Electronic Supplementary Information

Base-Induced Intramolecular Epoxide Ring-Opening by 2-
 Fluoroarenesulfonamides: An Avenue to Fused 1,4-Benzoxazine-Benzosultam Hybrids via One-Pot Double Cyclization

Jonali Das, Biraj Jyoti Borah and Sajal Kumar Das*
Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, India-784028
*E-mail: sajalkd@tezu.ernet.in

Table of Contents

\qquad

1. General informationS2
2. Synthesis of epoxide substrates S2
3. Double cyclization reaction S19
4. Synthesis of indoline-fused benzothiaoxazepine-1,1-dioxides S28
5. Synthesis of 1,4-benzoxazine -fused benzothiaoxazepine-1,1-dioxides Using preformed epoxide building block S32
6. X ray crystallography data. S33
7. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds S35
8. Copies of ${ }^{19}$ F spectra of selected final compounds S81
9. HRMS data of final compounds S84

1. General information

All commercially available reagents were used without further purification. All dry reactions were carried out in oven-dried glassware and under nitrogen atmosphere. Solvents used in reactions were distilled over appropriate drying agents prior to use. Thinlayer chromatography (TLC) was performed on pre-coated Merck silica gel plates (60 F254). Compounds were visualized with UV light ($\lambda=254 \mathrm{~nm}$) and/or by immersion in an ethanolic vanillin solution or by immersion in KMnO_{4} solution followed by heating. Column chromatography was performed using silica gel (60-120 mesh) procured from Merck using freshly distilled solvents. Melting points were determined with a Buchi-535 apparatus and are not corrected. Perkin Elmer 20 analyzer was utilized for elemental analysis of all compounds. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ spectra were run on JEOL 400 MHz spectrometer in CDCl_{3} as solvent. Chemical shifts are expressed in $\delta \mathrm{ppm}$ relative to tetramethylsilane (TMS, $0.0 \mathrm{ppm})$ or residual chloroform $\left(\mathrm{CHCl}_{3}\right)$ as internal reference for ${ }^{1} \mathrm{H}(\delta=7.27 \mathrm{ppm})$ and ${ }^{13} \mathrm{C}$ ($\delta=77.0 \mathrm{ppm}$). The following abbreviations were used to describe the NMR multiplicities: $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{ddd}=$ doublet of doublets of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{tt}=$ triplet of triplets, $\mathrm{dq}=$ doublet of quartets, $\mathrm{qd}=$ quartet of doublets, and $\mathrm{m}=$ multiplet. All spectra were recorded at $25^{\circ} \mathrm{C}$. Coupling constants (U values) are given in hertz (Hz). HRMS data were recorded by electron spray ionization with a Q-TOF mass analyzer.

2. Synthesis of epoxide substrates 5

General procedure A: synthesis of \boldsymbol{N}-(2-(Allyloxy)aryl)-2-fluorobenzenesulfonamides 12

Step-I: O-allylation/prenylation of 2-nitrophenols 11

A suspension of appropriate 2-nitrophenol 11 ($1 \mathrm{mmol}, 1.0$ equiv), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($276 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv), and allyl bromide ($182 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) or prenyl bromide (224 mg , 1.5 mmol , 1.5 equiv) in acetone (10 mL) was heated at $65^{\circ} \mathrm{C}$ for 12 h .

The resulting suspension was filtered through a pad of Celite which was washed with acetone. The filtrate was evaporated and the residue was a filtered through a short pad of silica gel to remove the base-line impurities. The filtrate was concentrated under reduced pressure to get the corresponding O-allylated/prenylated product which was used for the next step without further purification and characterization.

Step-II: Chemoselective reduction of the NO_{2} group of the resulting \boldsymbol{O}-allylated/ prenylated products

Fe ($279 \mathrm{mg}, 5.0 \mathrm{mmol}$) powder was added to a solution of the resulting O-allylated/ prenylated product (obtained from the first step) and $\mathrm{NH}_{4} \mathrm{Cl}(160 \mathrm{mg}, 3.0 \mathrm{mmol})$ in EtOH $(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the resulting mixture was then refluxed for 2 h under nitrogen atmosphere. After cooling to rt, the reaction mixture was filtered through a short pad of celite and the residue was washed by ethyl acetate (10 mL). The combined filtrate was concentrated under reduced pressure to get a yellow residue which was re-dissolved in ethyl acetate (20 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, washed by brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. Evaporation of the filtrate under reduced pressure provided the corresponding crude aniline which was immediate used for the next step without further purification and characterization.

Step-III: 2-Fluoroarenesulfonylation of resulting crude anilines

The crude product thus obtained was dissolved in pyridine (5 mL) at $0^{\circ} \mathrm{C}$. A solution of appropriate 2 -fluoroarenesulfonyl chloride (1.2 eq.) in pyridine (2 mL) was then added slowly at $0^{\circ} \mathrm{C}$. The mixture was stirred for 12 h at room temperature. The reaction was quenched by adding 5 N HCl solution at $0^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 $\mathrm{mL})$. The organic layer was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel, using hexanes/ethyl acetate mixtures as eluent.

N -(2-(Allyloxy)phenyl)-2-fluorobenzenesulfonamide (12a)

White solid (mp: $115-116^{\circ} \mathrm{C}$). Yield: $75 \%(230 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84-7.80$ $(\mathrm{m}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.75 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (ddd, $J=22.4,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 158.9(\mathrm{~d}, J=255.9 \mathrm{~Hz}), 148.5,135.2(\mathrm{~d}, J=$ 8.6 Hz), 132.3, 130.9, 127.1 (d, $J=13.4 \mathrm{~Hz}$), 125.43, 125.47, 124.1(d, $J=3.8 \mathrm{~Hz}$), 121.1, 118.3, 116.8 (d, $J=21.0 \mathrm{~Hz}$), 111.7, 69.4. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FNO}_{3} \mathrm{~S}: \mathrm{C}, 58.62$; $\mathrm{H}, 4.59$; N , 4.56; found: C, 58.72; H, 4.67; N, 4.51.

N-(2-(Allyloxy)phenyl)-2,4-difluorobenzenesulfonamide (12b)

12b

White solid (mp: 121-122 ${ }^{\circ} \mathrm{C}$). Yield: $74 \%(241 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.79$ (m, 1H), 7.49 (dd, $J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (br s, 1H), 7.03 (td, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.84$ (m, 3H), 6.76 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (ddd, $J=22.4,10.5,5.5 \mathrm{~Hz} 1 \mathrm{H}), 5.33-5.29$ (m, 2H), 4.47 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 55.38$; $\mathrm{H}, 4.03$; $\mathrm{N}, 4.31$; found: $\mathrm{C}, 55.21$; H, 4.10; N, 4.36.

12c

White solid (mp: 113-114 ${ }^{\circ} \mathrm{C}$). Yield: $71 \%(231 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.57$ $(\mathrm{m}, 2 \mathrm{H}), 7.44(\mathrm{tt}, J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.79$ (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (ddd, $J=22.4,10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.35-5.30(\mathrm{~m}, 2 \mathrm{H}), 4.49$ (d, $J=$ $5.5 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}$: C, 55.38 ; $\mathrm{H}, 4.03$; $\mathrm{N}, 4.31$; found: $\mathrm{C}, 55.49$; $\mathrm{H}, 4.16$; N, 4.38.

