.13 (m, 12H), 6.90 (d, J = 9.1 Hz, 2H), 6.08 (d, J = 8.6 Hz, 1H), 5.57 (d, J = 8.6 Hz, 1H), 5.17 (s, 2H), 3.81 (s, 3H), 2.26 (s, 3H), 1.72 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 168.1 (C), 159.0 (C), 155.8 (C), 147.7 (C), 141.5 (C), 139.5 (C), 136.5 (C), 130.6 (C), 128.58 (CH), 128.55 (CH), 128.48 (CH), 128.2 (CH), 127.2 (CH), 126.3 (CH), 124.9 (CH), 114.3 (CH), 108.7 (C), 67.0 (CH<sub>2</sub>), 55.5 (CH<sub>3</sub>), 49.0 (CH), 19.8 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). **HRMS** (ESI) m/z 486.2019 [M+H]<sup>+</sup>, C<sub>28</sub>H<sub>28</sub>N<sub>3</sub>O<sub>5</sub> requires 486.2023.

## 4-((((Benzyloxy)carbonyl)amino)(phenyl)methyl)-1-(4-chlorophenyl)-3-methyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (84%) was determined by chiral HPLC (Chiralpak® ADH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 19,87$  min, minor enantiomer  $t_r = 24,71$  min. White Solid; mp = 142-144 °C;  $\lceil \alpha_D^{20} \rceil = -72.6$  (c 1.07, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.39-7.13 (m, 14H), 6.00 (d, J = 8.7 Hz, 1H), 5.47 (d, J = 8.6 Hz, 1H), 5.09 (s, 2H), 2.17 (s, 3H), 1.67 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 167.8 (C), 155.7 (C), 148.5 (C), 141.5 (C), 139.1 (C), 136.3 (C), 136.1 (C), 133.0 (C), 129.7 (CH), 129.3 (CH), 128.5 (CH), 128.2 (CH), 128.1 (CH), 127.3 (CH), 126.2 (CH), 124.0

(CH), 109.5 (C), 67.0 (CH<sub>2</sub>), 48.9 (CH), 19.8 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). **HRMS** (ESI) m/z 490.1521 [M+H]<sup>+</sup>, C<sub>27</sub>H<sub>25</sub>ClN<sub>3</sub>O<sub>4</sub> requires 490.1528.

# 4-((((Benzyloxy)carbonyl)amino)(phenyl)methyl)-1-(3,4-dimethylphenyl)-3-methyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (94%) was determined by chiral HPLC (Chiralcel® ODH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 9,58$  min, minor enantiomer  $t_r = 7,57$  min. White Solid; mp = 83-84 °C;  $[\alpha_D^{20}] = -72.1$  (c = 1.02, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.39-7.22 (m, 11H), 7.15-7.07 (m, 2H), 6.10 (d, J = 8.7 Hz, 1H), 5.64 (d, J = 8.6 Hz, 1H), 5.20 (d, J = 12 Hz, 1H), 5.15 (d, J = 12 Hz, 1H), 2.26 (s, 9H), 1.74 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 155.7 (C), 147.6 (C), 141.3 (C), 139,4 (C), 137.7 (C), 136.3 (C), 136.0 (C), 135.2 (C), 129.9 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.1 (CH), 126.2 (CH), 124.2 (CH), 120.0 (CH), 108.8 (C), 66.9 (CH<sub>2</sub>), 48.9 (CH), 19.74 (CH<sub>3</sub>), 19.70 (CH<sub>3</sub>), 19.3 (CH<sub>3</sub>), 13.0 (CH<sub>3</sub>). **HRMS** (ESI) m/z 484.2236 [M+H]<sup>+</sup>, C<sub>29</sub>H<sub>30</sub>N<sub>3</sub>O<sub>4</sub> requires 484.2231.

#### $4 \hbox{-} ((((Benzyloxy) carbonyl) amino) (phenyl) methyl) \hbox{-} 3 \hbox{-} ethyl \hbox{-} 1 \hbox{-} phenyl \hbox{-} 1 H \hbox{-} pyrazol \hbox{-} 5 \hbox{-} ylacetate ) }$

Enantiomeric excess (96%) was determined by chiral HPLC (Chiralcel® ODH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 7,69$  min, minor enantiomer  $t_r = 6,59$  min. White Solid; mp = 102-103 °C;  $[\alpha_D^{20}] = -95.7$  (c 1.2, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.47-7.20 (m, 15H), 6.13 (d, J = 8.7 Hz, 1H), 5.65 (d, J = 8.8 Hz, 1H), 5.21 (d, J = 12.0 Hz, 1H), 5.15 (d, J = 11.9 Hz, 1H), 2.75-2.62 (m, 2H), 1.72 (s, 3H), 1.28 (t, J = 7.5 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 168.0 (C), 155.6 (C), 153.2 (C), 141.3 (C), 139.5 (C), 137.6 (C), 136.4 (C), 129.1 (CH), 128.5 (CH), 128.4 (CH), 128.12 (CH), 128.10 (CH), 127.3 (CH), 127.1 (CH), 126.1 (CH), 123.0 (CH), 108.6 (C), 66.9 (CH<sub>2</sub>), 48.6 (CH), 20.8 (CH<sub>2</sub>), 19.8 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). HRMS (ESI) m/z 470.2069 [M+H]<sup>+</sup>, C<sub>28</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub> requires 470.2074.

#### $4 \hbox{-} ((((Benzyloxy) carbonyl) amino) (phenyl) methyl) \hbox{-} 1,3 \hbox{-} diphenyl \hbox{-} 1H \hbox{-} pyrazol \hbox{-} 5 \hbox{-} yl acetate \\$

Enantiomeric excess (91%) was determined by chiral HPLC (Chiralpak<sup>®</sup> IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 19,49$  min, minor enantiomer  $t_r = 30,45$  min. White Solid; mp = 53-54 °C;  $[\alpha_D^{20}] = -43.9$  (c 1.01, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) 7.68 (dd, J = 6.3, 2.8 Hz, 2H), 7.61-7.28 (m, 18H), 6.24 (d, J = 8.5 Hz, 1H), 5.81 (d, J = 8.4 Hz, 1H), 5.11 (d, J = 12.0 Hz, 1H), 5.06 (d, J = 12.1 Hz, 1H), 1.79 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 167.8 (C), 155.3 (C), 150.7 (C), 142.2 (C), 139.8 (C), 137.5 (C), 136.6 (C), 132.6 (C), 129.1 (CH), 128.6 (CH), 128.4 (CH), 128.4 (CH), 128.13 (CH), 128,08 (CH), 127.8 (CH), 127.1 (CH), 126.1 (CH), 123.2 (CH), 108.9 (C), 66.9 (CH<sub>2</sub>), 49.2 (CH), 19.9 (CH<sub>3</sub>). **HRMS** (ESI) m/z 518.2069 [M+H]<sup>+</sup>, C<sub>32</sub>H<sub>28</sub>N<sub>3</sub>O<sub>4</sub> requires 518.2074.

# 4-((((Benzyloxy)carbonyl)amino)(phenyl)methyl)-1-(4-methoxyphenyl)-3-phenyl-1*H*-pyrazol-5-yl acetate

Enantiomeric excess (96%) was determined by chiral HPLC (Chiralpak® IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 16,45$  min, minor enantiomer  $t_r = 37,91$  min. White Solid; mp = 46-48 °C;  $[\alpha_D^{20}] = -4.4$  (c 0.88, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) 7.73-7.62 (m, 2H), 7.48-7.21 (m, 15H), 6.94 (d, J = 9.0 Hz, 2H), 6.23 (d, J = 8.4 Hz, 1H), 5.82 (d, J = 8.4 Hz, 1H), 5.15 (d, J = 12.3 Hz, 1H), 5.03 (d, J = 12.0 Hz, 1H), 3.82 (s, 3H), 1.77 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 159.2 (C), 155.4 (C), 150.3 (C), 142.2 (C), 140.0 (C), 136.7 (C), 132.7 (C), 130.6 (C), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.24 (CH), 128.20 (CH), 128.2 (CH), 127.2 (CH), 126.2 (CH), 125.1 (CH), 114.3 (CH), 108.5 (C), 66.9 (CH<sub>2</sub>), 55.5 (CH<sub>3</sub>), 49.3 (CH), 19.9 (CH<sub>3</sub>). **HRMS** (ESI) m/z 548.2171 [M+H]<sup>+</sup>, C<sub>33</sub>H<sub>30</sub>N<sub>3</sub>O<sub>5</sub> requires 548.2180.

# $4-((((Benzyloxy)carbonyl)amino)(phenyl)methyl)-1-(4-chlorophenyl)-3-phenyl-1 \\ H-pyrazol-5-yl acetate$

Enantiomeric excess (87%) was determined by chiral HPLC (Chiralpak® IC), hexane-

iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 9,23$  min, minor enantiomer  $t_r = 19,57$  min. White Solid; mp = 58-59 °C;  $[\alpha_D^{20}] = -65.0$  (c 1.76, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) 7.64 (dd, J = 6.5, 2.8 Hz, 2H), 7.52-7.18 (m, 17H), 6.21 (d, J = 8.5 Hz, 1H), 5.76 (d, J = 8.4 Hz, 1H), 5.23 (d, J = 12.3 Hz, 1H), 5.11 (d, J = 12.0 Hz, 1H), 1.80 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 167.6 (C), 155.3 (C), 151.0 (C), 142.2 (C), 139.7 (C), 136.5 (C), 136.1 (C), 133.5 (C), 132.3 (C), 129.3 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 128.1 (CH), 127.2 (CH), 126.1 (CH), 124.3 (CH), 109.2 (C), 66.9 (CH<sub>2</sub>), 49.2 (CH), 19.9 (CH<sub>3</sub>). **HRMS** (ESI) m/z 552.1677 [M+H]<sup>+</sup>, C<sub>32</sub>H<sub>27</sub>ClN<sub>3</sub>O<sub>4</sub> requires 552.1685.

#### $4 \hbox{-} ((((Benzyloxy) carbonyl) amino) (phenyl) methyl) \hbox{-} 1, 3 \hbox{-} dimethyl \hbox{-} 1 \hbox{$H$-pyrazol-5-yl acetate}$

Enantiomeric excess (94%) was determined by chiral HPLC (Chiralpak® ADH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_{\rm r}$  = 23.43 min, minor enantiomer  $t_{\rm r}$  = 55.50 min. Yellow Oil;  $[\alpha_D^{20}]$  = -60.9 (c 0.89, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) 7.42-7.17 (m, 10H), 6.00 (d, J = 8.7 Hz, 1H), 5.48 (d, J = 8.7 Hz, 1H), 5.14 (s, 2H), 3.53 (s, 3H), 2.17 (s, 3H), 1.83 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 167.9 (C), 155.7 (C), 146.2 (C), 142.1 (C), 139.6 (C), 136.4 (C), 128.5 (CH), 128.5 (CH), 128.2 (CH), 127.2 (CH), 126.3 (CH), 107.3 (C), 66.9 (CH<sub>2</sub>), 49.0 (CH), 34.4 (CH<sub>3</sub>), 19.8 (CH<sub>3</sub>), 12.9 (CH<sub>3</sub>). HRMS (ESI) m/z 394.1748 [M+H]<sup>+</sup>, C<sub>22</sub>H<sub>24</sub>N<sub>3</sub>O<sub>4</sub> requires 394.1761.

