Palladium Catalyzed Synthesis of Benzannulated Steroid Spiroketals

Martha C. Mayorquín-Torres,^a Juan Carlos González-Orozco,^b Marcos Flores-Alamo,^a Ignacio Camacho-Arroyo,*^b Martin A. Iglesias-Arteaga*^a

^a Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México.

^b Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México.

Index

• ¹H and ¹³C{¹H} NMR spectra

17β-Acetoxy-4,5-secoandrost-3-yn-5-one (11) S	S-2
4-(2´-(Hydroxymethyl)phenyl)-17β-acetoxy-4,5-secoandrost-3-yn-5-one (12)	S-7
4-(2'-(Hydroxymethyl)phenyl)-4,5-secoandrost-3-yn-5 α ,17 β -diol 17-monoacetate (13a)	S-12
4-(2'-(Hydroxymethyl)phenyl)-4,5-secoandrost-3-yn-5 β ,17 β -diol 17-monoacetate (13b)	S-17
(25 <i>R</i>)-4,5-Secospiros-3-yn-5-one (15)	S-22
(25 <i>R</i>)-4-(2´-(Hydroxymethyl)phenyl)-4,5-secoespirost-3-yn-5-one (16)	S-27
(25 <i>R</i>)-4-(2´-(Hydroxymethyl)phenyl)-4,5-secospirost-3-yn-5α-ol (17a)	S-32
(25 <i>R</i>)-4-(2´-(Hydroxymethyl)phenyl)-4,5-secospirost-3-yn-5β-ol (17b)	S-37
4,5-Secocholest-3-yn-5-one (19) S	S-42
4-(2´-(Hydroxymethyl)phenyl)-4,5-secocholest-3-yn-5-one (20) S	S-47
4-(2´-(Hydroxymethyl)phenyl)-4,5-secocholest-3-yn-5α-ol (21a)	S-52
4-(2´-(Hydroxymethyl)phenyl)-4,5-secocholest-3-yn-5β-ol (21b)	S-57
(3S)-Spiro-17β-acetoxy-4-oxa-5β-androstan-3,3´-isochromane (22)	S-62
(3S)-Spiro-4-oxa-5β-spirostan-3,3´-isochromane (23)	S-67
(3S)-Spiro-4-oxa-5β-cholestan-3,3´-isochromane (24) S	S-72
(3 <i>R</i>)-Spiro-17 β -acetoxy-4-oxa-5 α -androstan-3,3'-isochromane (25) S	S-77
(4S)-Spiro-[isobenzofuran-1,2'-(17 β -acetoxy-5 α -A-homo-4a-oxa-androstan)-oxepane] (26)	S-82
$(3R, 25R)$ -Spiro-17 β -acetoxy-4-oxa-5 α -spirostan-3,3'-isochromane (27)	S-87
$(4S, 25R)$ -Spiro-[isobenzofuran-1,2'-(17 β -acetoxy-5 α -A-homo-4a-oxa-spirostan)-oxepane] (28)	S-92
(3 <i>R</i>)-Spiro-17 β -acetoxy-4-oxa-5 α -cholestan-3,3 ['] -isochromane (29)	S-97
(4S)-Spiro-[isobenzofuran-1,2'-(17 β -acetoxy-5 α -A-homo-4a-oxa-cholestan)-oxepane] (30)	S-102
Crystallographic Data and conditions	S-107

• Additional Cytotoxicity Data S-110

 17β -Acetoxy-4,5-secoandrost-3-yn-5-one (11)

	nding titeli allan	Miring a hadro (a)	41401 pri (1440 441)		fila, by any file for		n () (mining ())	u vernak nikiji (ka u jevo jen						Nyani ya ku	Natural Value of States				wijeta junde segena	uplicited de la c	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
230 220 21) 200	190	180	170	160	150	140	130	120	110 f1 (ppr	100 n)	90	80	70	60	50	40	30	20) 1	0 0	-10 S-5