2-Fluoro-N-(2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzenesulfonamide (12d)

12d

White solid (mp: 107-108 ${ }^{\circ} \mathrm{C}$). Yield: $75 \%(251 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.81$ $(\mathrm{m}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.76 (d, J = 7.8 Hz, 1H), 5.36 (t, J = 6.4 Hz, 1H), 4.43 (d, J = 6.4 Hz, 2H), 1.81 (s, 3H), 1.71 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 159.0(\mathrm{~d}, J=255.9 \mathrm{~Hz}), 148.7,138.6,135.1(\mathrm{~d}, J=8.6 \mathrm{~Hz})$, $130.9,127.2(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 125.6,125.2,124.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 120.8,120.6,118.9,116.8(\mathrm{~d}$, $J=21.0 \mathrm{~Hz}$), 111.5, 65.3, 25.8, 18.2. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FNO}_{3} \mathrm{~S}: \mathrm{C}, 60.88 ; \mathrm{H}, 5.41 ; \mathrm{N}, 4.18$; found: C, 60.71; H, 5.48; N, 4.07.

2,4-Difluoro- N-(2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzenesulfonamide (12e)

White solid (mp: 111-112 ${ }^{\circ} \mathrm{C}$). Yield: $73 \%(258 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.79$ (m, 1H), 7.47 (dd, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (br s, 1 H), 7.02 (td, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.83$ $(\mathrm{m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$, 1.72 (s, 3H). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}$: C, 57.78; H, 4.85; N, 3.96; found: C, 57.59; H, 4.76; N, 3.91.

2,6-Difluoro- N-(2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzenesulfonamide (12f)

12f

White solid (mp: 101-102 ${ }^{\circ} \mathrm{C}$). Yield: $70 \%(247 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57$ $(\mathrm{m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 57.78 ; \mathrm{H}, 4.85$; N, 3.96; found: C, 57.87; H, 4.79; N, 4.06.

N-(2-(Allyloxy)-5-methylphenyl)-2-fluorobenzenesulfonamide (12g)

12g

White solid (mp: 106-107 ${ }^{\circ} \mathrm{C}$). Yield: 69\% (222 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{t}, \mathrm{J}=$ 7.3 Hz, 1H), 7.53-7.49 (m, 1H), 7.33 (m, 2H), 7.19-7.11 (m, 2H), $6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.94 (ddd, $J=22.4,10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.31-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, 2H), 2.23 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 159.0$ (d, $J=255.9 \mathrm{~Hz}$), 146.4, 135.1 (d, $J=$ $8.6 \mathrm{~Hz}), 132.5,130.9,130.7,127.2(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 125.7,125.1,124.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.8$, 118.1, 116.8 (d, $J=21.1 \mathrm{~Hz}$), 111.6, 69.5, 20.7. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNO}_{3} \mathrm{~S}$: C, 59.80; H , 5.02; N, 4.36; found: C, 59.98; H, 5.07; N, 4.25.

2-Fluoro- N-(4-methyl-2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzenesulfonamide (12i)

12i

White solid (mp: 110-111 ${ }^{\circ} \mathrm{C}$). Yield: $71 \%(248 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{t}, \mathrm{J}=$ 7.3 Hz, 1H), 7.51-7.46 (m, 1H), 7.36-7.26 (m, 2H), 7.16-7.07 (m, 2H), $6.64(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 159.0(\mathrm{~d}, \mathrm{~J}=256.1 \mathrm{~Hz}), 148.9,138.3,135.5,135.0(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}), 130.9,127.2(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.6,121.3,121.1,118.9,116.7$ (d, $J=20.8 \mathrm{~Hz}$), 112.4, 65.2, 25.8, 21.3, 18.1. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{3} \mathrm{~S}: \mathrm{C}, 61.87$; $\mathrm{H}, 5.77$; N, 4.01; found: C, 61.75; H, 5.72; N, 4.09.

2,4-Difluoro- N -(4-methyl-2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzene sulfonamide (12j)

12j

White solid (mp: 117-118 ${ }^{\circ} \mathrm{C}$). Yield: $69 \%(254 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{dt}, \mathrm{J}$ $=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}$, 3 H), 1.71 (s, 3H). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 58.84 ; \mathrm{H}, 5.21$; N, 3.81; found: C, 59.01; H, 5.26; N, 3.77.

2,6-Difluoro- N -(4-methyl-2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzene sulfonamide (12k)

12k

White solid (mp: 115-116 ${ }^{\circ} \mathrm{C}$). Yield: $68 \%(250 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.40$ $(\mathrm{m}, 3 \mathrm{H}), 6.91(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 159.9$ (dd, $J=259.7,3.8 \mathrm{~Hz}$), 148.7, 138.4, 135.7, 134.6-134.4 (m), 122.5, 121.4, 120.79, 120.76, 118.9 (d, $J=4.8 \mathrm{~Hz}$), $117.1(\mathrm{t}, J=15.3 \mathrm{~Hz}$), 112.7 (dd, $J=23.9,3.8 \mathrm{~Hz}$), 112.49, 112.46, 65.3, 25.7, 21.3, 18.1. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 58.84 ; \mathrm{H}, 5.21$; $\mathrm{N}, 3.81$; found: C, 58.61; H, 5.28; N, 3.92 .

4-Bromo-2-fluoro-N-(4-methyl-2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzene sulfonamide (121)

121

White solid (mp: 133-134 ${ }^{\circ} \mathrm{C}$). Yield: $70 \% ~(300 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 158.7 ($\mathrm{d}, J=260.7 \mathrm{~Hz}$), 149.2, 138.4, 136.1, 131.8, $128.4(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 127.4,126.5(\mathrm{~d}, J=$ 13.4 Hz), 122.2, $122.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.2,120.4(\mathrm{~d}, J=23.9 \mathrm{~Hz}), 118.9,112.4,65.2,25.8$, 21.3, 18.1. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrFNO}_{3} \mathrm{~S}$: C, 50.48 ; $\mathrm{H}, 4.47$; N, 3.27; found: C, 50.69; $\mathrm{H}, 4.52$; N, 3.22.

2-Fluoro- N-(5-methoxy-2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzenesulfonamide (12m)

12m

White solid (mp: 125-126 ${ }^{\circ} \mathrm{C}$). Yield: $71 \%(259 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ (td, J $=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54-7.49 (m, 1H), 7.45 (br s, 1H), 7.21-7.10(m, 3H), $6.69(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 158.9(\mathrm{~d}, J=255.9 \mathrm{~Hz}), 153.7,142.5$, $138.5,135.3(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 130.9,127.1(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 126.5,124.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 119.2$, 116.7 (d, $J=22.0 \mathrm{~Hz}$), 112.8, 109.5, 106.3, 66.1, 55.6, 25.8, 18.1. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{4} \mathrm{~S}$: C, 59.16; H, 5.52; N, 3.83; found: C, 59.36; H, 5.58; N, 3.72.

