The Phosphorylation Mechanism of Mevalonate Diphosphate

Decarboxylase, a QM/MM Study

James McClory ^a, Chenggong Hui^a, Jian Zhang^b, Meilan Huang^{a,*}

^a School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir

Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom

^b Shanghai Jiaotong University, 280 Chongqing Road, Shanghai 200025, China

Corresponding author

*Meilan Huang

Phone: +44 28 9097 4698

Fax: +44 28 9097 6524

E-mail: <u>m.huang@qub.ac.uk</u>

No.	Residue	Atom Name	Atom Type	RESP Charge
1	MDP	01	0	-0.83
2	MDP	02	0	-0.99
3	MDP	03	0	-0.87
4	MDP	03	0	-0.83
5	MDP	05	ОН	-0.49
6	MDP	06	0	-0.99
7	MDP	07	0	-0.99
8	MDP	08	0	-0.87
9	MDP	C1	C3	-0.43
10	MDP	C2	C3	0.76
11	MDP	C3	C3	-0.20
12	MDP	C4	C3	-0.63
13	MDP	09	OS	-0.82
14	MDP	O10	OS	-0.63
15	MDP	C5	С	0.90
16	MDP	C6	C3	0.79
17	MDP	P1	P5	1.33
18	MDP	P2	P5	1.49
19	MDP	H1	НС	0.04
20	MDP	H2	НС	0.04
21	MDP	Н3	НС	0.04
22	MDP	H4	H1	-0.11
23	MDP	Н5	H1	-0.11
24	MDP	Н6	НС	-0.01

Table S1. RESP charges of atoms in ATP, Mg²⁺ and MVAPP of MDD

25	MDP	H7	НС	-0.01
26	MDP	H8	НС	0.09
27	MDP	Н9	НС	0.09
28	MDP	H10	НО	0.25
29	MG	MG1	Mg ²⁺	2.00
30	MG	MG2	Mg ²⁺	2.00
31	ATP	P1	P5	1.22
32	ATP	01	0	-0.87
33	АТР	02	0	-0.87
34	ATP	03	0	-0.87
35	ATP	P2	P5	1.67
36	ATP	04	0	-0.91
37	ATP	05	0	-0.91
38	ATP	06	OS	-0.60
39	АТР	07	OS	-1.08
40	АТР	C1	C3	0.66
41	АТР	C2	C3	0.41
42	АТР	08	OS	-0.86
43	АТР	C3	C3	0.65
44	АТР	O9	ОН	-0.84
45	АТР	C4	C3	-0.33
46	АТР	O10	ОН	-0.68
47	АТР	C5	C3	1.00
48	ATP	N1	NA	-0.17
49	ATP	C6	CC	0.32
50	ATP	N2	ND	-0.68
51	АТР	C7	СА	0.00

52	ATP	C8	СА	0.88
53	ATP	N3	NH	-1.08
54	АТР	N4	NB	-0.91
55	ATP	С9	СА	0.68
56	ATP	N5	NB	-0.86
57	ATP	C10	СА	0.47
58	ATP	P1	P4	1.14
59	ATP	011	0	-0.77
60	ATP	012	0	-0.77
61	ATP	013	0	-0.77
62	ATP	H1	H1	-0.07
63	ATP	H2	H1	-0.07
64	ATP	Н3	H1	-0.05
65	ATP	H4	H1	0.01
66	ATP	Н5	НО	0.44
67	ATP	Н6	H1	0.03
68	ATP	H7	НО	0.44
69	ATP	H8	H2	-0.02
70	ATP	Н9	Н5	0.14
71	ATP	H10	HN	0.42
72	ATP	H11	HN	0.42
73	ATP	H12	Н5	0.02

Table S2. Gibbs free energies for the QM/MM optimized stationary points using B3LYP/6-31+G(d) and single-point (SP) energy corrections using 6-311+G(d,p) and 6-311++G(d,p) for the phosphoryl transfer catalyzed by MDD.