—77.00

	—214.10				—171.02									84 88		68.07		
Manuto/Drapow	(all) had a service of the high market	han bar an	koverní stalovaní skolovaní skolovaní skolovaní skolovaní skolovaní skolovaní skolovaní skolovaní skolovaní sko	เป็นไปประกันสุดภาพในประชาญ	5.11/60/14/14/14/14/14/14/14/14	u, et le la constante de		un na	verfin are n Å	ารโลยสิญหัวเรียมแปลไปเป็นแปลไปเป็นไปไป	ngarangga pangka pan	alimaniya kukukukuku	164/1444/1/envillentederteder/144/1444	(curumenter) and the second	hanva bilayaqırlaşı taşı	Wheel in the state of the state	1.) (ang mananang manang ma	
 220	210	200	190	180	170		160	15	0	140 13 f1 (ppm)	0 120) 110	100	90	80	70	60	
	50.72 50.14	47.26				—37.89	—36.21	—34.61	—33.49		—27.36	23.48	21.09 21.09 21.03 20.54			—13.71	— 12.04	
nuntukaaduu	really to an all second and and a	1664-raffers-red Manuscrippficians	Af factors for the factors		ppeliterellurgensetensetensetenset	ALTER THE A	الرواسي والمراجع	Agentin Name	Wayle Bayler La	utrioraproprior tor variety where we have	1884844.50041 V=40.6-1004	۱۹۰۰م و المحمد المحم	درمهم شرجد زیاده بر است	11.11.44 and 11.11.10.11.10.11.10.11.10.11	6.1/14145-yaliga dis Agree, product	Literature	uping belongtebourgerigtegeter	ማ ቀጉ ነ
52	50	48 46	44	42	40	38	36	3	4	32 30 f1 (ppm)	28 2	6 24	22 20	18	16	14	12 10 S-6	_

 $4-(2'-(hydroxymethyl)phenyl)-17\beta-acetoxy-4, 5-secoandrost-3-yn-5-one~(12)$

 $4-(2'-(hydroxymethyl)phenyl)-4, 5-secoandrost-3-yn-5\alpha, 17\beta-diol\ 17-monoacetate\ (13a)$

	—171.20						11.211		-132.19 $\int 127.94$ $\int 127.39$	₹127.37 127.31 —122.00										—78.07	-71.68
Mart Hackback		Wystationarysalysat	***	العدير أمرابه، وإنها إنها إنها إنها	the office of the provide source of the office of the other sources of t	466446,vaquerya	wynadaetae - e daes	nerthentrumotive	my landargina and games		alanga ka ka	1499 (P-161-9-1-91-14-16)	hadershaft for a first	Ay he post to a start a	61Anj\UMenad		Malendarian-profile	University of the second s			
175	170	165	160	155	150	145	140	135	130	125 f1 (pp	120 om)	115	110	105	100	95	90	85	80	75	70
	64.00 63.97					50.15		45.50	42.43	739.19	<pre>>3/.25 >36.95</pre>	23.04					~21.13	-17.73			
va-united	101100000	6~~1/p~~11~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	for the second for th	₩y/bueskt^Mire	ngdlayayatin ayyarlan ayyarlan ayyar	1	nam aga na na na na	where it has a first of the second seco				A mulain	مادور «درمار آفادووارم»»		-real front and a				Mandana ang ang ang ang ang ang ang ang ang		24.47 ^m 7.9 _{1.9} 1.921.200.0004
	65	1	60	5	5	50	ı	45	T	40 f1 (ppi	m)	35	1	30	2	5	20	1	15	ı	10 S-16

4-(2'-(hydroxymethyl)phenyl)-4,5-secoandrost-3-yn-5β,17β-diol 17-monoacetate (13b)

(25*R*)-4,5-secospiros-3-yn-5-one (15)

214.25															
220 210	200	190	180	170	160 1	.50	140 130 f1 (ppm)	120	110	100	90	1	80	70	60
	61.98		55.57	50.75			41.64		 31.77 31.35 31.35 31.20 30.24 					— 17.11 — 16.38	
				www.								4-9			
68 66 64	4 62 6	60 58	56 54	52 50	48 46	44	42 40 38 f1 (ppm)	36 34	32 30	28	26 24	4 2	22 20	18 16	14 S-26

(25*R*)-4-(2'-(hydroxymethyl)phenyl)-4,5-secoespirost-3-yn-5-one (16)

—214.49										—142.50		$\begin{pmatrix} 127.35 \\ 127.27 \\ -122.15 \end{pmatrix}$		—109.24	— 95.50		- 80.43	10.01	66.85 -64.07	-61.99
ւջոնիններիններիններին	Were an Although And And	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	YAF4TIR ARKADING		ang	Janes yr Argin y Lanhaed Mingru	لەر~تەر بەلىرى بەلىر تەرىپى بىرى بىرى بىرى بىرى بىرى بىرى بىرى	çaldış vi ştaviy ya Pub yi Man	ኯዅዿ፟ጜኯዾዸኇፙጜዾጚኯጚ	 		A May Repairing State Add	4+4A-4d#ARAAA/AMAY	(cality-tryperty-cativity)	the share and the share of the share	ale-Yila,af Yila/qotaqf Yacamada	dorfactories high	14 14 14 14 14 14 14 14 14 14 14 14 14 1	udent installe	ارورار
20	210	200 200 5 5 7		- 47.26	180	170	1 41 64	-40.49 091	- 150 - 150 -	140 f1 (ppm) ¥9 +8 	130 69.88 1	→ 31.77 → 31.35 → 31.12 → 30.24	-28.77	110	100	-21.41 06 -	-20./1	-17.10 -16.35 04		~14.80 ~14.43 09
-whore the provided in the pro	Madelanarayada	on Parally on Algebra and Par	Your Acception		hurradhaputratorphyset	Stryley Scener, of Sci of J		unar more for	where the the second	nuthing_ustageters	a sugar	www.williamer	ng, shurin la - sgarage	alage#34-sec-by/shares	144.000016.010-14 ^{.010} 1616-114		- mpsummary	an marine the	however	and harrow
56	54	52	50	48	46	44	42	40	38	36 3 f1 (ppm)	4	32 30	28	3 26	24	22	20	18	16 ε	14 3-31