2,4-Difluoro- N-(5-methoxy-2-((3-methylbut-2-en-1-yl)oxy)phenyl)benzene sulfonamide (12n)

White solid (mp: 132-133 ${ }^{\circ} \mathrm{C}$). Yield: $75 \%(288 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.83$ $(\mathrm{m}, 1 \mathrm{H}), 7.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.54(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.80$ (s, 3H), 1.70 (s, 3H). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 56.39$; H, 4.99; N, 3.65; found: C, 56.55; H, 4.87; N, 3.74.
N-(5-Bromo-2-((3-methylbut-2-en-1-yl)oxy)phenyl)-2-fluorobenzenesulfonamide (120)

White solid (mp: 131-132 ${ }^{\circ} \mathrm{C}$). Yield: 73\% (303 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.86$ $(\mathrm{m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.08 (m, 2H), $6.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.81(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrFNO}_{3} \mathrm{~S}$: $\mathrm{C}, 49.28 ; \mathrm{H}, 4.14$; N, 3.38; found: C , 49.38; H, 4.18; N, 3.29.

N-(5-Bromo-2-((3-methylbut-2-en-1-yl)oxy)phenyl)-2,4-difluorobenzene sulfonamide (12p)

White solid (mp: 137-138 ${ }^{\circ} \mathrm{C}$). Yield: $74 \%(320 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$ (td, J $=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~s}$, 3 H), 1.72 (s, 3H). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrF}_{2} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 47.23 ; \mathrm{H}, 3.73$; $\mathrm{N}, 3.24$; found: $\mathrm{C}, 47.40$; H, 3.68; N, 3.32.

General procedure B: epoxidation of N-(2-(Allyloxy)aryl)-2-fluorobenzene sulfonamides 12

To a stirred solution of appropriate N-(2-(allyloxy)aryl)-2-fluorobenzene sulfonamide 12 ($0.5 \mathrm{mmol}, 1.0$ equiv) in DCE (5 mL) was added m-CPBA ($232 \mathrm{mg}, 1.0 \mathrm{mmol}, 75 \%, 2.0$ equiv) and the resulting solution mixture heated at $80^{\circ} \mathrm{C}$ for 12 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and then washed successively with saturated aq. solutions of $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(5 mL) and $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic layer was separated, washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography using hexanes/ethyl acetate mixtures as eluent.

2-Fluoro- N-(2-(oxiran-2-ylmethoxy)phenyl)benzenesulfonamide (5a)

5a
Following the general procedure \mathbf{B}, the title compound $\mathbf{5 a}$ was synthesized from $\mathbf{1 2 a}$ (154 mg, 0.5 mmol). Colorless solid (mp: 125-127 ${ }^{\circ} \mathrm{C}$). Yield: 65\% (105 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dd, $J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33-3.29 (m, 1H), $2.94(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=4.6,2.7 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 158.9$ (d, $J=255.9$), 148.5, 135.3 ($\mathrm{d}, J=8.6$), 130.9, 127.1 (d, $J=12.5$), 125.51, 125.47, 124.2 ($\mathrm{d}, J=3.8$), 121.7, 121.3, 116.9 ($\mathrm{d}, J=21.1$), 111.9, 69.8, 49.7, 44.5. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 55.72$; $\mathrm{H}, 4.36$; $\mathrm{N}, 4.33$; found: $\mathrm{C}, 55.86$; $\mathrm{H}, 4.31$; N, 4.45.

2,4-Difluoro- N -(2-(oxiran-2-ylmethoxy)phenyl)benzenesulfonamide (5b)

5b
Following the general procedure B, the title compound 5bwas synthesized from 12b ($163 \mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 139-141 ${ }^{\circ} \mathrm{C}$). Yield: $62 \% ~(106 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=$ $11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=4.6,2.7 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}$: C, 52.78; $\mathrm{H}, 3.84$; $\mathrm{N}, 4.10$; found: C, 52.59 ; $\mathrm{H}, 3.89$; $\mathrm{N}, 4.19$.

2,6-Difluoro- N-(2-(oxiran-2-ylmethoxy)phenyl)benzenesulfonamide (5c)

5c
Following the general procedure B, the title compound 5c was synthesized from 12c (163 $\mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 131-133 ${ }^{\circ} \mathrm{C}$). Yield: $64 \% ~(109 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (dd, $J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=4.6,2.3 \mathrm{~Hz}$, 1H). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}$: C, 52.78; H, 3.84; N, 4.10; found: C, 52.90; H, 3.76; N, 4.21.

N -(2-((3,3-Dimethyloxiran-2-yl)methoxy)phenyl)-2-fluorobenzenesulfonamide (5d)

5d
Following the general procedure \mathbf{B}, the title compound $\mathbf{1 2 d}$ was synthesized from $\mathbf{7 d}$ $(167 \mathrm{mg}, 0.5 \mathrm{mmol})$. Colorless solid (mp: $131-133^{\circ} \mathrm{C}$). Yield: $75 \% ~(132 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}$, $2 \mathrm{H}), 7.02(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=$ $10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}$, 3H). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{~S}$: C, 58.11; H, 5.16; N, 3.99; found C, 58.29; H, 5.09; N, 3.87.

N-(2-((3,3-Dimethyloxiran-2-yl)methoxy)phenyl)-2,4-difluorobenzenesulfonamide

 (5e)

5e
Following the general procedure \mathbf{B}, the title compound $\mathbf{5 e}$ was synthesized from $\mathbf{1 2 e}$ ($177 \mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: $138-140^{\circ} \mathrm{C}$). Yield: $73 \% ~(135 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ 11.0, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}$: C, 55.28; H, 4.64; N, 3.79; found C, 55.11; H, 4.69; N, 3.68.
N-(2-((3,3-Dimethyloxiran-2-yl)methoxy)phenyl)-2,6-difluorobenzenesulfonamide (5f)

Following the general procedure B, the title compound $\mathbf{5 f}$ was synthesized from $\mathbf{1 2 f} \mathbf{~ (1 7 7 ~}$ mg , 0.5 mmol). Colorless solid (mp: $145-147^{\circ} \mathrm{C}$). Yield: $72 \% ~(133 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 3 \mathrm{H})$, $6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 55.28 ; \mathrm{H}, 4.64$; N , 3.79; found C, 55.45; H, 4.72; N, 3.88.

2-Fluoro- N-(5-methyl-2-(oxiran-2-ylmethoxy)phenyl)benzenesulfonamide (5g)

5g
Following the general procedure B, the title compound $\mathbf{5 g}$ was synthesized from $\mathbf{1 2 g}$ (161 $\mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: $115-117^{\circ} \mathrm{C}$). Yield: 62% (105 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.2,0.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=11.0,2.7 \mathrm{~Hz}$, 1 H), 3.83 (dd, $J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31-3.27 (m, 1H), $2.92(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (dd, $J=$ $4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (s, 3H). Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 56.96$; H, 4.78; N, 4.15; found C, 56.82; H, 4.71; N, 4.19.

2,4-Difluoro- N -(5-methyl-2-(oxiran-2-ylmethoxy)phenyl)benzenesulfonamide (5h)

5h
Following the general procedure \mathbf{B}, the title compound 5 h was synthesized from $\mathbf{1 2 h}$ ($170 \mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 129-131 ${ }^{\circ} \mathrm{C}$). Yield: $64 \% ~(114 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 2 \mathrm{H})$, 6.82 (dd, $J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, $J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=4.6,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.24 ($\mathrm{s}, 3 \mathrm{H}$). Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}$: C, 54.08; H, 4.25; N, 3.94; found C, 54.28; H, 4.21; N, 3.82.