### 4-((((benzyloxy)carbonyl)amino)(phenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl benzoate

Enantiomeric excess (95%) was determined by chiral HPLC (Chiralpak® ADH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 17,54$  min, minor enantiomer  $t_r = 19,84$  min. Colorless Oil;  $[\alpha_D^{20}] = -54.2$  (c 1.09, CHCl<sub>3</sub>).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.74 (d, J = 6.9 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.42-7.17 (m, 12H), 7.11 (t, J = 7.4 Hz, 2H), 7.01 (t, J = 7.0 Hz, 1H), 6.14 (d, J = 8.6 Hz, 1H), 5.71 (d, J = 8.7 Hz, 1H), 5.14 (s, 2H), 2.34 (s, 3H). <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 163.8 (C), 155.7 (C), 148.2 (C), 141.6 (C), 139.2 (C), 137.6 (C), 136.4 (C), 134.3 (C), 130.3 (CH), 129.1 (CH), 128.5 (CH), 128.44 (CH), 128.40 (CH), 128.3 (CH), 128.1 (CH), 127.3 (CH), 127.0 (CH), 126.9 (CH), 126.1 (CH), 122.8 (CH), 109.46 (C), 66.9 (CH<sub>2</sub>), 49.1 (CH), 13.1 (CH<sub>3</sub>). **HRMS** (ESI) m/z 518.2082 [M+H]<sup>+</sup>,

### 4-((((benzyloxy)carbonyl)amino)(phenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl methanesulfonate

Enantiomeric excess (96%) was determined by chiral HPLC (Phenomenex® Amilose1), hexane- iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 30,69$  min, minor enantiomer  $t_r = 29,13$  min. White Solid; m.p = 56-57 °C;  $[\alpha_D^{20}] = -45.6$  (c 1.07, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.55 (d, J = 7.7 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.40-7.27 (m, 11H), 6.18 (d, J = 9.0 Hz, 1H), 5.85 (d, J = 9.1 Hz, 1H), 5.18 (s, 2H), 2.67 (s, 3H), 2.20 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 155.8 (C) 148.4 (C), 139.3 (C), 138.7 (C), 137.4 (C), 136.4 (C), 129.2 (C), 128.47 (CH), 128.46 (CH), 128.1 (CH), 126.6 (CH), 126.4 (CH), 124.0 (CH), 111.1 (CH), 67.0 (CH<sub>2</sub>), 49.0 (CH), 38.6 (CH<sub>3</sub>), 13.4 (CH<sub>3</sub>). HRMS (ESI) m/z 492.1583 [M+H]<sup>+</sup>, C<sub>2</sub>6H<sub>2</sub>6N<sub>3</sub>O<sub>5</sub>S requires 492.1588.

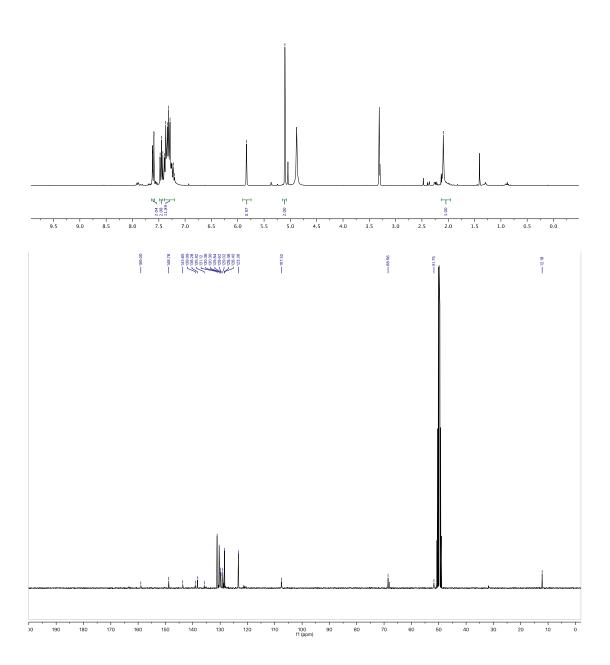
#### 4-((((benzyloxy)carbonyl)amino)(phenyl)methyl)-3-methyl-1-phenyl-1<math>H-pyrazol-5-yl 4-methylbenzenesulfonate

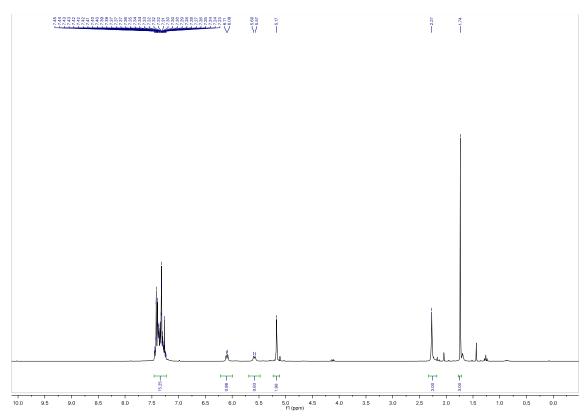
Enantiomeric excess (94%) was determined by chiral HPLC (Chiralpak® ADH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_T$  = 23.08 min, minor enantiomer  $t_T$  = 20.54 min. Colorless Oil,  $[\alpha_D^{20}]$  = -24.4 (c 0.99, CHCl<sub>3</sub>).

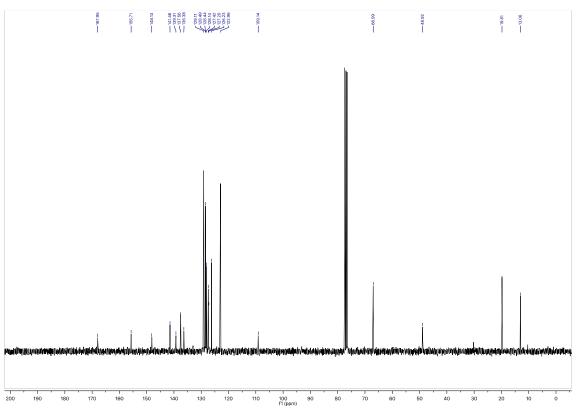
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44-7.26 (m, 11H), 7.23-7.17 (m, 5H), 6.95 (d, J = 8.1 Hz, 2H), 6.18 (d, J = 9.2 Hz, 1H), 6.06 (d, J = 9.3 Hz, 1H), 5.20 (s, 2H), 2.32 (s, 3H), 2.21 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 155.8 (C), 148.4 (C), 146.1 (C), 139.6 (C), 139.3 (C), 137.4 (C), 136.6 (C), 130.8 (C), 129.6 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.3 (CH), 127.0 (CH), 123.4 (CH), 126.7 (CH), 111.4 (C), 66.9 (CH<sub>2</sub>), 49.2 (CH), 21.6 (CH<sub>3</sub>), 13.5 (CH<sub>3</sub>). HRMS (ESI) m/z 568.1897 [M+H]<sup>+</sup>, C<sub>32</sub>H<sub>30</sub>N<sub>3</sub>O<sub>5</sub>S requires 568.1901.

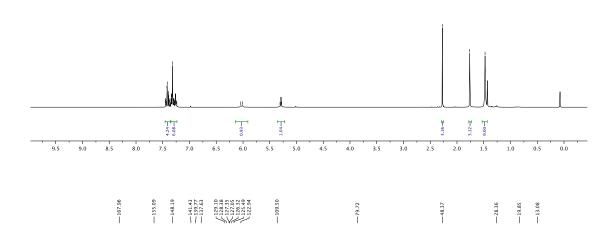
#### 4-(acetamido(phenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl tert-butyl carbonate

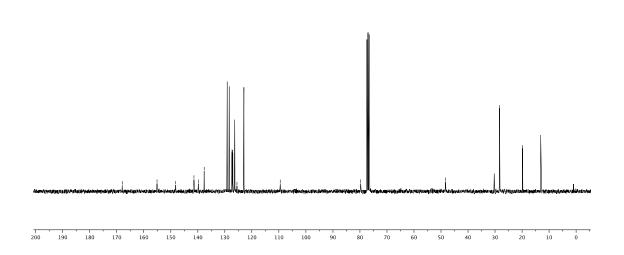
Enantiomeric excess (86%) was determined by chiral HPLC (Chiralpak® IC), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 12.95$  min, minor enantiomer  $t_r = 19,49$  min. Colorless Oil,  $[\alpha_D^{20}] = -29.4$  (c 0.57, CHCl<sub>3</sub>).

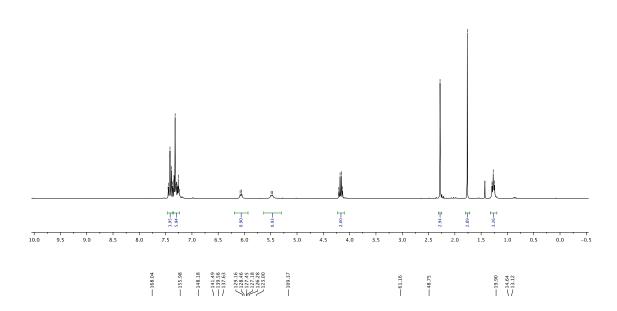

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.58-7.53 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.40-7.27 (m, 6H), 6.10 (d, J = 9.1 Hz, 1H), 5.52 (d, J = 8.9 Hz, 1H), 2.71 (s, 3H), 2.19 (s, 3H), 1.48 (s, 9H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 169.1 (C), 149.2 (C), 147.9 (C), 141.9 (C), 139.4 (C), 137.6 (C), 129.1 (CH), 128.5 (CH), 127.4 (CH), 127.2 (CH), 126.2 (CH), 122.8 (CH), 109.1 (C), 85.7 (C), 47.1 (CH), 27.2 (CH<sub>3</sub>), 23.3 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>). **HRMS** (ESI) m/z 422.2079 [M+H]<sup>+</sup> C<sub>24</sub>H<sub>28</sub>N<sub>3</sub>O<sub>4</sub> requires 422.2074.

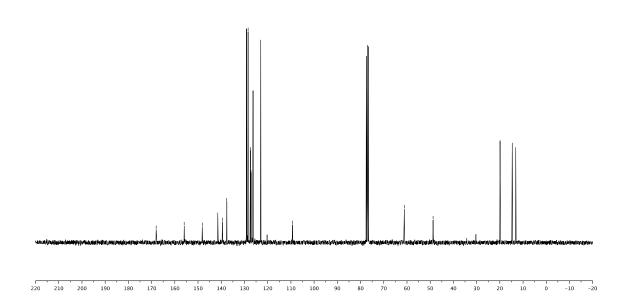

## 4-(((tert-butoxycarbonyl)amino)(phenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl methanesulfonate

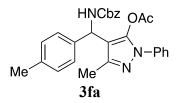

Enantiomeric excess (95%) was determined by chiral HPLC (Chiralpak® ADH), hexane-iPrOH 80:20, 1.0 mL/min, major enantiomer  $t_r = 11,23$  min, minor enantiomer  $t_r = 8,67$  min. Colorless Oil,  $[\alpha_D^{20}] = -22.8$  (c 0.72, CHCl<sub>3</sub>).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.58-7.53 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.40-7.27 (m, 6H), 6.10 (d, J = 9.1 Hz, 1H), 5.52 (d, J = 8.9 Hz, 1H), 2.71 (s, 3H), 2.19 (s, 3H), 1.48 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 155.2 (C), 148.5 (C), 139.8 (C), 138.8 (C), 137.5 (C), 129.3 (CH), 128.4 (CH), 128.1 (CH), 127.3 (CH), 126.6 (CH), 124.0 (CH), 111.4 (C), 79.8 (C), 48.4 (CH), 38.6 (CH<sub>3</sub>), 28.3 (CH<sub>3</sub>), 13.5 (CH<sub>3</sub>). HRMS (ESI) m/z 458.1737 [M+H]<sup>+</sup>, C<sub>23</sub>H<sub>28</sub>N<sub>3</sub>O<sub>5</sub>S requires 458.1744.