	Reactant	TS	Product
	(kcal/mol)	(kcal/mol)	(kcal/mol)
6-31+g(d) Opt	0	17.4	5.3
6-311+G(d,p) SP	0	17.4	6.3
6-311++g(d,p) SP	0	17.6	6.5

Number	PDB	Family	Mg ²⁺ - ATP	Mg ²⁺ - H ₂ O	
	Code				
α/β/γ phosphate					
1	5I4N	Transferase	α / β / γ phosphate	3 x H ₂ O, Asn	
2	5DK4	Ligase	α / β / γ phosphate	3 x H ₂ O	
3	4FVQ	Transferase	α / β / γ phosphate	3 x H ₂ O	
4	3KE5	Transferase	α / β / γ phosphate	3 x H ₂ O	
5	3FXX	Transferase	$\alpha/\beta/\gamma$ phosphate	3 x H ₂ O	
6	3FKB	Transferase	α / β / γ phosphate	3 x H ₂ O	
7	3AR4	Hydrolase	α / β / γ phosphate	3 x H ₂ O	
8	2WGH	Oxidoreductase	α / β / γ phosphate	3 x H ₂ O	
9	3V2U	Transcription	$\alpha/\beta/\gamma$ phosphate	$2 \text{ x H}_2\text{O}, \text{Glu}, \text{Ser},$	
10	1B63	DNA Mismatch Repair Protein	$\alpha/\beta/\gamma$ phosphate	$2 \text{ x H}_2\text{O}$, Asn	
11	4WUB	Isomerase	$\alpha/\beta/\gamma$ phosphate	2 x H ₂ O, Asn	
12	3H4L	DNA Binding Protein	$\alpha/\beta/\gamma$ phosphate	2 x H ₂ O, Asn	
13	3KMW	Cell Adhesion Protein	α / β / γ phosphate	2 x H ₂ O, Asp	
14	2X14	Transferase	α / β / γ phosphate	2 x H ₂ O, Asp	
15	2WVJ	Transferase	α / β / γ phosphate	$2 \text{ x H}_2\text{O}$, Ser	
16	3GAH	Transferase	α / β / γ phosphate	2 x H ₂ O	
17	3K8T	Oxidoreductase	α / β / γ phosphate	2 x H ₂ O	
18	3EHG	Transferase	$\alpha/\beta/\gamma$ phosphate	1 x H ₂ O, Glu, Asn	
19	3DKC	Oncoprotein	$\alpha/\beta/\gamma$ phosphate	1 x H ₂ O, Asp, Asn	
20	3CIS	Unknown	$\alpha/\beta/\gamma$ phosphate	1 x H ₂ O, Asp	
21	3K5H	Lyase	$\alpha/\beta/\gamma$ phosphate	1 x H ₂ O	
22	3HNC	Oxidoreductase	$\alpha/\beta/\gamma$ phosphate	1 x H2O	
23	2XZW	Signalling Protein	$\alpha/\beta/\gamma$ phosphate	2 x SUB, Gln	
24	3KFB	Chaperone Protein	$\alpha/\beta/\gamma$ phosphate	2 x Asp, Ser	
25	3LCB	Transferase	$\alpha/\beta/\gamma$ phosphate	Asp, Asn	
26	3LMG	Transferase	$\alpha/\beta/\gamma$ phosphate	Asp, Asn	
27	3EPS	Transferase	$\alpha/\beta/\gamma$ phosphate	Asp, Asn	
28	3HAV	Transferase	$\alpha/\beta/\gamma$ phosphate	Asp	
29	3E76	Chaperone Protein	$\alpha/\beta/\gamma$ phosphate	Asp	
30	3H5N	Transferase	$\alpha/\beta/\gamma$ phosphate	Asp	
31	1WUU	Transferase	$\alpha/\beta/\gamma$ phosphate	Glu, Ser	
32	3EUJ	Cell-Cycle Protein	$\alpha/\beta/\gamma$ phosphate	Ser	
33	4P10	Transport Protein	$\alpha/\beta/\gamma$ phosphate	N/A	
34	2XBP	Gene Regulation Protein	$\alpha/\beta/\gamma$ phosphate	N/A	

Table S3. Statistics of the crystal structures of kinases with Mg²⁺/ATP in PDB bank