$5 i$

Following the general procedure B, the title compound $\mathbf{5 i}$ was synthesized from $\mathbf{1 2 i} \mathbf{i}$ (175 $\mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 120-122 ${ }^{\circ} \mathrm{C}$). Yield: 70% (128 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.80(\mathrm{td}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H} ;$ overlapped with the residual CHCl_{3} peak), 7.19-7.13 (m, 2H), $6.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (br s, 1H), 4.04 (dd, $J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (dd, $J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03(\mathrm{t}, J=5.0 \mathrm{~Hz}$, 1H), 2.25 (s, 3H), 1.43 ($\mathrm{s}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 3 \mathrm{H}$). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 59.16$; H, 5.52; N , 3.83; found C, 59.33; H, 5.59; N, 3.88.

N-(2-((3,3-Dimethyloxiran-2-yl)methoxy)-4-methylphenyl)-2,4-difluorobenzene

 sulfonamide (5j)

5j
Following the general procedure \mathbf{B}, the title compound $\mathbf{5 j}$ was synthesized from $\mathbf{1 2 j} \mathbf{~} \mathbf{1 8 4}$ $\mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 132-135 ${ }^{\circ} \mathrm{C}$). Yield: $72 \% ~(138 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.82-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}$ br, 1 H$), 6.94-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.71$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.60 (br s, 1H), 4.10 (dd, $J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (dd, $J=11.0,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 56.39$; H, 4.99; N, 3.65; found C, 56.28 ; H, 4.92; N, 3.69.

5k
Following the general procedure \mathbf{B}, the title compound $\mathbf{5 k}$ was synthesized from $\mathbf{1 2 k}$ ($184 \mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 118-120 ${ }^{\circ} \mathrm{C}$). Yield: $70 \% ~(134 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{br} \mathrm{s}$, 1 H), 4.09 (dd, $J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (dd, $J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.05(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 ($\mathrm{s}, 3 \mathrm{H}$), 1.43 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 ($\mathrm{s}, 3 \mathrm{H}$). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 56.39$; $\mathrm{H}, 4.99$; N , 3.65; found C, 56.59; H, 5.04; N, 3.61.

4-Bromo- N-(2-((3,3-dimethyloxiran-2-yl)methoxy)-4-methylphenyl)-2-fluoro benzenesulfonamide (51)

51
Following the general procedure B, the title compound 51 was synthesized from 121 (214 $\mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 168-170 ${ }^{\circ} \mathrm{C}$). Yield: $73 \% ~(162 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.64(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.61 (br s, 1H), 4.09 (dd, $J=11.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90(\mathrm{dd}, J=11.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.26 ($\mathrm{s}, 3 \mathrm{H}$), 1.43 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 ($\mathrm{s}, 3 \mathrm{H}$). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrFNO}_{4} \mathrm{~S}: \mathrm{C}, 48.66 ; \mathrm{H}$, 4.31; N, 3.15; found C, 48.80; H, 4.21; N, 3.24.
N-(2-((3,3-Dimethyloxiran-2-yl)methoxy)-5-methoxyphenyl)-2-fluorobenzene sulfonamide (5m)

Following the general procedure B, the title compound 5m was synthesized from $\mathbf{1 2 m}$ ($183 \mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: $138-139{ }^{\circ} \mathrm{C}$). Yield: $74 \% ~(142 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.74(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.5$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{5} \mathrm{~S}: \mathrm{C}, 56.68$; H, 5.29; N, 3.67; found C, 56.46 ; H, 5.37; N, 3.59.

N-(2-((3,3-Dimethyloxiran-2-yl)methoxy)-5-methoxyphenyl)-2,4-difluorobenzene sulfonamide (5n)

Following the general procedure \mathbf{B}, the title compound $\mathbf{5 n}$ was synthesized from $\mathbf{1 2 n}$ (192 mg, 0.5 mmol). Colorless solid (mp: 126-127 ${ }^{\circ} \mathrm{C}$). Yield: 74\% (148 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 2 \mathrm{H})$, 6.75 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.55 (dd, $J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (dd, $J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (dd, $J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H), 3.04 (dd, $J=5.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.42 (s, 3H), 1.34 (s, 3H). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{5} \mathrm{~S}$: C, 54.13; H, 4.79; N, 3.51; found C, 54.31; H, 4.73; N, 3.56.
N-(5-Bromo-2-((3,3-dimethyloxiran-2-yl)methoxy)phenyl)-2-fluorobenzene sulfonamide (50)

50

Following the general procedure B, the title compound 50 was synthesized from 120 ($207 \mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 143-145 ${ }^{\circ} \mathrm{C}$). Yield: $71 \% ~(152 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{br} \mathrm{s}$, 1 H), $7.26-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=$ 11.0, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42$ ($\mathrm{s}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 3 \mathrm{H}$). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrFNO}_{4} \mathrm{~S}: \mathrm{C}, 47.45 ; \mathrm{H}, 3.98 ; \mathrm{N}, 3.26$; found C, $47.51 ; \mathrm{H}, 3.89 ; \mathrm{N}, 3.57$.

N-(5-Bromo-2-((3,3-dimethyloxiran-2-yl)methoxy)phenyl)-2,4-difluoro benzenesulfonamide (5p)

5p

Following the general procedure \mathbf{B}, the title compound $\mathbf{5 p}$ was synthesized from $\mathbf{1 2 p}$ ($216 \mathrm{mg}, 0.5 \mathrm{mmol}$). Colorless solid (mp: 153-155 ${ }^{\circ} \mathrm{C}$). Yield: $69 \% ~(155 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.7$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dd, $J=11.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=5.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.42 (s, 3H), 1.35 (s, 3H). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrF}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 45.55 ; \mathrm{H}, 3.60 ; \mathrm{N}, 3.12$; found $\mathrm{C}, 45.29 ; \mathrm{H}, 3.68 ; \mathrm{N}, 3.17$.

3. General procedure C for the double cyclization reaction:

To a stirred solution of an appropriate epoxide substrate 5 ($0.2 \mathrm{mmol}, 1.0$ equiv) in dry DMF (2.0 mL) under nitrogen was added $\mathrm{NaH}(7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was stirred at rt for 4 h . The reaction mixture was then diluted with EtOAc (10 mL)
and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was then stirred vigorously for 5 min . The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was further purified by silica gel chromatography.

6a,7-Dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e][1,4,5]oxathiazepine 13,13dioxide (1a)

Following the general procedure \mathbf{C}, the title compound 1a was synthesized from epoxide 5a ($65 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 149-150 ${ }^{\circ} \mathrm{C}$). Yield: 85\% (52 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (dd, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.90-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26\left(\mathrm{td}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$; overlapped with residual CHCl_{3} peak), 7.15 (dd, $J=7.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{dq}, J=10.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=12.8$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.42(\mathrm{qd}, J=11.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=13.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz): δ 155.5, 144.3, 135.2, 132.9, 130.0, 124.6, 124.3, 124.1, 123.6, 122.2, 118.8, 117.8, 70.4, 65.7, 55.5. HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 304.0644, found 303.0650. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$: C, 59.39 ; H, 4.32; N, 4.62; found: C, 59.51; H, 4.37; N, 4.53.