#### <sup>1</sup>H-NMR and <sup>13</sup>C-NMR SPECTRA

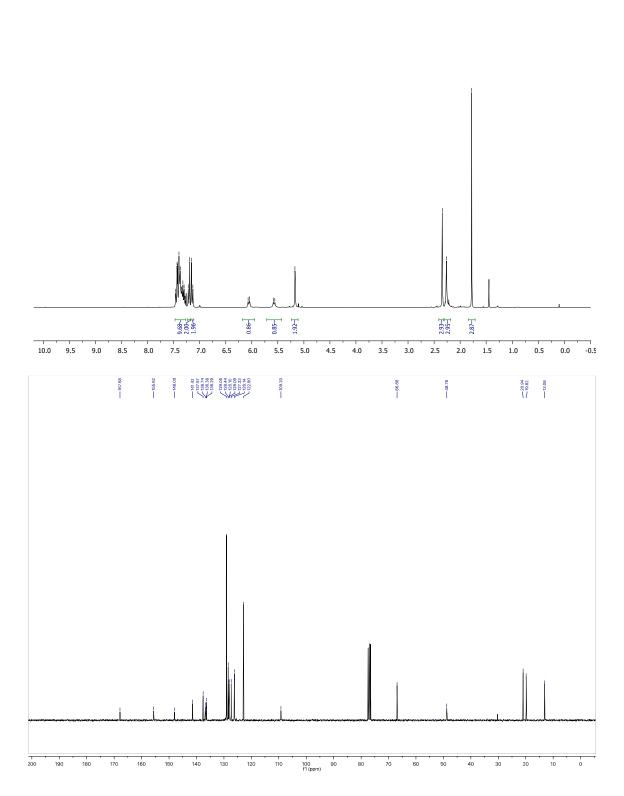


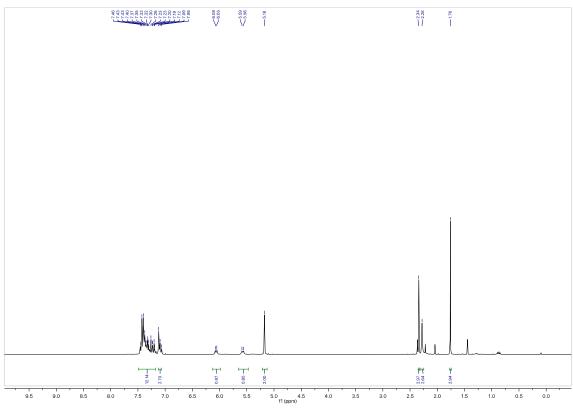



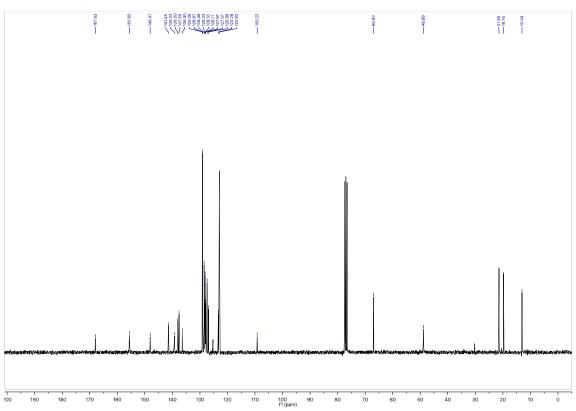



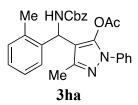


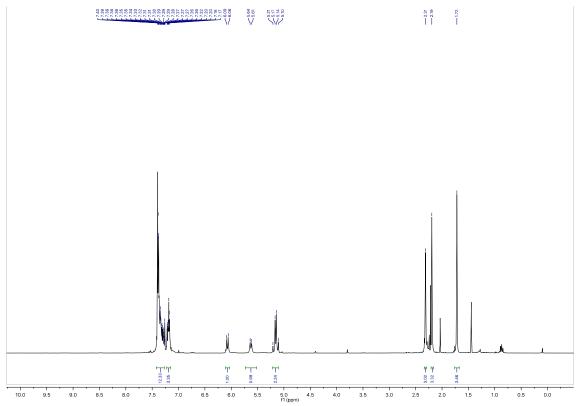


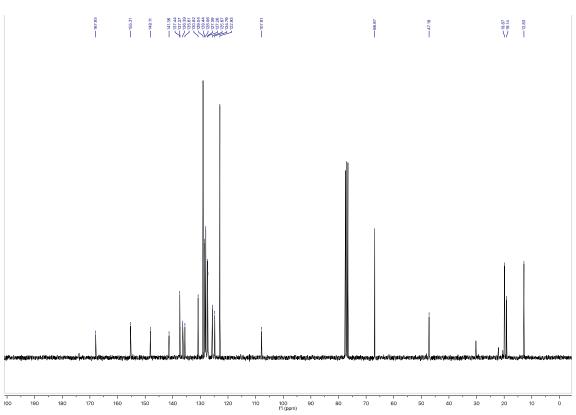



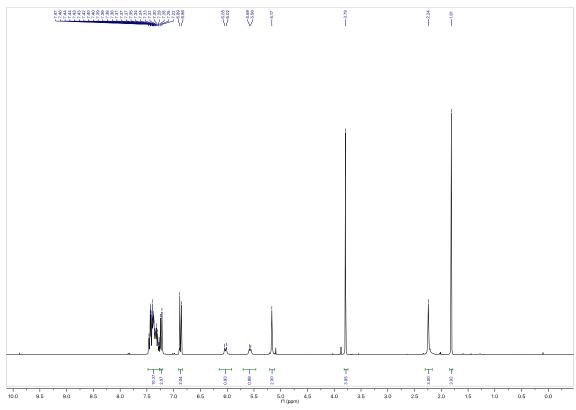



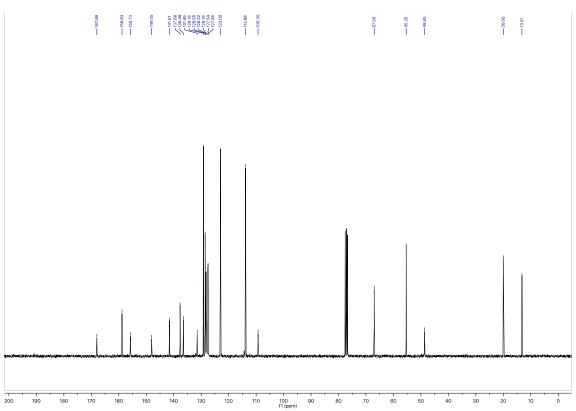



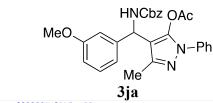


7.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 

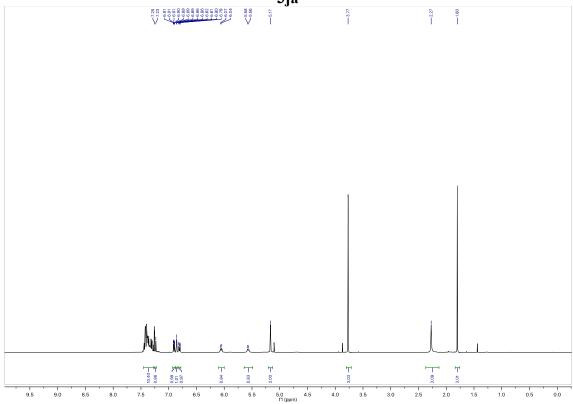

~ 2.34 ~ 2.26 — 1.78

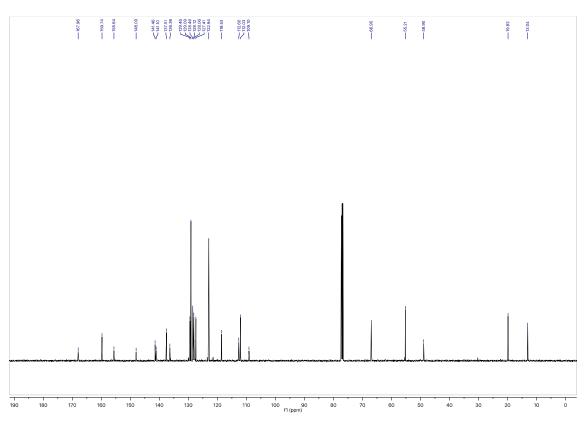


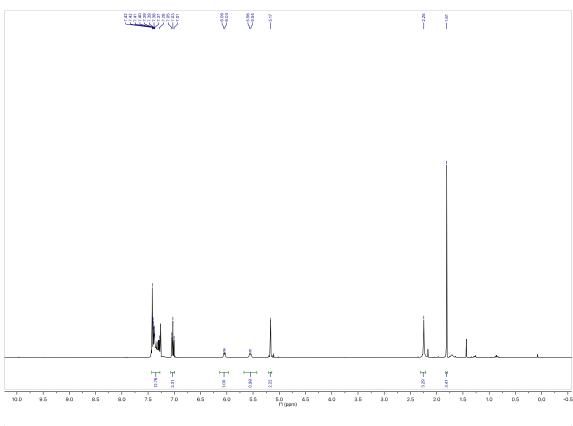



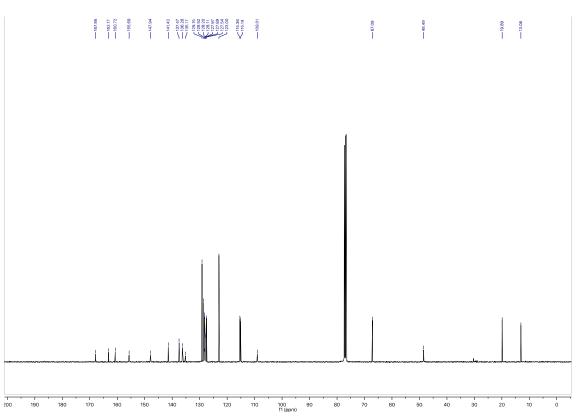



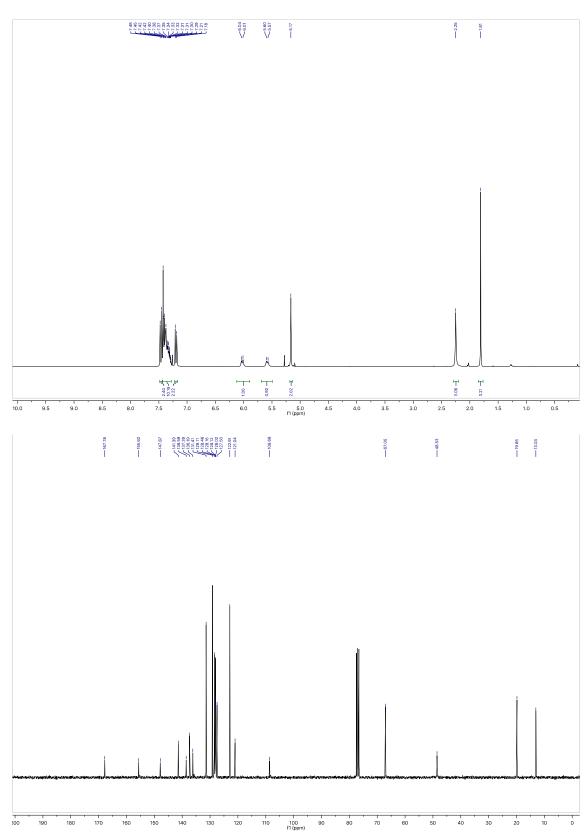



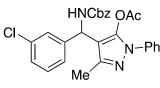



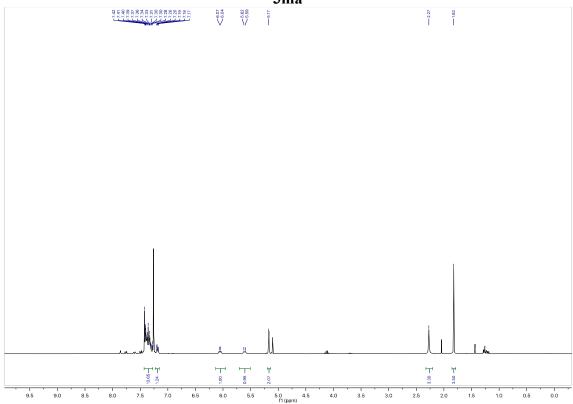



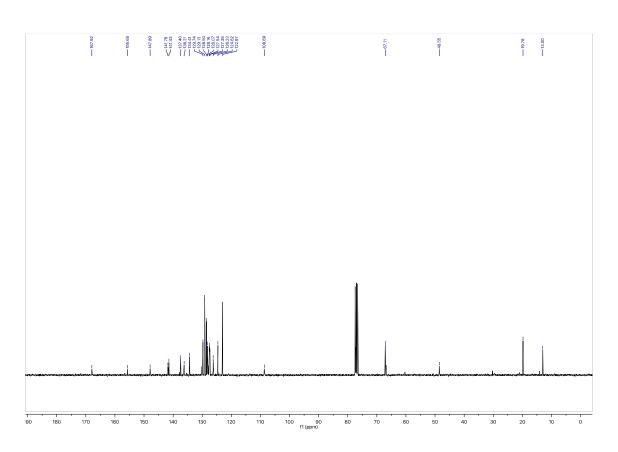



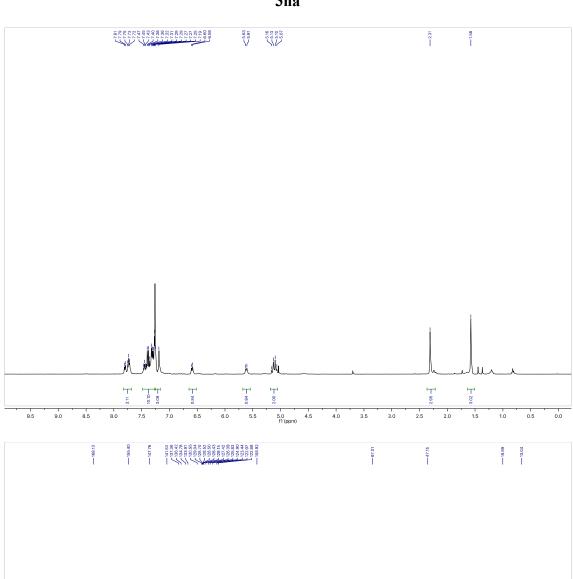



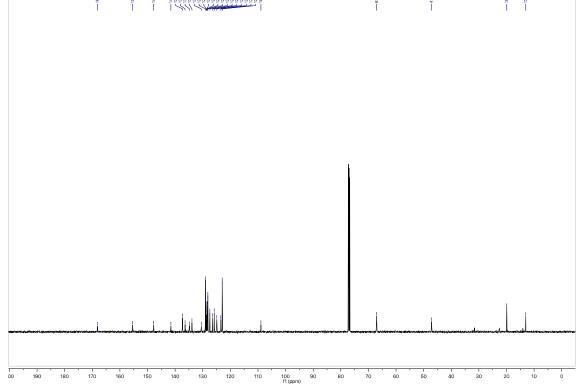



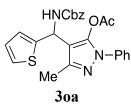


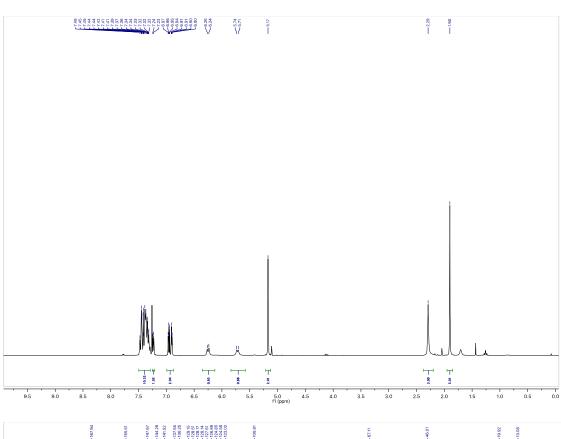



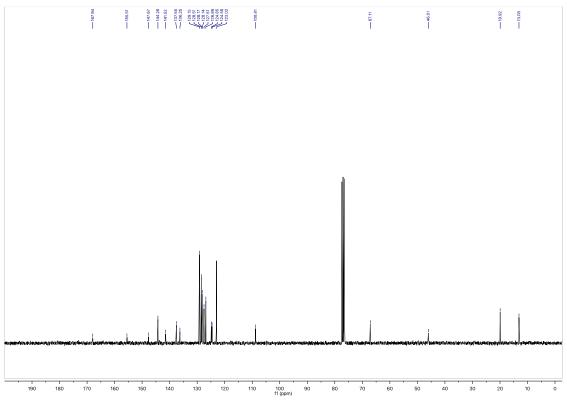



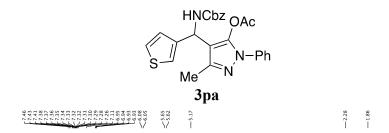



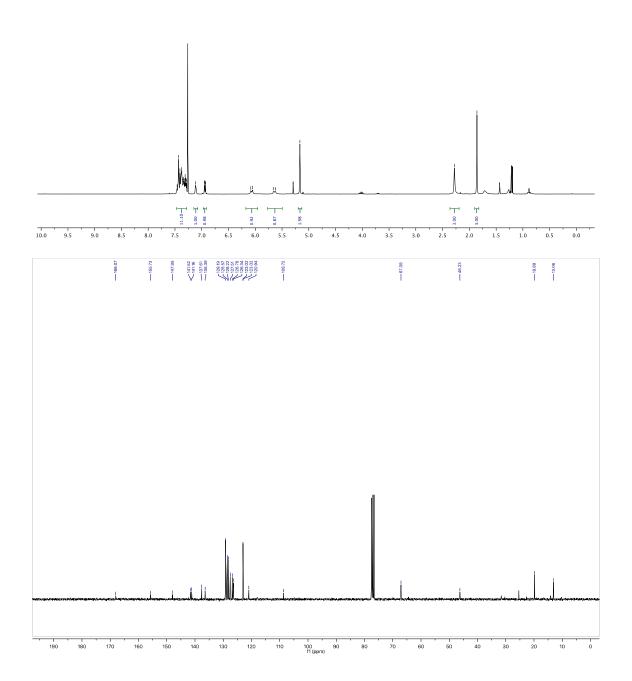



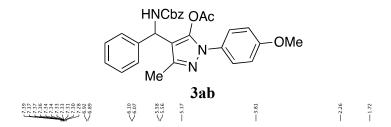



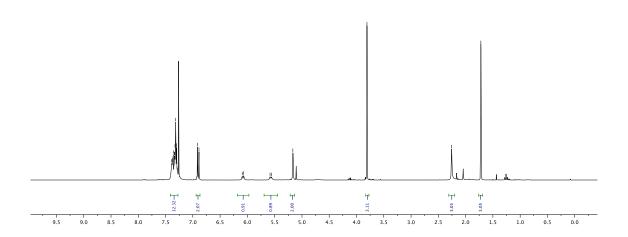



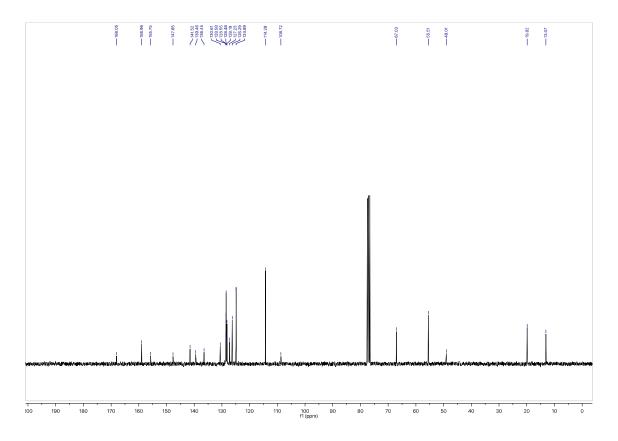



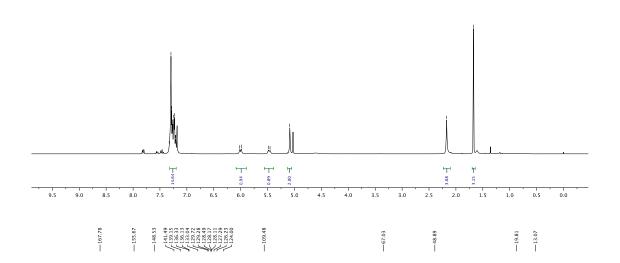



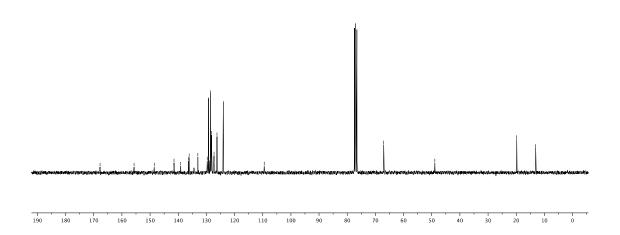



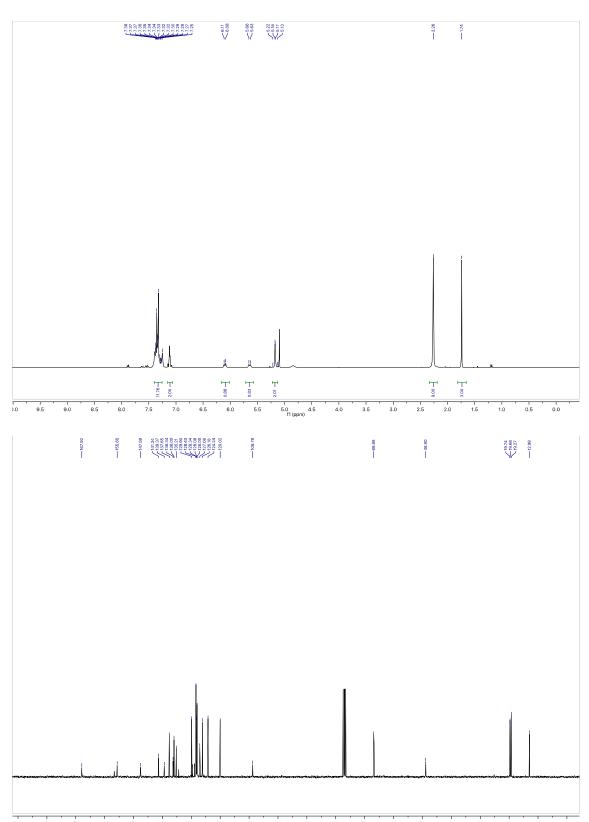



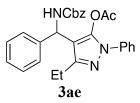



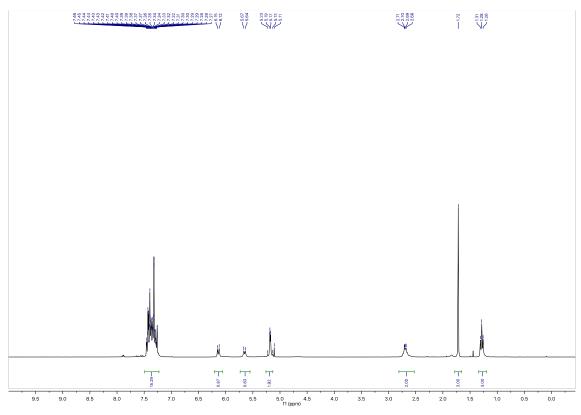



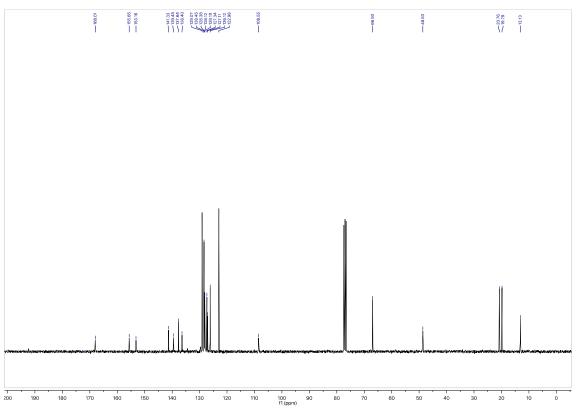



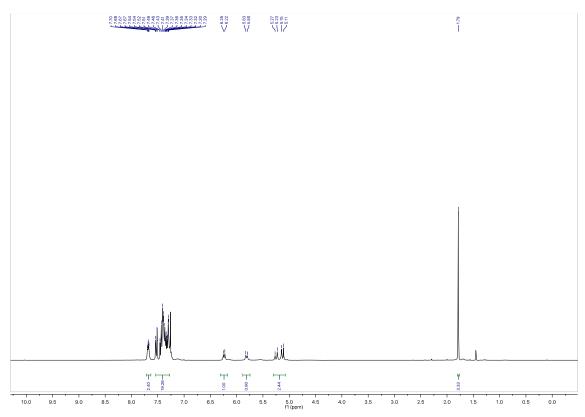



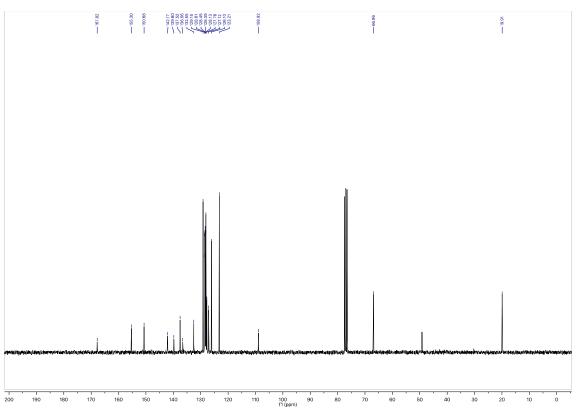



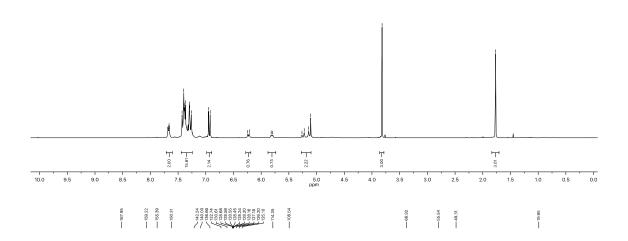



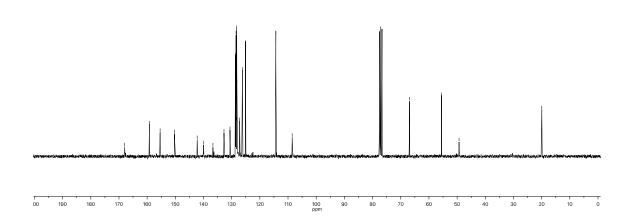



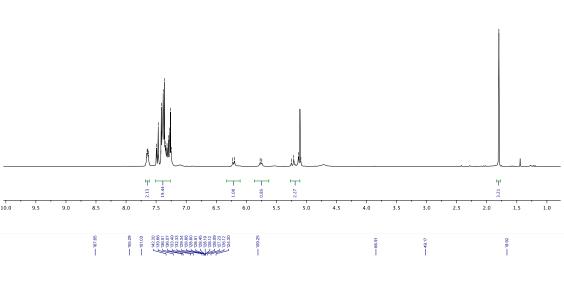