(25R)-4-(2'-(hydroxymethyl)phenyl)-4,5-secospirost-3-yn-5α-ol (17a)

05 CM1	PC.2F1		-152.24 127.98 127.47 127.38	-122.07							—78.09	71.74
farst-row-ty-cham/		ana function and the state of the			₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		fant, of ff States on the Stat		a.r.t. v1.v1.ex.1.ex.1.ex.1.ex.1.ex.1.ex.1.ex.1			
 145	140	135	130	125 12	0 115	110 105 f1 (ppm)	100	95 90	85	80	75	
66.82			55.73		45.58	~41.60 ~40.42 ~39.24 ~37.29		~31.71 ~31.35 ~30.27 ~28.51 ~28.51		—20.94	√17.80 −17.11 ~16.43	~14.47 ~13.85
metel		peret-angentus-apers-aper	any provide the state of the st	449/1749/1646-149-1747/164-1743-1447-1448-14-	where the state of		Spedarer and Haracelander		were and we are a first of the second s	al base and a spectra as a second		
T	65	60	55	50	45	40 f1 (ppm)	35	30	25	20	T	15 S-36

(25*R*)-4-(2'-(hydroxymethyl)phenyl)-4,5-secospirost-3-yn-5β-ol (17b)

	— 142.35			—132.23	127.95 127.61	J / J +	—122.27			— 109.24		—95.71				—78.05	—72.89	
ng men tigetindese fright dar ver	l duyantin and a start	ages of A-waller	ากปุกษณะ	mandeline		herryn her fysfers friede	nel executive sector	ense waarde kaar an de kaar ee	ang den dan ciken dan s	างในชายายายิ่งไป	conger where an order of the system Prover to pro-	head announterpre	(Security Comparison of Security Security Contractions)	Mr.Newsgrannon-ran.Ager	Margarout		ngh water and the spectra and the state of the	down
145	140		135	1	30	125	120	115		110 105 f1 (ppm)	100	95	90	85	80	75	5 70	 C
			64.11	-62.08					45.84	41.60 40.93 40.42 39.78	-34.31 -34.16		28.77 28.77		—20.96	~ 17.11 ~ 16.36 ~ 14.79	14.45−13.03	
nja, seraja	for the former of the former o	grand langevera	trade of the second	Mp.e.p. Vuqure,	, followed a service of the office of the service of the office of the service of the service of the service of	sou-love generation	₩ffeeter*tdeterMerte	1,444 ¹ 641/91/9-1-146-9-144	المرد ومرد ومرد ومرد ومرد ومرد ومرد ومرد و	Radio angus of gan Maryof Cold from the April of Station	no in which and provided have been	- And a start of the start of t	Muque more man or	ifenesjenst ^a n og en stand forsøjenske	ing all and a first sharp the		With way in the second	lante
74 72	70 68	3 66	64	62	60 58	56	54 52	50 48	46	44 42 40 38 f1 (ppm)	36 34	32 3	0 28 26	24 22	20	18 16	14 12 S-41	_

4,5-secocholest-3-yn-5-one (19)

— 214.69												85.00	60.00 	67.95	~ 55.99	
International States	11441201000-1742-1742-1742-1742-1742-1742-1742-1742	****	-1/100-001-001-001-001-001-001-001-001-0	Markay Markaya (Sayar) Sayar) Mala Danayan Ma	1997/1995/1999/1999/1999/1999/1999/1999/	1911-1911 -1911-1911-1911-1911-1911-191	14/1449/14/14/14/14/14/14/14/14/14/14/14/14/14/	-971-981-981-97-981-98-98-98-98-98-98-98-98-98-98-98-98-98-	ħĸĸĸŧĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	enter tyteljenter og til fødeljen	Querdine Rissourie (rock)	₽₩\₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	- Manual sciences	~100007-10 %101040-4444-444	ngaga ang ang ang ang ang ang ang ang an	
220	210	200	190	180	170	160 1	150 140 f1 (130 (ppm)	120	110	100	90	80	70	60	50
42.49		~ 39.47 ~ 39.27		~36.09 ~35.71			28.06		7 24.21	23.78 22.79 22.54	-21.53 $\int 20.51$				—13.71	—11.99
	٩٩٩٩٩			-reserved by language	la contraction of the second	weeks-also do that	man water to a family of the		vermenter			moutermark	guide provide start for the start of the sta	Martin Argan Maran	and the second second	rand weburn
43	42 41	40 39	38	37 36 3	5 34 3	3 32 31	30 29 28 f1	27 26 (ppm)	25 24	23 22	21 2	0 19 1	18 17	16 15	14 13	12 11 S-46