10-Fluoro-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4] $\mathbf{~}$ oxazino[4,3-e][1,4,5] oxathiazepine 13,13-dioxide (1b)

1b
Following the general procedure \mathbf{C}, the title compound $\mathbf{1 b}$ was synthesized from epoxide 5b ($68 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 154-155 ${ }^{\circ} \mathrm{C}$). Yield: 87\% (56 mg). ${ }^{1} \mathrm{H}$ NMR (400
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{dd}, J=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.88-$ $6.82(\mathrm{~m}, 3 \mathrm{H}), 5.08-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=12.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{qd}, J=11.9,2.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.98(\mathrm{dd}, J=12.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.1(\mathrm{~d}, \mathrm{~J}=257.8), 157.5(\mathrm{~d}, \mathrm{~J}$ $=12.5), 144.3,131.9(\mathrm{~d}, J=11.5), 129.3(\mathrm{~d}, J=3.8), 124.5,123.4,122.3,118.7,118.0,114.4$ (d, $J=23.0$), 111.9 (d, $J=22.0$), 70.8, 65.7, 55.3. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 56.07$; H , 3.76; N, 4.36; found: C, 56.16; H, 3.71; N, 4.31.

12-Fluoro-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e][1,4,5]

 oxathiazepine 13,13-dioxide (1c)

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 c}$ was synthesized from epoxide 5c ($68 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 144-145 ${ }^{\circ} \mathrm{C}$). Yield: 85\% (55 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.86(\mathrm{~m}, 5 \mathrm{H}), 5.04-5.01(\mathrm{~m}$, $1 \mathrm{H}), 4.58(\mathrm{dd}, J=12.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{qd}, J=11.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=13.3,9.6 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 160.6(\mathrm{~d}, J=261.7), 157.1,144.4,135.1$ ($\mathrm{d}, J=10.5$), $124.5,123.9,122.5,122.3(\mathrm{~d}, J=11.5), 119.8(\mathrm{~d}, J=2.9), 118.4,117.9,113.5(\mathrm{~d}, J=23.0)$, 71.2, 65.5, 55.2. HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 322.0549, found 322.0546. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}_{4} \mathrm{~S}$: C, 56.07 ; $\mathrm{H}, 3.76$; $\mathrm{N}, 4.36$; found: $\mathrm{C}, 55.92 ; \mathrm{H}, 3.81$; N , 4.43.

7,7-Dimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e][1,4,5] oxathiazepine 13,13-dioxide (1d)

Following the General Procedure C, the title compound 1d was synthesized from epoxide 5d ($70 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 166-167 ${ }^{\circ} \mathrm{C}$). Yield: 87% (58 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{td}, 7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.26 (m, 1H; overlapped with the residual CHCl_{3} peak), $7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-$ $6.79(\mathrm{~m}, 3 \mathrm{H}), 4.97-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=12.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=12.4,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.66(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 152.5,144.2,135.2,134.4,128.1$, 126.6, 125.7, 124.2, 123.5, 121.9, 117.4, 117.2, 82.5, 65.4, 61.2, 27.8, 21.6. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.61$; H, 5.17; N, 4.23; found: C, 61.76; H, 5.21; N, 4.15.

10-Fluoro-7,7-dimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e] [1,4,5]oxathiazepine 13,13-dioxide (1e)

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 e}$ was synthesized from epoxide $\mathbf{5 e}$ (74 mg , 0.2 mmol). Colorless solid (mp: 153-154 ${ }^{\circ} \mathrm{C}$). Yield: 86% (61 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{dd}, J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91-6.87 (m, 1H), 6.83-6.79 (m, 3H), $4.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=12.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{dd}, J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.8$ (d, $J=255.9$), 154.6 (d, $J=12.5$), 144.1, 131.7 (d, $J=2.9$), 129.8 (d, $J=11.5$), 125.5, 123.7, 122.0, 117.5, 117.1, 114.4 ($\mathrm{d}, J=23.0$), 111.6 ($\mathrm{d}, J=22.0$), 83.7, 65.4, 61.0, 27.7, 21.7. HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 350.0862, found 350.0866. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 58.44 ; \mathrm{H}, 4.62$; N, 4.01; found: C, $58.64 ; \mathrm{H}, 4.55 ; \mathrm{N}, 4.08$.

12-Fluoro-7,7-dimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3$e][1,4,5]$ oxathiazepine 13,13-dioxide (1f)

Following the General Procedure C, the title compound 1f was synthesized from epoxide $\mathbf{5 f}$ ($74 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 147-148 ${ }^{\circ} \mathrm{C}$). Yield: 89% (62 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93-6.80(\mathrm{~m}, 4 \mathrm{H}), 4.95(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=12.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=$ $12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 159.5$ (d, J = 260.7), 154.2, 144.0, 134.2 (d, $J=11.5$), 125.5, 124.5 (d, $J=11.5$), 123.8, 122.5 (d, $J=2.9$), 122.1, $117.5,117.2,113.4(\mathrm{~d}, \mathrm{~J}=23.0), 83.4,65.1,61.1,27.8,21.6 .{ }^{19} \mathrm{~F}$ NMR ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ -111.7. HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 350.0862, found 350.0856. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 58.44 ; \mathrm{H}, 4.62$; N, 4.01; found: C, 58.32; H, 4.65; N, 4.09.

2-Methyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e][1,4,5] oxathiazepine 13,13-dioxide (1g)

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 g}$ was synthesized from epoxide $5 g(68 \mathrm{mg}, 0.2 \mathrm{mmol})$. Colorless solid (mp: 109-110 ${ }^{\circ} \mathrm{C}$). Yield: 83\% (53 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (dd, $\left.J=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 5.07-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=12.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.38 (qd, $J=11.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (dd, $J=12.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.6,142.1,135.2,133.0,131.7,129.9,124.9,124.5,124.1,123.1$, 119.1, 117.4, 70.4, 65.7, 55.5. HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 318.0800$, found 318.0805. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 60.55$; $\mathrm{H}, 4.76$; $\mathrm{N}, 4.41$; found: $\mathrm{C}, 60.72$; H , 4.69; N, 4.46.

1h

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 h}$ was synthesized from epoxide 5h ($72 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 115-116 ${ }^{\circ} \mathrm{C}$). Yield: 85% (57 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{dd}, J=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, $J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 5.06-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=12.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (qd, $J=11.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.97 (dd, $J=12.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100$ MHz): $\delta 166.1(\mathrm{~d}, J=256.9), 157.5(\mathrm{~d}, J=12.5), 142.1,131.77,131.73(\mathrm{~d}, J=10.5), 129.3(\mathrm{~d}$, $J=3.8$), 125.1, 122.9, 119.0, 117.6, 112.0 (d, $J=23.0$), 111.9 (d, $J=22.0$), 70.8, 65.6, 55.3, 21.1. ${ }^{19} \mathrm{~F}$ NMR ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-101.3$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}: 336.0706$, found 336.0707. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 57.30 ; \mathrm{H}, 4.21 ; \mathrm{N}, 4.18$; found: C, 57.46; H, 4.32; N, 4.22.

3,7,7-Trimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e][1,4,5] oxathiazepine 13,13-dioxide (1i)

1i

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 i}$ was synthesized from epoxide $5 \mathbf{i}$ ($73 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 175-176 ${ }^{\circ} \mathrm{C}$). Yield: 88% (61 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.58(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.49 (dd, $J=12.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.39 (dd, $J=12.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 ($\mathrm{s}, 3 \mathrm{H}$), 1.62 ($\mathrm{s}, 3 \mathrm{H}$), 0.89 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 152.5,143.9,135.3,134.3,133.4,128.1,126.6,124.2$,
123.1, 122.5, 117.8, 116.9, 82.5, 65.5, 61.2, 27.8, 21.7, 20.4. HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 346.1113$, found 346.1118. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.59 ; \mathrm{H}$, 5.54; N, 4.06; found: C, 62.76; H, 5.59; N, 4.16.