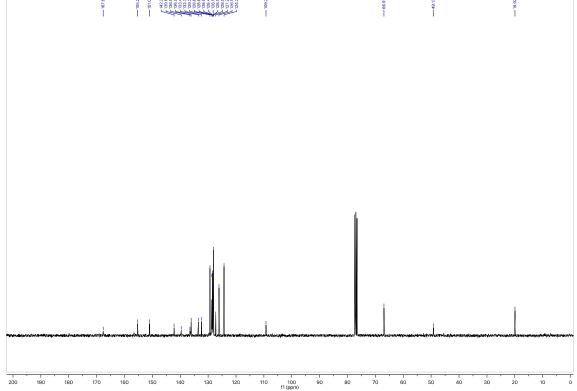



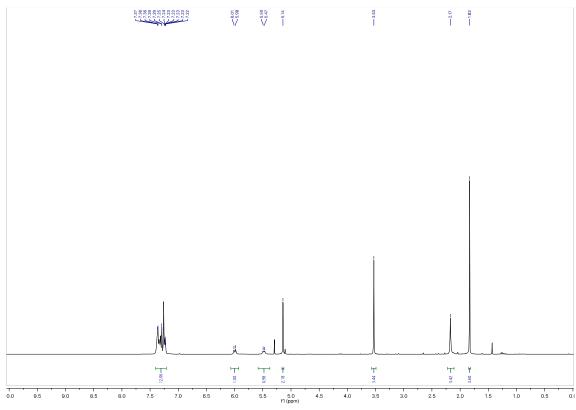



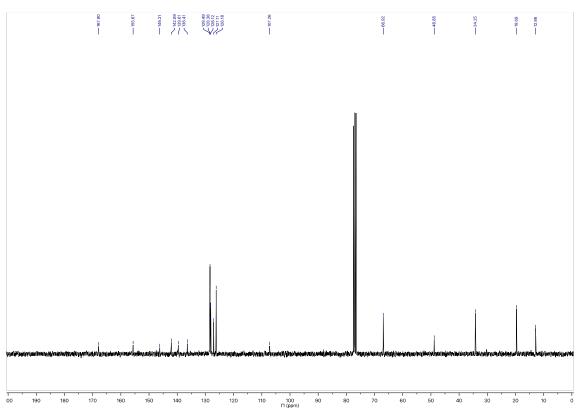



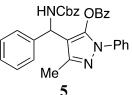



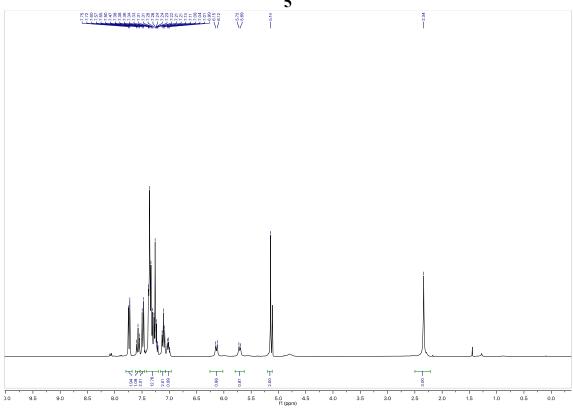



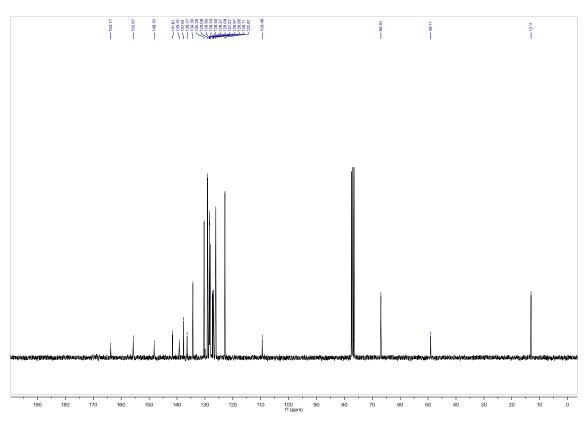



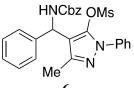



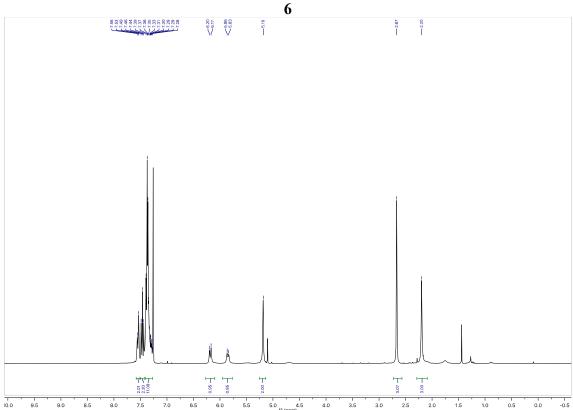



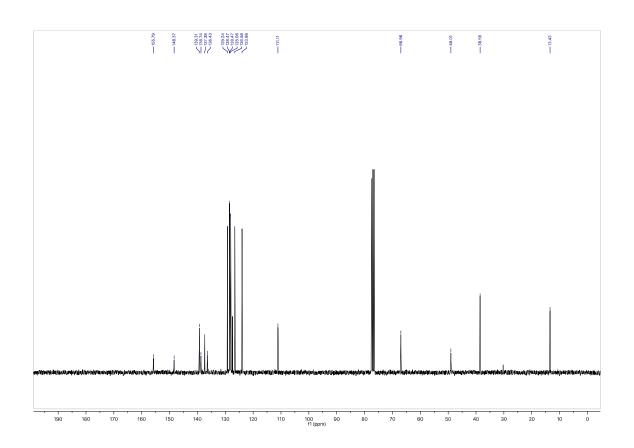



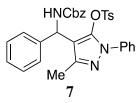



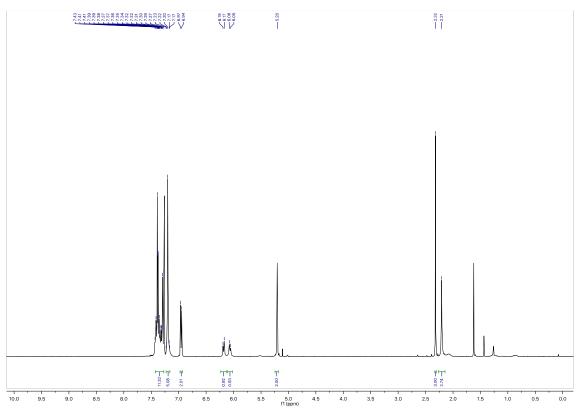



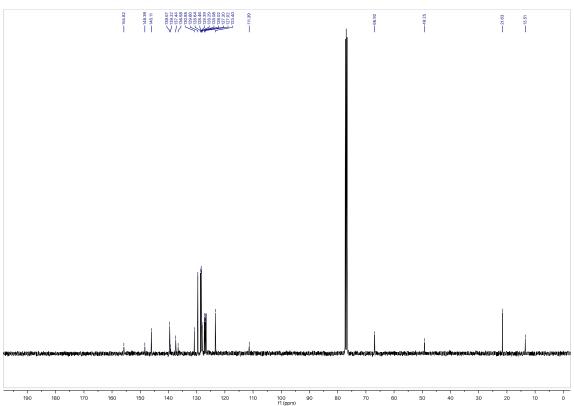



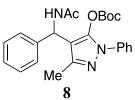



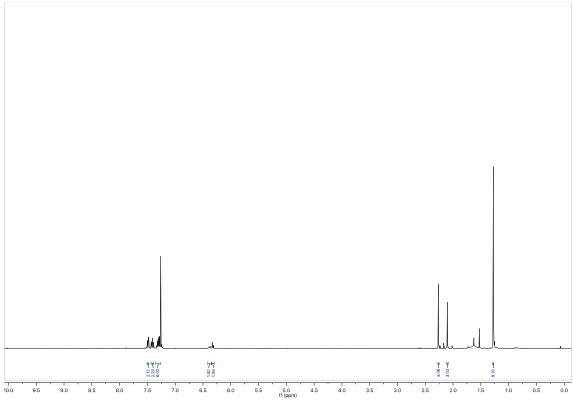



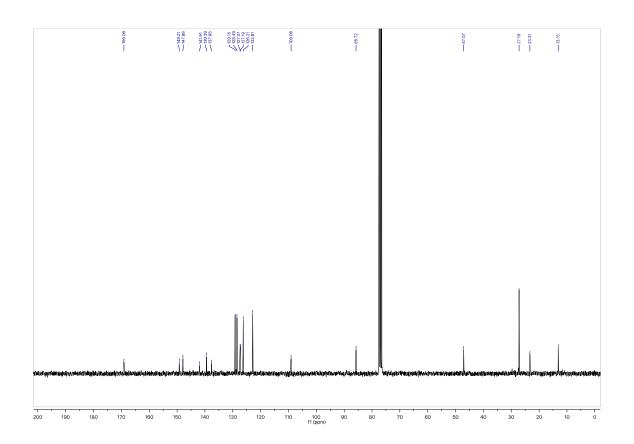



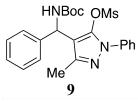



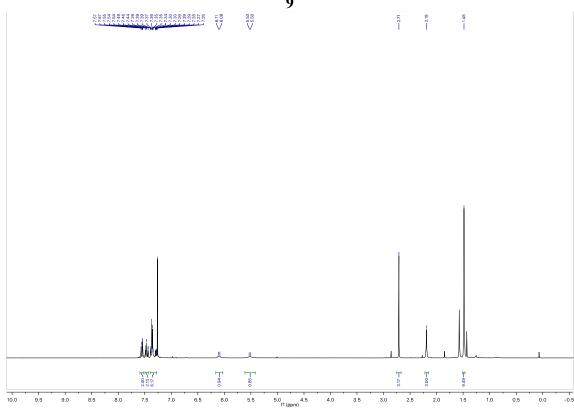



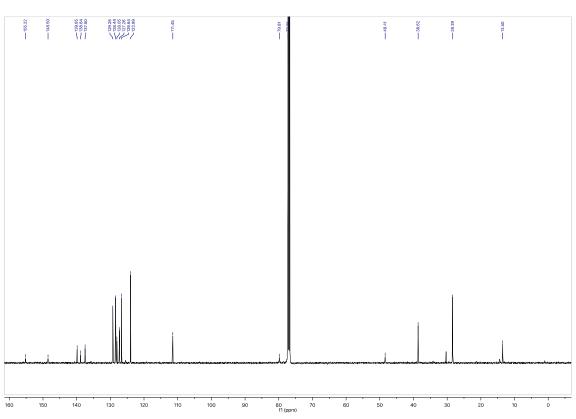



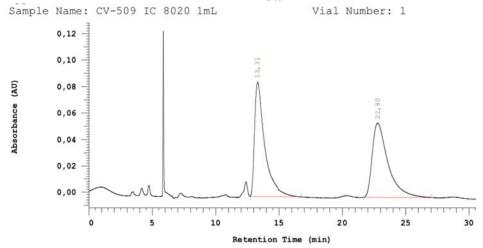



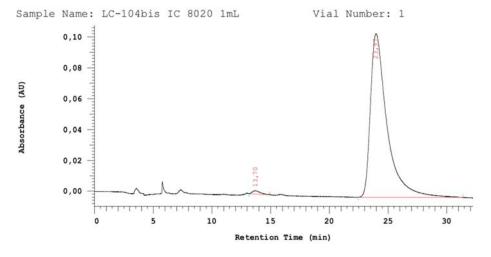



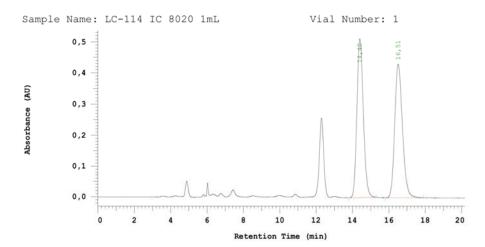


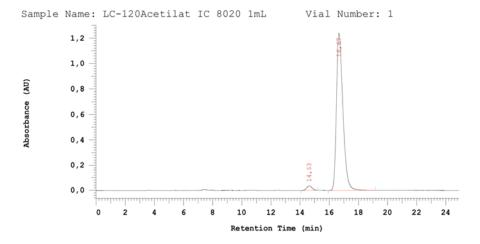


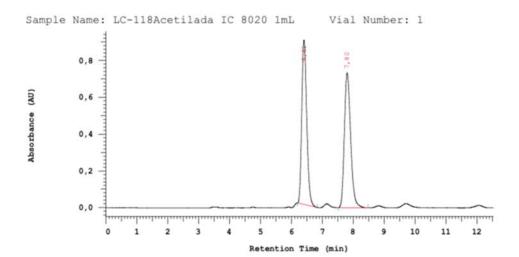




## **HPLC CHROMATOGRAMS**

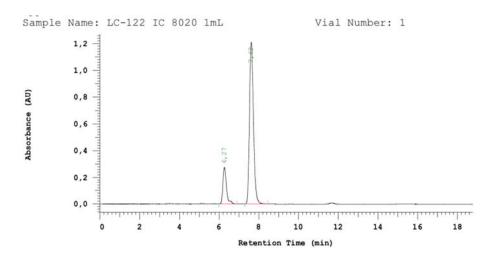



| No. | RT    | Area    | Area %  | Name       |
|-----|-------|---------|---------|------------|
| 1   | 13,31 | 2430170 | 49,960  |            |
| 2   | 22,80 | 2434100 | 50,040  | enant. (+) |
| 9.5 |       | 4864270 | 100,000 | (6)        |

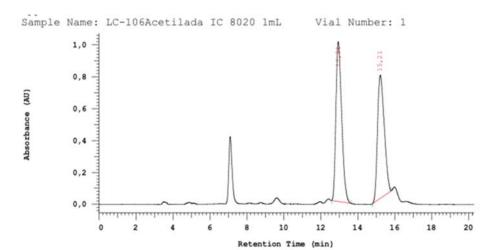



| Name      | Area %  | Area    | RT    | No. |
|-----------|---------|---------|-------|-----|
|           | 0,913   | 47805   | 13,70 | 1   |
| enant. (+ | 99,087  | 5190070 | 23,97 | 2   |
|           | 100,000 | 5237875 |       |     |

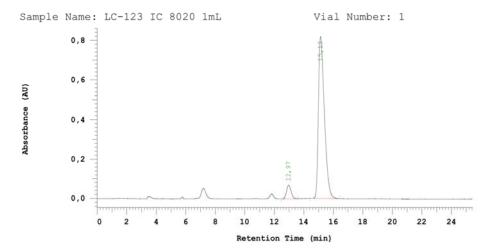



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 14,40 | 6331190  | 49,764  |      |