4-(2'-(hydroxymethyl)phenyl)-4,5-secocholest-3-yn-5-one (20)

-215.02							—142.48	√127.36 √127.36 √127.38	√127.29 ~122.24		—95.67		—78.31		
arawkarrotowing-ba	alaritury), qu Vujikavi tulovja	unterina de la constante de la	tωρ_βψαζισία Ω	\\~40\\~10 [\]	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	กปฏานคอมสารประการคารประการปฏกว	14.10°-01-0-100100100100100100010000000000		The state of the s	เลงจำนักเราะเกาะใหญ่ๆและจากะจากๆไป	uli ne juli ne jite vuji ne jite vuji ne jite kali v vuje	riyy/andilynyaangalagabaga		entillya faannoo saatsiyaay	a (1994) (ar, 1954) (ar) 10/10
220	210	200	190	180	170	160	150 140 f1 (ppm)	130	120	110	100	90	80	70	 6C
-56.03 Fr 02	£8.cc [.] ∕	50.63	06 71		42.50	~39.47 ~39.37 ~38.13		31.13	<pre>28.04 <27.99</pre>	~24.22 ~23.78	22.79	~20.64 —18.58		—14.88	—11.99
	bolywywywewoodech	, New more than the second	er-ally-specedyllowalder	and records	r-ware ann officed in participation	. yourse on long of the second second		VMALLAN AND AND AND AND AND AND AND AND AND A	-forgetwork-rapidly biologisty for	wisnyampaphannah ar a		Norther against as region	longer-1-major/surf-rap		Youthur bergelauge
56	54	52 50	0 48	46	44 42	40 38	36 34 f1 (ppm)	32 3	0 28	26 24	22	20 18	16	14	12 S-51

4-(2'-(hydroxymethyl)phenyl)-4,5-secocholest-3-yn-5α-ol (21a)

4-(2'-(hydroxymethyl)phenyl)-4,5-secocholest-3-yn-5β-ol (21b)

85 Ch1	-142.38 -132.24 -132.24 -127.62 -122.34								—95.87						78.00 73.04				56.29 56.21	
						-												h		
145	140	135	130	125	120 1	15	110	105 f	100 	95	90	85	80	75	7	70 	65	60	55	
		42.43	-40.81 539.77 -39.48		-36.12 ~35.72 ~34.68			~30.24 ~29.82	∠28.15 √27.98		~ 24.20	~23.81 _22.79 ~22.54	21.15		—18.61		—14.71	12 OF		
							V							~		*************				
46 45	44 4	3 42	41 40 3	9 38 3	37 36 35	34 3	33 32	31 30 f	29 28 1 (ppm)	27 2	6 25 2	4 23	22 21	20 19	9 18	17 16	5 15	14 1	3 12 S-61	11

(3S)-Spiro-17 β -acetoxy-4-oxa-5 β -androstan-3,3'-isochromane (22)

(3S)-Spiro-4-oxa-5 β -spirostan-3,3'-isochromane (23)

	-133.91	—131.96		~126.32 ~125.51 ~123.77				07.601 —			—95.67						-80.90
evilentia.	keytyp Maysty	Kultur Horpe	Antonio polatanici	ayung bernel hyaraphayung bepertu	Wedney Markey Markey	ut/14/10/14/000/14/1000/14/1000/11/1	14/40 ¹ 11/14/14/14/14/14/14/14/14/14/14/14/14/1	1	Muril-Internet-back	17.44.916.196.91/9699.94	uMan Ling, Named May and May and May	64 4 11/104/104101101/10.	1410-1410 March 1410	alau ay an	1814-181-1-1-14	91.11 ⁴ 111111111111111111111111111111111	w #10-1-10-1-10-1-10-1-10-10-10-10-10-10-10
136	134	132	130 128	126 124	122 120 11	8 116 114	112 110	108 106 f1 (ppm)	104 10	02 100	98 96	94 92	2 90	88	86 84	82	80
-74.24				~62.29 ~61.52	—55.98			41.62	40.01	34.68 34.04 31.77	31.41 30.64 ~30.31	29.43 28.81 26.46 26.09	Q0'07 >	~21.07 ~20.69	~17.13	√16.41 √14.52	
41115/1 1/1014	nutavitadianati	Managaranga	uhlaruhanah	Managana wa wanana	1944 and 1944 and 1944 and 1944 and 1944	ndupandupuhhilkikasperangur	14.14.00.0001/11.14.001/01.14.001/01.14.001	1001/14.11-010/14/01/1 ¹¹ 00/14/14		anytrijkijstik by men			lindadayyAbilyipan		sileggler-rytygelegylt by	4 KIIII (44) K KI	Norshuhiliyayhandara
75		70	65	60	0 55	50	4	5 4 f1 (ppm)	10 10	35	30		25	20)	15	S-71