10-Fluoro-3,7,7-trimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e] [1,4,5]oxathiazepine 13,13-dioxide (1j)

1j
Following the general procedure \mathbf{C}, the title compound $\mathbf{1} \mathbf{j}$ was synthesized from epoxide 5k ($77 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 179-180 ${ }^{\circ} \mathrm{C}$). Yield: 87% (63 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{dd}, J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=8.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80$ (dd, $J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (dd, $J=$ $11.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.7(\mathrm{~d}, \mathrm{~J}=256.9), 154.7(\mathrm{~d}, \mathrm{~J}=12.5), 143.9,133.6,131.8(\mathrm{~d}, \mathrm{~J}=$ 3.8), 129.7 (d, $J=10.8$), 122.9, 122.6, 117.9, 116.8, 114.3 (d, $J=22.3$), 111.5 (d, $J=22.3$), 83.6, 65.4, 61.0, 27.7, 21.7, 20.4. ${ }^{19} \mathrm{~F}$ NMR ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-102.8$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 364.1019 , found 364.1021. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}$, 59.49; H, 4.99; N, 3.85; found: C, 59.31; H, 4.85; N, 3.96.

12-Fluoro-3,7,7-trimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e] [1,4,5]oxathiazepine 13,13-dioxide (1k)

1k
Following the general procedure \mathbf{C}, the title compound $\mathbf{1 k}$ was synthesized from epoxide $\mathbf{5 k}$ ($77 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 182-183 ${ }^{\circ} \mathrm{C}$). Yield: $87 \%(63 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=12.4,0.9 \mathrm{~Hz}$, 1 H), 4.41 (dd, $J=12.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 159.4(\mathrm{~d}, J=260.7), 154.1,143.8,134.1(\mathrm{~d}, J=10.8), 133.7,124.5(\mathrm{~d}, J=11.5)$, 122.9, 122.7, 122.5 ($\mathrm{d}, J=3.1$), 117.8, 116.9, 113.3 ($\mathrm{d}, J=23.1$), 83.3, 65.2, 61.1, 27.8, 21.7, 20.4. ${ }^{19} \mathrm{~F}$ NMR ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-111.8$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}: 364.1019$, found 364.1017. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 59.49 ; \mathrm{H}, 4.99$; $\mathrm{N}, 3.85$; found: C, 59.65; H, 4.89; N, 3.81.

10-Bromo-3,7,7-trimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e] [1,4,5]oxathiazepine 13,13-dioxide (11)

11

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 l}$ was synthesized from epoxide 51 ($89 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 198-199 ${ }^{\circ} \mathrm{C}$). Yield: 89\% (75 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.2,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=12.4,1.4 \mathrm{~Hz}$, 1 H), 4.41 (dd, $J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz : $\delta 153.2,143.9,134.5,133.7,129.8,128.9,128.1,127.5,122.8,122.6,117.9$, 116.8, 83.4, 65.4, 61.1, 27.7, 21.8, 20.4. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{4} \mathrm{~S}: \mathrm{C}, 50.95$; $\mathrm{H}, 4.28$; N , 3.30; found: C, 50.79; H, 4.15; N, 3.37.

2-Methoxy-7,7-dimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e] [1,4,5]oxathiazepine 13,13-dioxide (1m)

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 m}$ was synthesized from epoxide 5m ($76 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 137-138 ${ }^{\circ} \mathrm{C}$). Yield: $86 \% ~\left(62 \mathrm{mg}\right.$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{dd}, J=7.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, 1 H), 7.29-7.25 (m, 1H), 7.09 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=9.1,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=11.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.71 (s, 3H), $1.65(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 154.0,152.5,138.2$, 135.1, 134.4, 127.9, 126.7, 125.8, 124.2, 117.6, 108.8, 103.4, 82.6, 65.3, 61.3, 55.5, 27.6, 21.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 362.1062 , found 362.1222. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 59.82$; $\mathrm{H}, 5.30$; $\mathrm{N}, 3.88$; found: $\mathrm{C}, 60.07$; $\mathrm{H}, 5.22 ; \mathrm{N}, 3.92$.

10-Fluoro-2-methoxy-7,7-dimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4] oxazino $[4,3-e][1,4,5]$ oxathiazepine 13,13-dioxide (1n)

1n

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 n}$ was synthesized from epoxide 5n ($80 \mathrm{mg}, 0.2 \mathrm{mmol}$). Colorless solid (mp: 145-146 ${ }^{\circ} \mathrm{C}$). Yield: 87\% (66 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{dd}, J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=8.7,2.3 \mathrm{~Hz}$, 1 H), 6.81 (dd, $J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.46 (dd, $J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.91 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.49(\mathrm{dd}, J=12.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=12.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.8(\mathrm{~d}, \mathrm{~J}=256.9), 154.7$ (d, $J=$ 12.5), 154.1, 138.2, 131.7 ($\mathrm{d}, J=3.8$), 129.6 ($\mathrm{d}, J=10.5$), 125.7, 117.7, 114.4 ($\mathrm{d}, J=23.0$), 111.5 (d, $J=22.0$), 108.8, 103.5, 83.8, 65.3, 61.2, 55.6, 27.6, 21.7. ${ }^{19}$ F NMR (376.87 MHz, CDCl_{3}): δ-102.5. HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FNO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 380.0968, found
380.0972. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}_{5} \mathrm{~S}: \mathrm{C}, 56.98 ; \mathrm{H}, 4.78$; N, 3.69; found: C, $57.75 ; \mathrm{H}, 4.72$; N , 3.80.

2-Bromo-7,7-dimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e] [1,4,5]oxathiazepine 13,13-dioxide (10)

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 0}$ was synthesized from epoxide $50(86 \mathrm{mg}, 0.2 \mathrm{mmol})$. White solid (mp: 191-192 ${ }^{\circ} \mathrm{C}$). Yield: $85 \%(70 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=8.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=12.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=12.4,3.7 \mathrm{~Hz}$, 1H), 1.65 (s, 3H), 0.91 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 152.4,143.2,134.74,134.71$, 128.1, 126.8, 126.7, 126.3, 124.5, 120.0, 118.8, 113.9, 82.5, 65.3, 61.0, 27.7, 21.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}_{4} \mathrm{~S}$ [M +H$]^{+}: 410.0062$, found 410.0069. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{4} \mathrm{~S}: \mathrm{C}, 49.77$; H, 3.93; N, 3.41; found: C, 49.90; H, 3.99; N, 3.31.