α/β phosph	hate			
35	3ILO	Transferase	α / β phosphate	3 x H ₂ O, Asp
36	3HGM	Signalling Protein	α / β phosphate	3 x H ₂ O
37	3E8N	Transferase	α / β phosphate	2 x H ₂ O, Asp, Asn
38	3DV3	Transferase	α / β phosphate	2 x H ₂ O, Asp, Asn
39	3EQC	Transferase	α/β phosphate	2 x H ₂ O, Asp, Asn
40	3GT8	Transferase	α/β phosphate	1 x H ₂ O, Asp, Asn
41	3IS5	Transferase	α/β phosphate	Asp, Asn
42	3GQI	Transferase	α / β phosphate	Asp
43	3DY7	Transferase	α/β phosphate	Asp, Asn
44	2 Y 41	Iransferase	α/ β phosphate	Asp, Asn, Ser
β/γ phosp	hate	TT 1 1		4 11 0
45	3FH1	Hydrolase	β/γ phosphate	4 x H ₂ O
46	3I5X	Hydrolase	β / γ phosphate	4 x H ₂ O
47	3FCC	Ligase	β / γ phosphate	4 x H ₂ O
48	3A5M	Contractile Protein	β/γ phosphate	4 x H ₂ O
49	3M6G	Structural Protein	β/γ phosphate	4 x H ₂ O
50	5C18	Hydrolase	β/γ phosphate	3 x H ₂ O, Asp
51	2YCH	Cell-Cycle Protein	β/γ phosphate	3 x H ₂ O, Asp
52	2Y27	Ligase	β/γ phosphate	3 x H ₂ O, Asp
53	3A1C	Hydrolase	β/γ phosphate	$3 \text{ x H}_2\text{O}, \text{Asp}$
54	3G5A	Transferase	β/γ phosphate	3 x H ₂ O, Asp
55	3FGU	Transferase	β/γ phosphate	3 x H ₂ O, Asp
56	3A4L	Transferase	β/γ phosphate	$3 \text{ x H}_2\text{O}$, Ser
57	3ADB	Transferase	β/γ phosphate	$3 \text{ x H}_2\text{O}$, Ser
58	3DCB	Motor Protein	β/γ phosphate	$3 \text{ x H}_2\text{O}$, Ser
59	3HU1	Transport Protein	β/γ phosphate	$3 \text{ x H}_2\text{O}$, Thr
60	3ETL	DNA Binding Protein	β/γ phosphate	$3 \text{ x H}_2\text{O}$, Thr
61	3HQD	Motor Protein	β/γ phosphate	$2 \text{ x H}_2\text{O}$, Ser, Thr
62	3AV0	Recombination Protein	β/γ phosphate	2 x H ₂ O, Ser, Gln
63	2DY1	Signalling Protein	β/γ phosphate	2 x H ₂ O, Ser
64	2WKP	Transferase	β/γ phosphate	$2 \text{ x H}_2\text{O}, 2 \text{ x Thr}$
65	2XTN	Immunity Protein	β/γ phosphate	$2 \text{ x H}_2\text{O}$, Ser, Thr
66	3ZFC	Hydrolase	β/γ phosphate	$2 \text{ x H}_2\text{O}$, Ser, Thr
67	3C41	Hydrolase	β/γ phosphate	$2 \text{ x H}_2\text{O}$, Ser
68	3FKQ	Unknown	β/γ phosphate	2 x H ₂ O, Asp
69	2W00	Hydrolase	β/γ phosphate	2 x H ₂ O
70	2V9J	Transferase	β/γ phosphate	2 x H ₂ O
71	2JHR	Contractile Protein	β/γ phosphate	1 x H ₂ O, Ser, Thr
72	3MOE	Lyase	β/γ phosphate	1 x H ₂ O, 2x Asp
73	4QDI	Ligase	β/γ phosphate	1 x H ₂ O, Asp, Thr