(3S)-Spiro-4-oxa-5β-cholestan-3,3´-isochromane (24)

—133.96 —132.01	~128.82	 126.30 125.49 123.77 					—95.66				—74.39				61.50
135	130	125	120	115	110	105	100 95 f1 (ppm)	90	85	80	75	70		55	60
56.34 56.20					—42.69	40.2039.9739.5338.80	 −36.18 >35.78 >35.04 −33.87 	30.6629.41	28.30 28.02 26.55 25.86	24.21 -23.79 -22.81	21.07 20.93	—18.72			-12.02
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		concernent compared									whereas	
58 56	54	52 5	0 48	46	44 42	40 38	36 34 f1 (ppm)	32 30	28 26	24 2	2 20	18	16	14	12 S-76



(3R)-Spiro-17 $\beta$ -acetoxy-4-oxa-5 $\alpha$ -androstan-3,3'-isochromane (25)





 1949:001400/1400/1400/1400/1400/1400/1400/14	<b>ԱՎԿՈՆԻս ԱԻՎԿԻՆԻԿ</b> 	" <b>belog:</b> "//www.up 150	14404444444444444444444444444444444444	130	120	10110000000000000000000000000000000000	มนายงามที่ใหญ่งงันทั่ง 	90 f1	80 (ppm)	 интинии инициции 60	••••••••••••••••••••••••••••••••••••••	<b>nuivallaniaidiania</b> 	//www.www. 	10000000000000000000000000000000000000	 นฟแฟสสามเม ^{โคยไ} ฟเมืองไฟสา 

-77.00





(4*S*)-Spiro-[isobenzofuran-1,2'-(17 $\beta$ -acetoxy-A-homo-4a-oxa-5 $\alpha$ -androstan)-oxepane] (26)







—171.18				—143.61	—139.68		~128.37 ~127.61	$<^{121.11}_{121.07}$		—111.07					0 00	
่อร่างเสียมัน จ.ร	ngan Niyyaan yaali kalada yoloo yo	hirheby/10000147-001/6.41/1-000-files	nagila-t-unit-lunde-tungket/auto-tunis-tunis-tunis-	lessen per de la contra de la	Phone and and a	en formalis and the standard and and a	annanganang bu kacang bingko ang bi	unitered and all addressed	lipagiti tupok nikagi tupok kapate	ur , managende, managende, for	nd balanta fa bana ta ba	teragi de gita de la constitución d	ayuya baya kaya katik	unterlytelytelytelytelytelytelytelyte	1949-1949-1949-1949-1949-1949-1949-1949	allineten gester beserketen.
170	165 10	60 155	150	145	140	135	130 125 f1 (ppm)	120	115	110	105	100	95	90	85	80
-70.28				52.91		45.13	\42.48 \740.45 \739.35			₹29.80 29.71 −27.51		-23.58 21.17 -20.85	¹ 20.54		~12.53 ~12.00	
when the state of	forflowedforvanowedligteredge	Prack for grad from the state of the grad for	antina	ingthe ingest and all	un hungeland	Kabalaniai/atasi	autority to represented a function to patient	Prograf 1 Millson (Josef Lyngel)	44444444444444444444444444444444444444	n an the foreign and the	Lan Martin and Martin and Martin	Weideligensen //w	Workeyleunapoliy	World Way or a free free free free free free free f	April of the state	4~1~14 ¹ 010141141
70	65	60	55	1	50	45	40 f1 (ppm)	35		30	25	I	20	15	I	10 S-86



(3R, 25R)-Spiro-4-oxa-5 $\alpha$ -spirostan-3,3'-isochromane (27)











(4S, 25R)-Spiro-[isobenzofuran-1,2'-(A-homo-4a-oxa-5\alpha-spirostan)-oxepane] (28)