2-Bromo-10-fluoro-7,7-dimethyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino [4,3-e][1,4,5]oxathiazepine 13,13-dioxide (1p)

Following the general procedure \mathbf{C}, the title compound $\mathbf{1 p}$ was synthesized from epoxide 5p ($90 \mathrm{mg}, 0.2 \mathrm{mmol}$). White solid (mp: $196-197{ }^{\circ} \mathrm{C}$). Yield: $84 \%(72 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{dd}, J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.82$ (dd, $J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=11.3,1.4$
$\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):$ $\delta 166.0(\mathrm{~d}, J=256.9), 154.5(\mathrm{~d}, J=12.3), 143.2,131.2(\mathrm{~d}, J=3.8), 129.8(\mathrm{~d}, J=11.5), 126.6$, $126.5,119.9,118.9,114.5(\mathrm{~d}, J=23.1), 114,111.9(\mathrm{~d}, J=22.3), 83.6,65.3,60.9,27.6,21.7$. ${ }^{19}$ F NMR ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-101.9$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrFNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 427.9967, found 427.9967. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrFNO}_{4} \mathrm{~S}$: C, 47.68; $\mathrm{H}, 3.53$; N, 3.27; found: C, 47.52; H, 3.64; N, 3.33.

4. Synthesis of indoline-fused benzothiaoxazepine-1,1-dioxides

N-(2-Allyl-4,5-dimethoxyphenyl)-2-fluorobenzenesulfonamide (12q)

12q

Following the steps II and III of the general procedure \mathbf{A}, the title compound $\mathbf{1 2 q}$ was synthesized from 13 (223 mg, 1.0 mmol). White solid (mp: 102-103 ${ }^{\circ} \mathrm{C}$). Yield: 85\% (299 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H})$, $6.77(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, \mathrm{J}=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=16.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz): $\delta 158.8(\mathrm{~d}, J=255.9 \mathrm{~Hz}), 147.71,147.66,135.9,135.3(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 130.9$, 127.9 (d, $J=12.5 \mathrm{~Hz}$), 126.4, 126.2, 124.5 (d, $J=1.9 \mathrm{~Hz}$), 116.9 (d, J = 22.0 Hz), 116.6, 112.8, 109.3, 55.9, 35.5. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{~S}$: C, 58.11 ; H, 5.16; N, 3.99; found: C, 58.26; H, 5.19; N, 3.88.

N-(2-Allyl-4,5-dimethoxyphenyl)-2,4-difluorobenzenesulfonamide (12r)

12r

Following the steps II and III of the general procedure \mathbf{A}, the title compound $\mathbf{7 r}$ was synthesized from 13 ($223 \mathrm{mg}, 1.0 \mathrm{mmol}$). White solid (mp: 108-109 ${ }^{\circ} \mathrm{C}$). Yield: 83\% (306 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}$, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ ($\mathrm{s}, 3 \mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), $3.20(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 165.9$ (dd, $J=$ $257.8,11.5 \mathrm{~Hz}$), 159.6 (dd, $J=257.8,12.5 \mathrm{~Hz}$), 147.8, 147.7, 135.8, 132.7 (d, $J=10.5 \mathrm{~Hz}$), $126.2,126.0,124.3$ (dd, $J=13.4,3.8 \mathrm{~Hz}$), 116.6, 112.8, 111.9 (dd, $J=22.0,3.8 \mathrm{~Hz}$), 109.4, $105.5\left(\mathrm{t}, J=25.4 \mathrm{~Hz}\right.$), 55.9, 35.4. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 55.28 ; \mathrm{H}, 4.64 ; \mathrm{N}, 3.79$; found: C, 55.47; H, 4.56; N, 3.84.

N-(2-Allyl-4,5-dimethoxyphenyl)-4-bromo-2-fluorobenzenesulfonamide (12s)

Following the steps II and III of the general procedure \mathbf{A}, the title compound $\mathbf{7 s}$ was synthesized from 13 ($223 \mathrm{mg}, 1.0 \mathrm{mmol}$). White solid (mp: 128-129 ${ }^{\circ} \mathrm{C}$). Yield: 83% (357 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=9.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.80(\mathrm{~s}, 1 \mathrm{H}), 6.71$ (br s, 1H), $6.59(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.11$ (dd, $J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=16.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 158.4(\mathrm{~d}, \mathrm{~J}=259.7 \mathrm{~Hz}), 147.8,147.7,135.8,131.8$ (d, $J=2.8 \mathrm{~Hz}$), 128.6 (d, $J=8.6 \mathrm{~Hz}$), 127.9 (d, $J=3.8 \mathrm{~Hz}$), 127.0 (d, $J=14.4 \mathrm{~Hz}$), 126.2, 125.9, 120.6 (d, $J=24.9 \mathrm{~Hz}$), 116.7, 112.8, 109.4, 56.0, 35.5. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrFNO}_{4} \mathrm{~S}: \mathrm{C}$, 47.45; H, 3.98; N, 3.26; found: 47.53; H, 3.92; N, 3.35.
N-(4,5-Dimethoxy-2-(oxiran-2-ylmethyl)phenyl)-2-fluorobenzenesulfonamide (5q)

$5 q$

Following the general procedure \mathbf{B}, the title compound $\mathbf{5 q}$ was synthesized from $\mathbf{1 2 q}$ (176 mg, 1.0 mmol). White solid (mp: 121-122 ${ }^{\circ} \mathrm{C}$). Yield: $60 \% ~(110 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}$, $2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.08$ (dd, $J=16.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (dd, $J=15.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100$ MHz): $\delta 158.8(\mathrm{~d}, J=256.9 \mathrm{~Hz}), 148.6,146.9,135.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 133.9,131.7,125.6(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.8,117.3(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 108.0,101.7,64.4(\mathrm{~d}, J=3.8 \mathrm{~Hz})$, 56.2 (d, $J=6.7 \mathrm{~Hz}$), 31.3. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FNO}_{5} \mathrm{~S}$: C, 55.58 ; H, 4.94; N, 3.81; found: C, 55.43; H, 4.99; N, 3.85.

N-(4,5-Dimethoxy-2-(oxiran-2-ylmethyl)phenyl)-2,4-difluorobenzenesulfonamide (5r)

Following the general procedure B, the title compound $\mathbf{5 r}$ was synthesized from $\mathbf{1 2 r}$ (185 $\mathrm{mg}, 1.0 \mathrm{mmol}$). White solid (mp: 129-130 ${ }^{\circ} \mathrm{C}$). Yield: $64 \% ~(119 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 7.87-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H})$, 3.83 (s, 3H), 3.77 (s, 3H), 3.74-3.69 (m, 2H), 3.05 (dd, $J=16.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (dd, $J=15.6$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 165.8$ (dd, $J=258.8,11.5 \mathrm{~Hz}$), 159.5 (dd, $J=258.8,12.5 \mathrm{~Hz}$), 148.5, 146.9, 133.3 (dd, $J=10.5,1.9 \mathrm{~Hz}$), 132.9, 122.8, 121.9 (dd, $J=15.3,3.8 \mathrm{~Hz}$), 112.9 (dd, $J=22.0,3.8 \mathrm{~Hz}$), 108.0, 105.7 (t, $J=25.9 \mathrm{~Hz}$), 101.6, 64.3 (d,
$J=3.8 \mathrm{~Hz}), 56.1(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 31.1$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 52.98 ; \mathrm{H}, 4.45 ; \mathrm{N}, 3.63$; found: C, 53.11; H, 4.54; N, 3.69.