74	4F93	Hydrolase	β/γ phosphate	1 x H ₂ O, Asp
75	2X9H	Contractile Protein	β/γ phosphate	1 x H ₂ O, Asp, Ser, Thr
76	3ID8	Transferase	β/γ phosphate	1 x H ₂ O, Asp
77	2XJD	Hydrolase	β/γ phosphate	1 x H ₂ O
78	2WBE	Structural Protein	β/γ phosphate	Asp
79	3JVV	ATP binding Protein	β/γ phosphate	Asp, Ser
80	3LQQ	Apoptosis	β/γ phosphate	Asp, Ser
81	2XB2	Hydrolase	β/γ phosphate	2 x Asp, Thr
82	2WSS	Hydrolase	β/γ phosphate	Asp, Thr
83	4KH4	Hydrolase	β/γ phosphate	2 x Asp
84	3G0H	Hydrolase	β/γ phosphate	Asp
85	2XOK	Hydrolase	β/γ phosphate	Thr
86	2WPD	Hydrolase	β/γ phosphate	Thr
87	3J8Y	Motor Protein	β/γ phosphate	2 x Ser
88	2YJE	Motor Protein	β/γ phosphate	Asp, Gln
89	3C16	Lyase	β/γ phosphate	Ser, Thr
90	1KVK*	Transferase	β/γ phosphate	Asp, Ser
91	1H74	Transferase	β/γ phosphate	Glu
92	3IQ0	Transferase	β/γ phosphate	N/A
α/ γ phos	ohate			
93	3GU5	Transferase	α/γ phosphate	2 x H ₂ O, Asp, Asn
94	3KEX	Transferase	α/γ phosphate	1 x H ₂ O, Asp, Asn
95	3F5U	Transferase	α/γ phosphate	1 x H ₂ O, Asp
96	2W02	Metal Transport Protein	α/γ phosphate	Asp, Asn, Gln
97	2X3J	Ligase	α/γ phosphate	Asp, Asn, Gln
β phosphat	e			
98	3IBQ	Transferase	β phosphate	4 x H ₂ O
99	3LDL	Heat-Shock	β phosphate	4 x H ₂ O
	4 -	Protein		
<i>Y pnospna</i> 100	<i>ie</i> 2XCI	Ligase	a (1 1 4	3 x Han Asn
100	2ACL 3GON	Transferase	γ phosphate	$3 \times H_2O$, $A sp$, $A sh$
101	2W/5P	Transforaça	γ phosphate	3 x H ₂ O, Asp, Sub
102	2 W 3D	Transforaça	γ phosphate	$3 \times H_{2}O$
103		Transforaça	γ phosphate	$2 \times 11_{2}$, Asp, Asi
104		Transferaça	γ phosphate	UIII Agn Sor
105		T	γ phosphate	Asp, Ser
106	JJZM	Transferase	γ phosphate	Glu, Ihr

* Mg^{2+} is coordinated to the β -/ γ - phosphate of ATP in Mevalonate kinase proposed based on our recent study. ¹

Figure S1. RMSD for the C α of the entire protein from four replicas 100ns MD simulations of MDD-2Mg²⁺-ATP-MVAPP.

Figure S2. Statistical analysis of Mg^{2+} coordination with ATP and water in the protein databank.

Figure S3. Representative models of the MD simulated structures of the MDD containing only one divalent metal ion. (A) the metal ion was positioned to coordinate to the β/γ -phosphate of ATP. Three water molecules were made coordinated to Mg²⁺, with the sixth coordination formed with the C3-hydroxyl group. (A) the metal ion was positioned to coordinate to the γ -phosphate of ATP, the C3-hydroxyl group and the carboxylate of Asp283. The remaining coordination of magnesium was saturated by two water molecules.

Figure S4. (A) PyK catalyzes the phosphorylation of ADP, where the phosphate group of PEP is transferred to ADP to yield ATP and pyruvate; (B) MDD catalyzes the phosphorylation of MVAPP, where the γ -phosphate group of ATP is transferred to MVAPP to give 3PMVAPP and ADP. The phosphate group to be transferred is colored in red.

Figure S5. (A) RMSF plot for the C α from four replica 100ns MD simulations of MDD-2Mg²⁺-ATP-MVAPP. Large fluctuations are shown around the loop 99-105 and the catalytic residue Lys188; (B) RMSD for the C α of the catalytic site residues within 4 Å around the substrates ATP and MVAPP, showing the catalytic site has reached equilibrium from the MD simulations. The loop 99-105 and Lys188 were excluded in the RMSD plot as they displayed high fluctuation from the four replicas 100ns MD simulations of MDD-2Mg²⁺-ATP-MVAPP.

Reference:

 J. McClory, J. Lin, D. Timson, J. Zhang, M. Huang, Catalytic Mechanism of Mevalonate Kinase Revisited, a QM/MM Study. Organic and Biomolecular Chemistry. 2019, 17, 2423-2431.