—143.57	—139.65		~128.36 ~127.60	$<^{121.10}_{121.07}$								76.68
www.heespooral.cologogo	ประการสารมูมาไป	Myer-«4usktudes/myedestationalisse	(~~~~)////	מולוליקיטוקול-הנייקייניטן אינוטיפענטיונל-נייניטן	านการสารกระบารระบารระบารระบารระบารระบารระบารระ	Lug-cd (90)710/100/100/100/100/100/100/100/100/100/	ᅕ୶୶୶୶୳୶ଽୄୄ୶୶୵୶ୡ୲୵୶ଽ୶୶ୄ୶୶୶ୡ୲ଌୄ୶ଽ୶୶୲	ราปแบ-งะอาสหระ141/yaquet-anglowite	461,444644444	howithere we have by the state of the	מיון ג'וען אינין איניקיינט און איניין איניין אין	W seyber (revision or
145	140	135	130 125	5 120	115	110 105 f1 (ppm)	100	95	90	85	80	75
70.26		62.09	—55.92		45.08	41.60 40.43 40.35 40.35 39.33		29.72 29.72 28.77		~21.13 ~20.53	\17.13 16.35	~ 14.48
IMAN MAN MAN	1944-1944-1944 VIEN VIEN VIEN AUGUST	96/61/140140/46/6	*6*****	Mereden fuser en forder en ford	PROFE ALLAND THE ALLAND THE ALLAND		it, princes alfancially forecasting failed a		na./11/1493.4/1/fron.alg/41/fron.	Arrive and Appropriate	window was a free of way why way	nger Wergererger heredere
72 70	68 66	64 62 60	58 56 5	54 52 50	48 46 44	42 40 38 f1 (ppm)	36 34 32	30 28	26 24	22 20	18 16	14 12 S-96



(3S)-Spiro-4-oxa-5α-cholestan-3,3'-isochromane (29)







—133.65	-131.47	11001		~126.30 ~125.58 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C0.C21 ~																—76.15	
.34	132	130	128	126 1	24 122	120	118 1	16 114	112 110	108 106	5 104 102 f1 (ppm)	100 98	96 94	92	90	88 8	684	4 82	80	78	76	74
	61.54		~56.20	~56.04	L L	10.10-			42.74	~39.82 ~39.51 ~38.67	∑36.17 ∑35.77 ∑35.17 35.17	~32.33 ~31.45	~ 30.01 ~ 28.18 ~ 28.00	~27.11	24.14	₹22.56 ∑22.56		—18.66			<pre>12.07 </pre>	
No. Laboration		<b>1</b>																		a		
6	52 6	50	58 5	56 5	4 52	50	48	46	44 42	40 38	3 36 3 f1 (ppm)	4 32	30 28	26	24	22	20	18	16	14	12 S-101	т



(4*S*)-Spiro-[isobenzofuran-1,2'-(A-homo-4a-oxa-5 $\alpha$ -cholestan)-oxepane] (30)







—143.65	—139.67		~128.34	~127.61	$<^{121.13}_{121.07}$		-111.08						77.61	70.25
145	140	135	130	125	120	115		110 105 f1 (ppm)	100	95 90	85	80	75	70
				√56.22 56.11	—52.94		-45.12	42.38 40.35 40.02 39.50 39.40	~36.14 ~35.77 ~34.65	~ 30.32 ~ 29.87 ~ 28.21 ~ 28.00	~24.29 ~23.80 ~22.82 22.56	√21.36 20.55 ~18.63		~ 12.52 ~ 11.93
مەرىيەترىيەر مەرمى الەيىرە	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Afgerenus March Mergedon We			gantal by non-contract-contract-	±v/*4.4+M/~±×10/Tfpt[]a								
70	Ţ	65	60	55	50	I	45	40 f1 (ppm)	35	30	25	20	15	10 S-106

## X-ray crystallography

Suitable single crystals grown by slow evaporation of solutions of compounds 12 (CH₂Cl₂/ethyl acetate/hexane), 23 (acetone/hexane), 24 (CH₂Cl₂/acetone), 27 (ethyl acetate), 28 (CH₂Cl₂/acetone) and 29 (CH₂Cl₂/hexane) were mounted on a glass fiber and crystallographic data were collected with an Oxford Diffraction Gemini "A" diffractometer with a CCD area detector ( $\lambda_{CuK\alpha} = 1.54184$  Å, monochromator: graphite) at 130 K. Unit cell parameters were determined with a set of three runs of 15 frames (1° in ω). The double pass method of scanning was used to exclude any noise. The collected frames were integrated by using an orientation matrix determined from the narrow frame scans. CrysAlisPro and CrysAlis RED software packages¹ were used for data collection and integration. Analysis of the integrated data did not reveal any decay. Final cell parameters were determined by a global refinement of 6388, 2604, 1396, 9964, 2195, 2126, 4338 and 2293 reflections (3.519 <  $\theta$  < 73.581 °) for compounds 12, 23, 24, 27, 28 and 29 respectively. Collected data were corrected for absorption effects by using an Analytical numeric absorption correction² using a multifaceted crystal model based on expressions upon the Laue symmetry using equivalent reflections. Structure solution and refinement were carried with the programs SHELXS-2014³ and SHELXL-2014⁴ respectively. WinGX v2014.1 and Ortep⁵ software were used to prepare material for publication. Full-matrix least-squares refinement was carried out by minimizing  $(Fo^2 - Fc^2)^2$ . All nonhydrogen atoms were refined anisotropically. For H atom of the hydroxy group was located in a difference map and refined isotropically with Uiso(H) = 1.5 for H–O. Hydrogen atoms attached to carbon atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C-H = 0.98 - 1.00 Å with Uiso (H) = 1.2Ueq(C) for aromatic, methylene and methyne groups, and Uiso (H) = 1.5 Ueq(C) for methyl group. For 28 attempts made to model the solvent molecule were not successful: the SOUEEZE⁶ option in PLATON indicated there was a large solvent cavity of 202  $Å^3$ . In the final cycles of refinement, this contribution of 50 electrons to the electron density was removed from the observed data. For the electron density, F(000) value in the molecular weight and the formula are given without taking into account the results obtained with SQUEEZE.