| 2   | 16,51 | 6391150  | 50,236  |      |
|     |       | 12722340 | 100,000 |      |

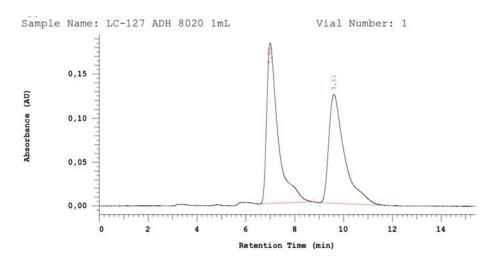



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 14,63 | 429040   | 2,186   |      |
| 2   | 16,67 | 19195360 | 97,814  |      |
|     |       | 19624400 | 100,000 |      |
|     |       |          |         |      |

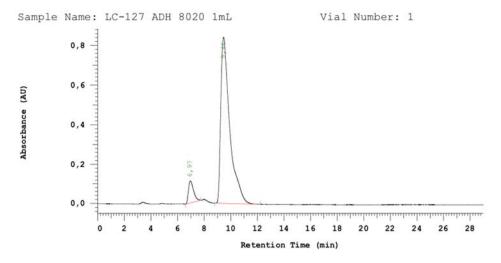



| No. | RT   | Area     | Area %  | Name |
|-----|------|----------|---------|------|
| 1   | 6,41 | 4946800  | 49,020  |      |
| 2   | 7,80 | 5144690  | 50,980  |      |
|     |      | 10091490 | 100,000 |      |

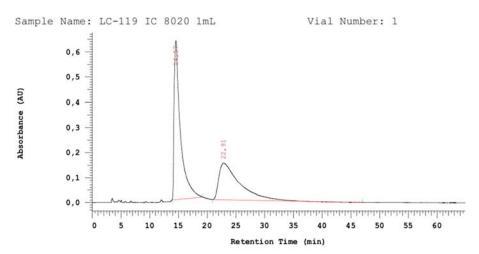



| lo. | RT   | Area     | Area %  | Name |
|-----|------|----------|---------|------|
| 1   | 6,27 | 1724185  | 17,091  |      |
| 2   | 7,62 | 8364200  | 82,909  |      |
|     |      | 10088385 | 100,000 |      |

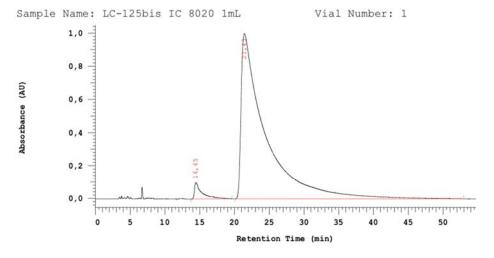



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 12,94 | 10881209 | 52,584  |      |
| 2   | 15,21 | 9811849  | 47,416  |      |
|     |       | 20693058 | 100,000 |      |

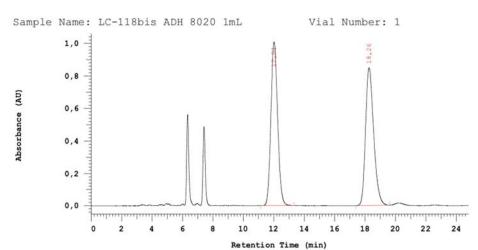



| Name | Area %  | Area     | RT    | No. |
|------|---------|----------|-------|-----|
|      | 5,974   | 731330   | 12,97 | 1   |
|      | 94,026  | 11511160 | 15,13 | 2   |
|      | 100,000 | 12242490 |       |     |

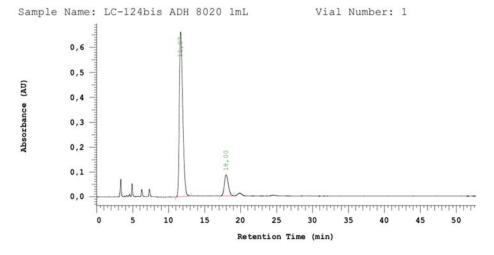



| No.         | RT   | Area    | Area %  | Name |
|-------------|------|---------|---------|------|
| 1           | 7,00 | 2956910 | 51,520  |      |
| 2           | 9,61 | 2782420 | 48,480  |      |
| <del></del> |      | 5739330 | 100,000 | -    |

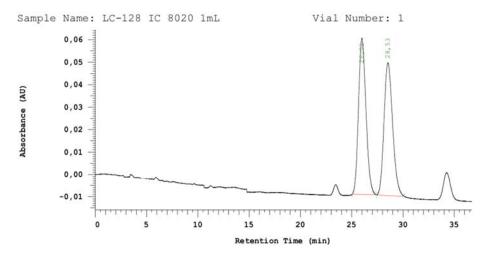



| No. | RT   | Area     | Area %  | Name |
|-----|------|----------|---------|------|