Crystal data and experimental details of the structure determination are listed in Tables S1 and S2. Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary material numbers CCDC 1953054 (12), CCDC 1953055 (23), CCDC 1953056 (24), CCDC 1953057 (27), CCDC 1953058 (28) and CCDC 1953059 (29). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. E-mail:deposit@ccdc.cam.ac.uk.

## Table S1. Crystal data and structure refinement for compounds 12 and 23-24

Parameter	12	23	24
Empirical formula	$C_{28} H_{36} O_4$	$C_{34} H_{47} O_4$	$C_{34}H_{52}O_2$
Formula weight	436.57	519.71	492.75
Temperature	130(2) K	130(2) K	130(2) K
Wavelength	1.54184 Å	1.54184 Å	1.54184 Å
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	$P 2_1 2_1 2_1$	<i>C</i> 2	<i>P</i> 2 ₁
Unit cell dimensions	a = 7.7797(3) Å	a = 13.1096(16) Å	a = 8.4637(4)  Å
	b = 13.9645(7) Å	b = 6.5478(7) Å	b = 7.4511(3) Å
	c = 21.3823(10) Å	c = 34.244(4) Å	c = 47.1253(17)  Å
		$\beta = 95.486(11)^{\circ}.$	$\beta = 90.048(4)^{\circ}.$
Volume	2322.96(18) Å ³	2926.0(6) Å ³	2971.9(2) Å ³
Z	4	4	4
Density (calculated)	1.248 Mg/m ³	1.180 Mg/m ³	1.101 Mg/m ³
Absorption coefficient	0.647 mm ⁻¹	0.588 mm ⁻¹	0.498 mm ⁻¹
F(000)	944	1132	1088
Crystal size (mm ³ )	0.560 x 0.380 x 0.350	0.600 x 0.400 x 0.080	0.480 x 0.250 x 0.110
Theta range for data collection	3.781 to 73.807°.	3.890 to 73.596°.	3.752 to 74.025°.
Index ranges	-9<=h<=6, -17<=k<=17, -	-15<=h<=15, -7<=k<=5, -	-10<=h<=10, -8<=k<=8, -
	26<=l<=26	42<=l<=28	58<=l<=57
Reflections collected	14520	6246	65679
Independent reflections	4554 [R(int) = 0.0254]	4169 [R(int) = 0.0270]	11470 [R(int) = 0.0632]
Completeness to theta = $67.684^{\circ}$	100.0 %	99.7 %	99.9 %
Absorption correction	Analytical	Analytical	Analytical
Max. and min. transmission	0.826 and 0.750	0.952 and 0.773	0.948 and 0.840
Refinement method	Full-matrix least-squares on $F^2$	Full-matrix least-squares on F ²	Full-matrix least-squares on $F^2$
Data / restraints / parameters	4554 / 1 / 296	4169 / 1 / 347	11470 / 1 / 659
Goodness-of-fit on F ²	1.046	1.045	1.053
Final R indices [I>2sigma(I)]	R1 = 0.0367, wR2 = 0.0913	R1 = 0.0539, wR2 = 0.1275	R1 = 0.0492, wR2 = 0.1042
R indices (all data)	R1 = 0.0402, wR2 = 0.0941	R1 = 0.0741, wR2 = 0.1398	R1 = 0.0675, wR2 = 0.1143
Absolute structure parameter	-0.03(9)	0.2(2)	-0.14(11)
Largest diff. peak and hole	0.238 and -0.233 e.Å ⁻³	0.423 and -0.255 e.Å ⁻³	0.249 and -0.229 e.Å ⁻³
Table S2. Crystal data and structur	e refinement for compour	nds <b>27</b> to <b>29</b>	
-------------------------------------	--------------------------	----------------------------	
-------------------------------------	--------------------------	----------------------------	