| 1   | 6,97 | 1472740  | 6,957   |      |
| 2   | 9,46 | 19697174 | 93,043  |      |
|     |      | 21169914 | 100,000 | 2.   |




| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 14,57 | 23958320 | 56,442  |            |
| 2   | 22,91 | 18489139 | 43,558  | enant. (+) |
|     |       | 42447459 | 100,000 |            |

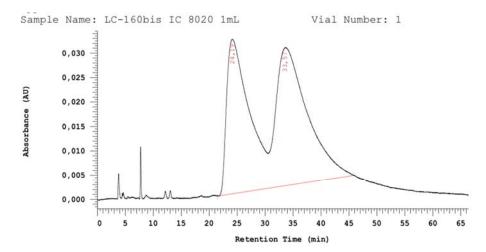



| No.          | RT    | Area      | Area %  | Name |
|--------------|-------|-----------|---------|------|
| 1            | 14,45 | 3713410   | 2,963   | -    |
| 2            | 21,43 | 1,215E+08 | 97,037  |      |
| <del>/</del> |       | 1,253E+08 | 100,000 |      |

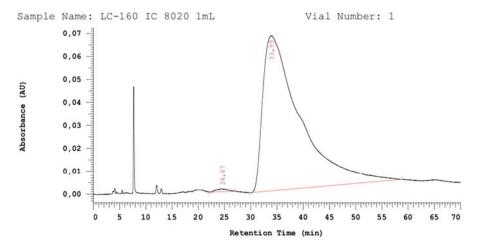


| No.   | RT    | Area     | Area %  | Name |
|-------|-------|----------|---------|------|
| 1     | 12,01 | 15412030 | 49,541  |      |
| 2     | 18,26 | 15697740 | 50,459  |      |
| E. T. |       | 31109770 | 100,000 |      |

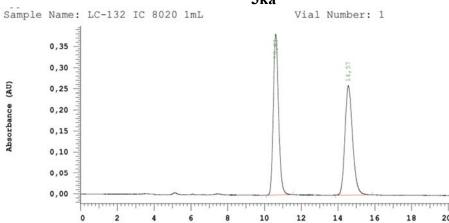



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 11,67 | 10710855 | 87,044  |      |
| 2   | 18,00 | 1594300  | 12,956  |      |
|     |       | 12305155 | 100,000 |      |



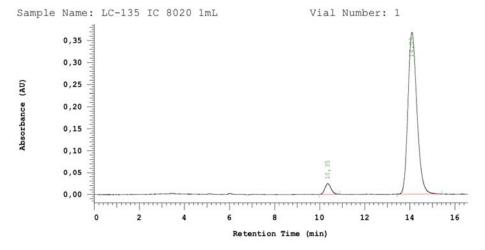

| No. | RT             | Area               | Area %           | Name                     |
|-----|----------------|--------------------|------------------|--------------------------|
| 1 2 | 26,01<br>28,53 | 1754400<br>1731050 | 50,335<br>49,665 | enant. (+)<br>enanti (-) |
|     |                | 3485450            | 100,000          |                          |



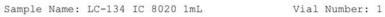

| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 25,21 | 4529540  | 36,303  | enant. (+) |
| 2   | 27,57 | 7947569  | 63,697  | enanti (-) |
|     |       | 12477109 | 100,000 |            |

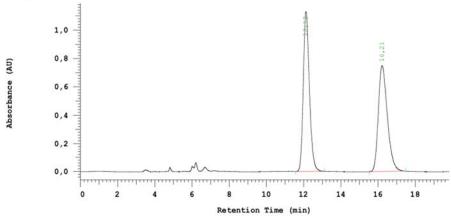


| No. | RT             | Area               | Area %           | Name       |
|-----|----------------|--------------------|------------------|------------|
| 1 2 | 24,19<br>33,57 | 4191734<br>5366744 | 43,854<br>56,146 | enant. (+) |
|     |                | 9558478            | 100,000          |            |

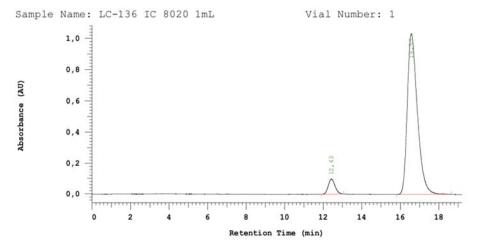



| No. | RT             | Area              | Area %          | Name       |
|-----|----------------|-------------------|-----------------|------------|
| 1 2 | 24,67<br>33,99 | 86520<br>16761974 | 0,514<br>99,486 | enant. (+) |
|     |                | 16848494          | 100,000         |            |

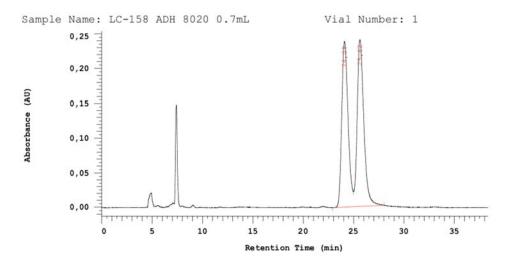




| No. | RT    | Area    | Area %  | Name |
|-----|-------|---------|---------|------|
| 1   | 10,61 | 3792495 | 50,123  |      |
| 2   | 14,57 | 3773870 | 49,877  |      |
| -   |       | 7566365 | 100,000 |      |

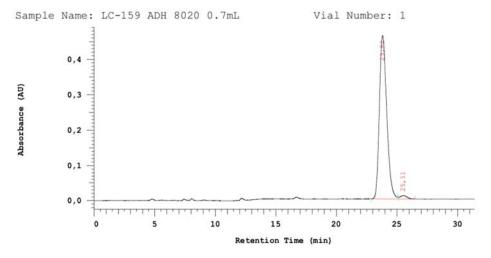
Retention Time (min)



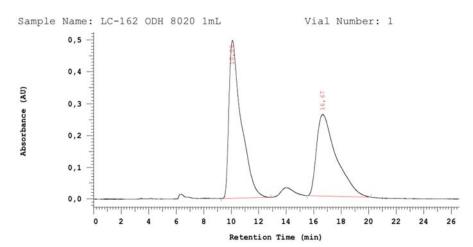

| No.          | RT    | Area    | Area %  | Name |
|--------------|-------|---------|---------|------|
| 1            | 10,35 | 227190  | 4,275   |      |
| 2            | 14,09 | 5086995 | 95,725  |      |
| <del>-</del> |       | 5314185 | 100,000 |      |



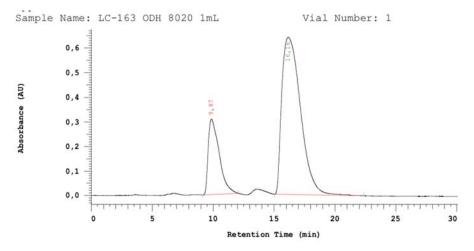




| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 12,12 | 12971480 | 50,584  |      |
| 2   | 16,21 | 12671800 | 49,416  |      |
| -   |       | 25643280 | 100,000 |      |

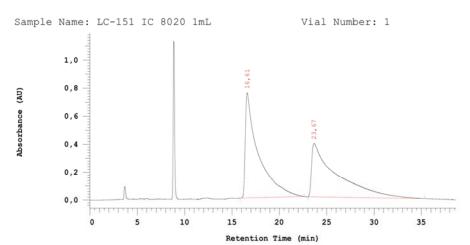



| No.            | RT    | Area     | Area %  | Name |
|----------------|-------|----------|---------|------|
| 1              | 12,43 | 1180760  | 5,895   |      |
| 2              | 16,57 | 18849420 | 94,105  |      |
| <del>2</del> 7 |       | 20030180 | 100,000 | i z  |

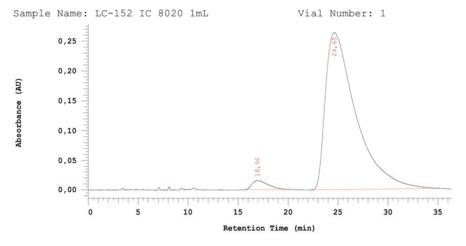



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 24,09 | 5153338  | 48,254  | enant. (+) |
| 2   | 25,62 | 5526171  | 51,746  | enanti (-) |
|     |       | 10679509 | 100,000 |            |

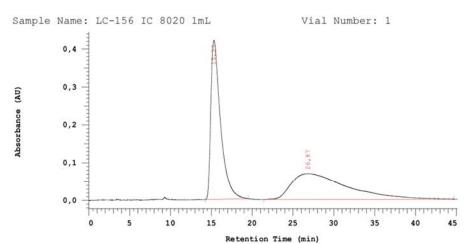



| No. | RT             | Area              | Area %          | Name                     |
|-----|----------------|-------------------|-----------------|--------------------------|
| 1 2 | 23,81<br>25,51 | 9718180<br>179871 | 98,183<br>1,817 | enant. (+)<br>enanti (-) |
|     |                | 9898051           | 100,000         |                          |

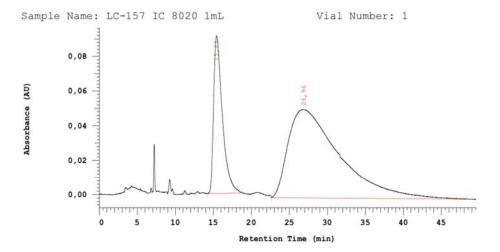



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 10,09 | 15396760 | 54,465  |      |
| 2   | 16,67 | 12872420 | 45,535  |      |
|     |       | 28269180 | 100,000 |      |

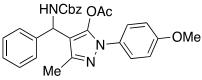



| No.            | RT    | Area     | Area %  | Name |
|----------------|-------|----------|---------|------|
| 1              | 9,87  | 9682200  | 22,059  |      |
| 2              | 16,16 | 34209724 | 77,941  |      |
| 3 <del>.</del> |       | 43891924 | 100,000 |      |

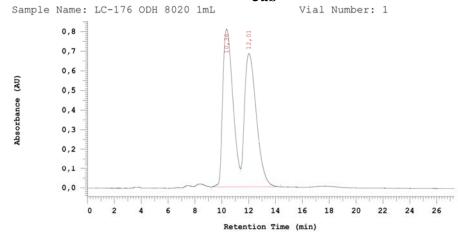



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 16,61 | 36269891 | 50,791  |            |
| 2   | 23,67 | 35139760 | 49,209  | enant. (+) |
|     |       | 71409651 | 100,000 | -          |

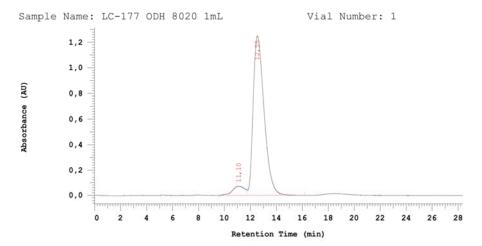



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 16,96 | 851550   | 2,938   |            |
| 2   | 24,65 | 28130195 | 97,062  | enant. (+) |
|     |       | 28981745 | 100,000 |            |

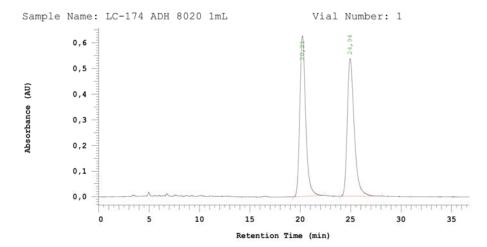



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 15,33 | 17336540 | 51,508  |            |
| 2   | 26,87 | 16321369 | 48,492  | enanti (-) |
|     |       | 33657909 | 100,000 |            |

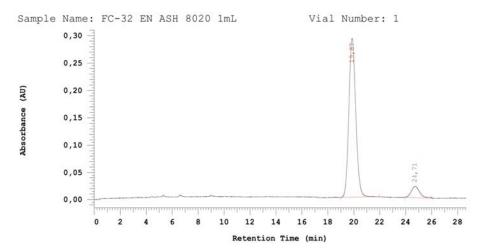



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 15,43 | 3637450  | 23,107  |            |
| 2   | 26,96 | 12104350 | 76,893  | enanti (-) |
|     |       | 15741800 | 100,000 |            |

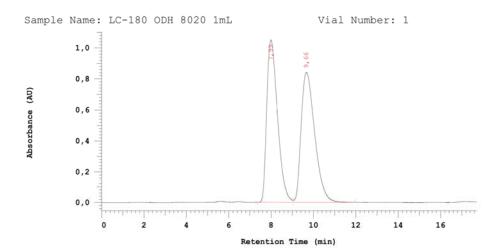



3ab

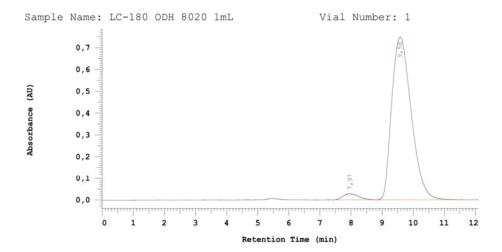



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 10,36 | 21200481 | 49,999  |      |
| 2   | 12,01 | 21201182 | 50,001  |      |
|     |       | 42401663 | 100,000 |      |

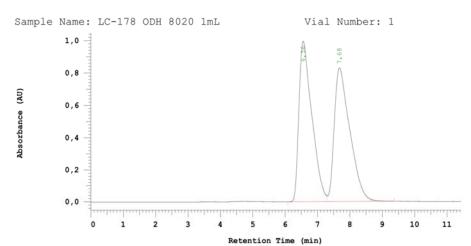



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 11,10 | 2365036  | 6,042   | 18   |
| 2   | 12,55 | 36775782 | 93,958  |      |
| -   |       | 39140818 | 100,000 |      |

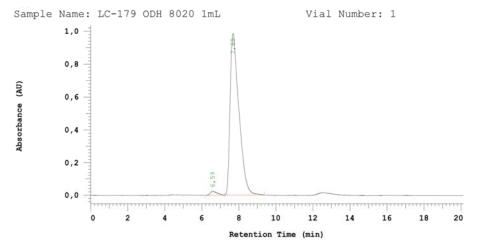



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 20,21 | 12665635 | 49,713  |            |
| 2   | 24,94 | 12812049 | 50,287  | enant. (+) |
|     |       | 25477684 | 100,000 |            |




| Name   | Area %  | Area    | RT    | No. |
|--------|---------|---------|-------|-----|
|        | 91,965  | 5339830 | 19,87 | 1   |
| enant. | 8,035   | 466560  | 24,71 | 2   |
|        | 100,000 | 5806390 |       |     |



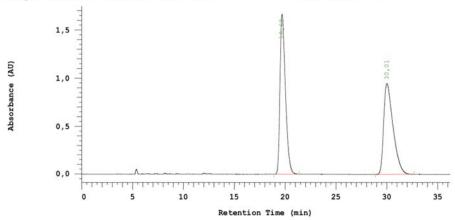

| No. | RT   | Area     | Area %  | Name |
|-----|------|----------|---------|------|
| 1   | 7,99 | 18575299 | 49,691  |      |
| 2   | 9,66 | 18806489 | 50,309  |      |
|     |      | 37381788 | 100,000 | A    |