Parameter	27	28	29
Empirical formula	$C_{34} H_{48} O_4$	C ₃₄ H ₄₈ O ₄	$C_{34} H_{52} O_2$
Formula weight	520.72	520.72	492.75
Temperature	298(2) K	130(2) K	130(2) K
Wavelength	1.54184 Å	1.54184 Å	1.54184 Å
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	<i>C</i> 2	<i>P</i> 2 ₁	<i>P</i> 2 ₁
Unit cell dimensions	a = 21.7423(15) Å	a = 11.3526(7)  Å	a = 7.4753(5) Å
	b = 7.1223(5) Å	b = 7.2237(3) Å	b = 8.3777(7) Å
	c = 19.5816(14)  Å	c = 19.7666(12)  Å	c = 23.7615(17) Å
	β= 101.416(7)°.	$\beta = 104.982(6)^{\circ}.$	$\beta = 97.224(6)^{\circ}.$
Volume	2972.3(4) Å ³	1565.91(16) Å ³	1476.27(19) Å ³
Z	4	2	2
Density (calculated)	1.164 Mg/m ³	1.104 Mg/m ³	1.109 Mg/m ³
Absorption coefficient	0.579 mm ⁻¹	0.550 mm ⁻¹	0.501 mm ⁻¹
F(000)	1136	568	544
Crystal size (mm ³ )	0.400 x 0.280 x 0.060	0.420 x 0.080 x 0.050	0.540 x 0.180 x 0.090
Theta range for data collection	4.149 to 73.558°.	4.031 to 74.106°.	3.750 to 73.391°.
Index ranges	-26<=h<=25, -6<=k<=8, -	-14<=h<=14, -8<=k<=6, -	-5<=h<=9, -10<=k<=10, -
	24<=l<=23	22<=l<=24	29<=l<=26
Reflections collected	9202	14649	7536
Independent reflections	4812 [R(int) = 0.0376]	4727 [R(int) = 0.0439]	4662 [R(int) = 0.0360]
Completeness to theta = $67.684^{\circ}$	99.9 %	99.9 %	99.8 %
Absorption correction	Analytical	Analytical	Analytical
Max. and min. transmission	0.962 and 0.853	0.975 and 0.879	0.959 and 0.853
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on $F^2$	Full-matrix least-squares on F ²
Data / restraints / parameters	4812 / 1 / 347	4727 / 1 / 347	4662 / 1 / 330
Goodness-of-fit on $F^2$	1.098	1.038	1.057
Final R indices [I>2sigma(I)]	R1 = 0.0556, wR2 = 0.1165	R1 = 0.0417, wR2 = 0.0957	R1 = 0.0527, wR2 = 0.1152
R indices (all data)	R1 = 0.0746, wR2 = 0.1380	R1 = 0.0513, wR2 = 0.1028	R1 = 0.0736, wR2 = 0.1417
Absolute structure parameter	0.6(3)	0.3(2)	-0.2(3)
Largest diff. peak and hole	0.132 and -0.196 e.Å ⁻³	0.146 and -0.235 e.Å ⁻³	0.201 and -0.242 e.Å ⁻³

## **References X-ray crystallography**

1. CrysAlisPro, version 1.171.36.32; Oxford Diffraction Ltd.: Abingdon, U.K., 2013.

2. Clark, R. C.; Reid, J. S. The analytical calculation of absorption in multifaceted crystals. Acta Cryst. 1995, A51, 887-897.

- 3. Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination; Acta Cryst. 2015, A71, 3-8
- 4. Sheldrick, G. M. Crystal structure refinement with SHELXL; Acta Cryst. 2015, C71, 3-8
- 5. Farrugia L.J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849-854
- 6. Spek, A.L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Cryst.* **2015**, C71, 9-18



**Figure S1.** Cytotoxic effects of the synthetized BSS compounds. Cells derived from human tumors were treated with the compounds 22, 25, 26, 23, 27 and 28 (1 nM, 10 nM, 100 nM, 1  $\mu$ M and 10  $\mu$ M), and vehicle as control (1% DMSO) for five days. The figure shows the percentage of the number of cells after the treatment with the compounds. The number of cells was determined each day using the trypan blue dye exclusion assay and is represented as percentage considering the number of cells counted in the vehicle as 100%. The results are expressed as the mean ± S.E.M., n=3; *p<0.05 vs. Vehicle, ***p<0.005 vs. Vehicle.



**Figure S2.** The potent antitumoral drug Ara-C decreases the number of U251 cells. Cells were treated with Ara-C (1 nM, 10 nM, 100 nM, 1  $\mu$ M and 10  $\mu$ M), and vehicle (1% DMSO) for five days. The figure shows the percentage of the number of cells in U251 line after treatment with Ara-C. The number of cells was determined each day using the trypan blue dye exclusion assay and is represented as percentage considering the number of cells counted in the vehicle as 100%. IC50 value calculated after two days of treatment: 0.748  $\mu$ M. The results are expressed as the mean  $\pm$  S.E.M., n=3; ***p<0.001 *vs.* Vehicle.