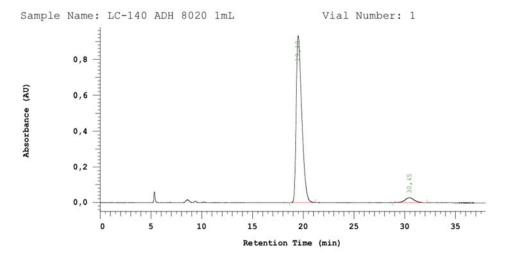
| No. | RT   | Area     | Area %  | Name |
|-----|------|----------|---------|------|
| 1   | 7,97 | 487571   | 2,905   |      |
| 2   | 9,58 | 16295784 | 97,095  |      |
|     |      | 16783355 | 100,000 |      |



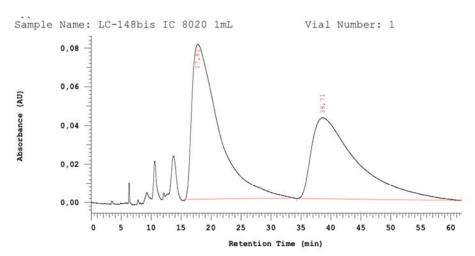
| No. | RT   | Area     | Area %  | Name |
|-----|------|----------|---------|------|
| 1   | 6,56 | 13827811 | 49,772  |      |
| 2   | 7,68 | 13954414 | 50,228  |      |
|     |      | 27782225 | 100,000 |      |



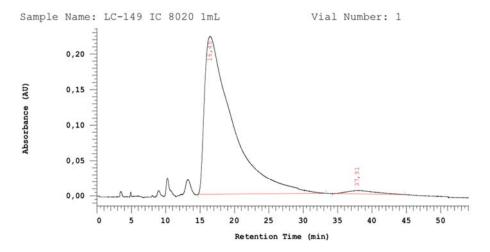

| No. | RT   | Area     | Area %  | Name |
|-----|------|----------|---------|------|
| 1   | 6,59 | 318154   | 1,900   |      |
| 2   | 7,69 | 16426056 | 98,100  |      |
| E-  |      | 16744210 | 100,000 |      |



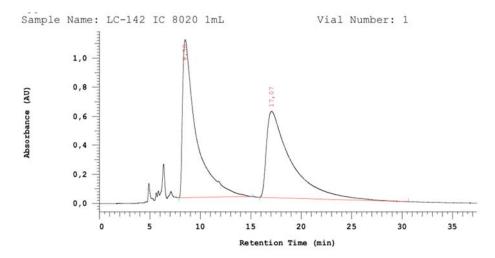

Sample Name: LC-139 ADH 8020 1mL


Vial Number: 1

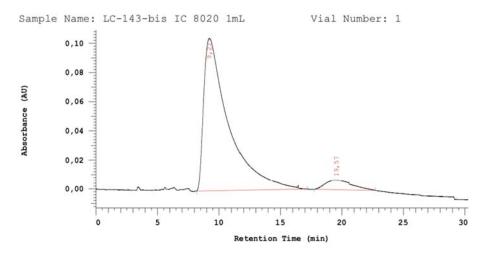



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 19,69 | 30805289 | 50,342  |            |
| 2   | 30,01 | 30386265 | 49,658  | enanti (-) |
|     |       | 61191554 | 100,000 |            |

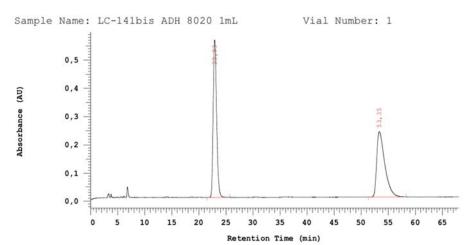



| No. | RT    | Area     | Area %  | Name       |
|-----|-------|----------|---------|------------|
| 1   | 19,49 | 17651950 | 95,474  |            |
| 2   | 30,45 | 836740   | 4,526   | enanti (-) |
|     |       | 18488690 | 100,000 |            |

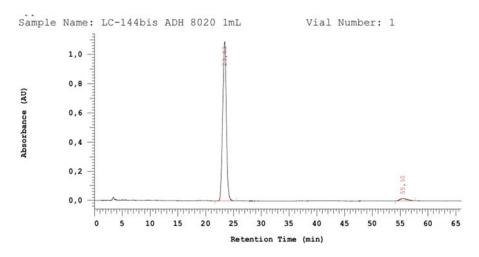



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 17,81 | 12530060 | 52,705  |      |
| 2   | 38,71 | 11243664 | 47,295  |      |
|     |       | 23773724 | 100,000 |      |

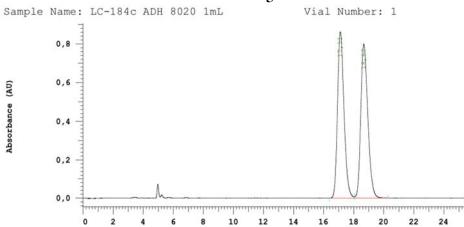



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 16,45 | 31679993 | 97,862  |      |
| 2   | 37,91 | 692055   | 2,138   |      |
|     |       | 32372048 | 100,000 |      |



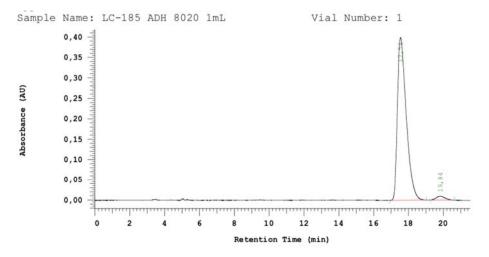

| No. | RT    | Area      | Area %  | Name |
|-----|-------|-----------|---------|------|
| 1   | 8,50  | 51275449  | 50,384  |      |
| 2   | 17,07 | 50493411  | 49,616  |      |
|     |       | 1,017E+08 | 100,000 |      |



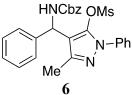

| No. | RT    | Area    | Area %  | Name |
|-----|-------|---------|---------|------|
| 1   | 9,23  | 7407270 | 93,638  |      |
| 2   | 19,57 | 503265  | 6,362   |      |
|     |       | 7910535 | 100,000 |      |

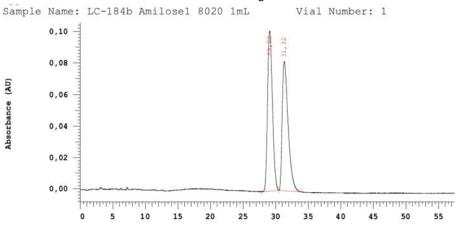


| No. | RT             | Area                 | Area %           | Name       |
|-----|----------------|----------------------|------------------|------------|
| 1 2 | 22,93<br>53,35 | 11992324<br>11989009 | 50,007<br>49,993 | enant. (+) |
| -   |                | 23981333             | 100,000          |            |



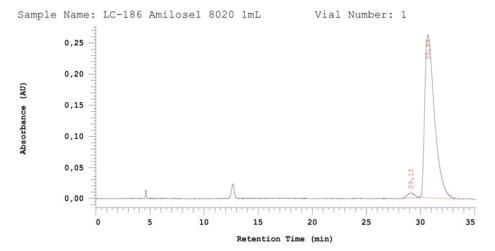

| No. | RT             | Area               | Area %          | Name       |
|-----|----------------|--------------------|-----------------|------------|
| 1 2 | 23,43<br>55,50 | 24546510<br>740795 | 97,070<br>2,930 | enant. (+) |
|     |                | 25287305           | 100,000         |            |



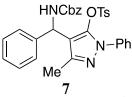


| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 17,11 | 12941508 | 49,906  |      |
| 2   | 18,67 | 12990432 | 50,094  |      |
|     |       | 25931940 | 100,000 |      |

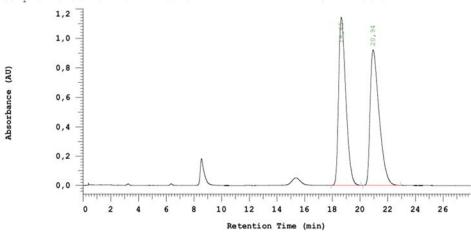
Retention Time (min)



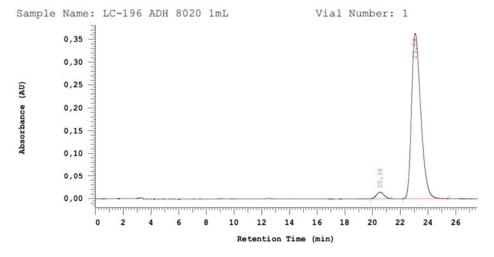

| No. | RT    | Area    | Area %  | Name |
|-----|-------|---------|---------|------|
| 1   | 17,54 | 7034790 | 97,698  |      |
| 2   | 19,84 | 165780  | 2,302   |      |
| 2   |       | 7200570 | 100,000 |      |



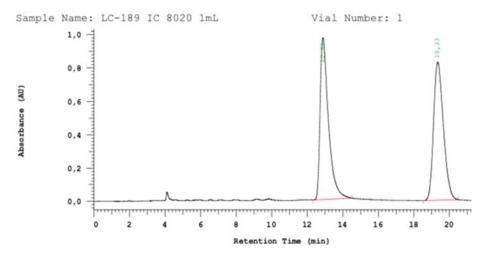




| No. | RT             | Area               | Area %           | Name         |
|-----|----------------|--------------------|------------------|--------------|
| 1 2 | 29,08<br>31,32 | 2625440<br>2593375 | 50,307<br>49,693 | enanti (-)   |
|     |                | 5218815            | 100,000          | <del>-</del> |

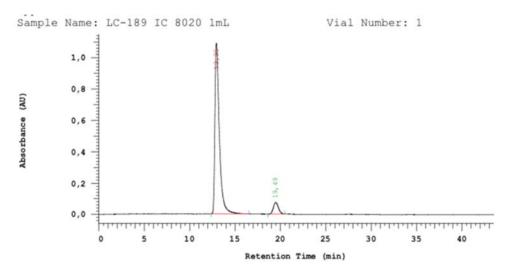
Retention Time (min)



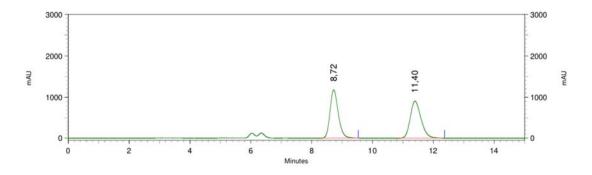

| Name       | Area %  | Area    | RT    | No. |
|------------|---------|---------|-------|-----|
| enanti (-) | 2,053   | 172575  | 29,13 | 1   |
|            | 97,947  | 8231889 | 30,69 | 2   |
|            | 100,000 | 8404464 |       |     |





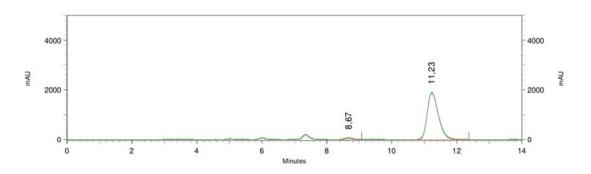


| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 18,65 | 20786590 | 49,976  |      |
| 2   | 20,94 | 20806289 | 50,024  |      |
| 55  |       | 41592879 | 100,000 |      |




| Name     | Area %  | Area    | RT    | No. |
|----------|---------|---------|-------|-----|
|          | 3,069   | 265270  | 20,54 | 1   |
| enant. ( | 96,931  | 8378510 | 23,08 | 2   |
|          | 100,000 | 8643780 |       |     |



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 12,88 | 15920220 | 50,051  |      |
| 2   | 19,33 | 15887875 | 49,949  |      |
|     |       | 31808095 | 100,000 |      |




| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 12,95 | 18180979 | 92,832  |      |
| 2   | 19,49 | 1403770  | 7,168   |      |
|     |       | 19584749 | 100,000 | 20   |



11: 252 nm, 4 nm Results

| Retention Time | Area     | Area Percent |
|----------------|----------|--------------|
| 8,72           | 88647130 | 49,937       |
| 11,40          | 88870454 | 50,063       |



11: 252 nm, 4 nm Results

| Retention Time | Area      | Area Percent |
|----------------|-----------|--------------|
| 8,67           | 4714475   | 2,554        |
| 11,23          | 179870537 | 97,446       |