2,3-Dimethoxy-12a,13-dihydro-12H-benzo[2,3][1,4,5]oxathiazepino[5,6-a]indole 6,6-dioxide (1q)

Following the General Procedure C, the title compound 1q was synthesized from epoxide $\mathbf{5 q}\left(73 \mathrm{mg}, 0.2 \mathrm{mmol}\right.$). White solid (mp: 158-159 ${ }^{\circ} \mathrm{C}$). Yield: $90 \% ~(62 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1 H), $7.10(\mathrm{~d}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.98-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=$ $12.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83-3.78 (m, 7H), 3.39 (dd, $J=15.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.1,148.9,145.6,134.5,133.9,133.5,129.0,124.2,123.1$, 120.1, 109.0, 98.8, 73.5, 62.9, 56.4, 56.1, 30.9. HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}: 348.0906$, found 348.0909. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 58.78$; H, 4.93; $\mathrm{N}, 4.03$; found: C, 58.94; H, 4.96; N, 4.10.

9-fluoro-2,3-dimethoxy-12a,13-dihydro-12H-benzo[2,3][1,4,5]oxathiazepino[5,6a]indole 6,6-dioxide (1r)

Following the General Procedure C, the title compound 1p was synthesized from epoxide $5 \mathbf{r}$ ($77 \mathrm{mg}, 0.2 \mathrm{mmol}$). White solid (mp: 162-163 ${ }^{\circ} \mathrm{C}$). Yield: $88 \% ~\left(65 \mathrm{mg}\right.$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ (dd, $\left.J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dd, $J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=13.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-$ $3.85(\mathrm{~m}, 7 \mathrm{H}), 3.41(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS (ESI) m / z calcd.
for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FNO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 366.0811, found 366.0810. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FNO}_{5} \mathrm{~S}: \mathrm{C}$, 55.88; H, 4.41; N, 3.83; found: C, 55.78; H, 4.39; N, 3.88.

9-Bromo-2,3-dimethoxy-12a,13-dihydro-12H-benzo[2,3][1,4,5]oxathiazepino[5,6a]indole 6,6-dioxide (1s)

Following the General Procedure C, the title compound 1s was synthesized from epoxide 5s ($89 \mathrm{mg}, 0.2 \mathrm{mmol}$). White solid (mp: 176-177 ${ }^{\circ} \mathrm{C}$). Yield: $90 \% ~(77 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}$; overlapped with the residual CHCl_{3} peak), $7.00(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.62$ (dd, $J=12.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88-3.80(\mathrm{~m}, 7 \mathrm{H}), 3.41(\mathrm{dd}, J=16.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{5} \mathrm{~S}: \mathrm{C}, 47.90 ; \mathrm{H}, 3.78$; $\mathrm{N}, 3.29$; found: C, 47.72; $\mathrm{H}, 3.86$; N , 3.24 .

4. Synthesis of 1,4-benzoxazine -fused benzothiaoxazepine-1,1-dioxides using preformed epoxide building block

12
Following the first step of the general procedure A, the title compound 12 was synthesized from 2-nitrophenol 11a ($139 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and epoxy tosylate 7 (324 mg, $1.2 \mathrm{mmol}, 1.2$ equiv). Yellow gum. Yield: 95\% (225 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) : $\delta 7.85(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{q}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H})$, 3.13-3.11(m, 1H), 1.63-1.47(m, 4H), $0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 60.75; H, 6.37; N, 5.90; found: C, 60.64; H, 6.33; N, 5.83.
(6a $R^{*}, 7 R^{*}$)-7-Propyl-6a,7-dihydro-6H-benzo[b]benzo[5,6][1,4]oxazino[4,3-e][1,4,5] oxathiazepine 13,13-dioxide (1t)

To a stirred solution of substrate 14 ($200 \mathrm{mg}, 0.84 \mathrm{mmol}$) and $10 \% \mathrm{Pd}-\mathrm{C}(25 \mathrm{mg})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added triethylsilane ($0.402 \mathrm{~mL}, 2.52 \mathrm{mmol}$) under a nitrogen-filled balloon. After 30 min , the mixture was filtered through celite and the solvent was removed in vacuo. The crude product thus obtained was dissolved in pyridine (3 mL) at $0^{\circ} \mathrm{C}$. A solution of 2-fluorobenzenesulfonyl chloride ($163 \mathrm{mg}, 0.84 \mathrm{mmol}$) was then added. The mixture was stirred for 12 h at room temperature. The reaction was quenched by adding 5 N HCl solution at $0^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The organic layer was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated under reduced pressure. The resulting residue was dissolved in dry DMF (2.0 mL) under nitrogen atmosphere and $\mathrm{NaH}(23 \mathrm{mg}, 1.00 \mathrm{mmol})$ was then added to it. The resulting mixture was stirred at rt for 4 h . The reaction mixture was then diluted with EtOAc (10 mL) and $\mathrm{H}_{2} \mathrm{O}(10$ mL). The mixture was then stirred vigorously for 5 min . The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was further purified by silica gel chromatography to isolate 1t as colorless solid. Yield: 72\% $(209 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45 (td, $J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.09$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.76$ (m, 3H), $4.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{td}$, $J=9.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 155.8,144.9,135.1,133.7,129.6,124.4,124.2,124.02,123.98,122.0$, 118.8, 117.6, 79.9, 65.8, 59.7, 33.6, 18.5, 13.8. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.59 ; \mathrm{H}, 5.54$; N, 4.06; C, 62.76; H, 5.65; N, 4.09.

6. X-ray crystallography

X-ray reflections were collected on a Bruker APEX-II, CCD diffractometer using Mo K α ($\lambda=$ $0.71073 \AA$ A) radiation. Data reduction was performed using Bruker SAINT Software. ${ }^{1}$ Intensities for absorption were corrected using SADABS. Structures were solved and
refined using SHELXL-2014 with anisotropic displacement parameters for non-H atoms. Hydrogen atom on O was experimentally located in the crystal structure. All $\mathrm{C}-\mathrm{H}$ atoms were fixed geometrically using the HFIX command in SHELX-TL. ${ }^{2}$ A check of the final CIF file using PLATON did not show any missed symmetry. ${ }^{3,4}$ Compound $\mathbf{1 1}$ is crystallized in Tetragonal space group I-4. Figure ESI-1 shows the The ORTEP diagram of $\mathbf{1 1}$ with 35\% probability ellipsoid.

Figure ESI-1. ORTEP diagram of $\mathbf{1 1}$ with 35\% probability ellipsoid.

Table ESI-1 shows the summarizes the crystallographic parameters for the structure.

Table ESI-1: Crystallographic data of 11

Crystal Data	
Formula unit	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{SBr}$
Formula wt.	424.29
Crystal system	Tetragonal
$\mathrm{T}[\mathrm{K}]$	100
$a[\AA \AA]$	$18.5372(6)$
$b[\AA]$	$18.5372(6)$
$c[\AA \AA]$	$10.4950(4)$

$\alpha\left[^{\circ}\right]$	90
$\beta\left[^{\circ}\right]$	90
$\gamma\left[^{\circ}\right]$	90
Volume $\left[\AA^{3}\right]$	$3606.4(3)$
Space group	$4-4$
Z	1.563
$D_{\text {calc }}\left[\mathrm{mg} / \mathrm{m}^{3}\right]$	2.418
μ / mm^{-1}	52966
Reflns. Collected	3188
Unique reflns.	2672
Observed reflns.	$0.0292 ; 0.0558$
$R_{1}\left[\right.$ I>2 $\sigma(\mathrm{I}]$], $w R_{2}$	1.034
GOF	Bruker APEX-II
Instrument	MoK $\alpha ; \lambda=0.71073$
X-ray	1966259
CCDC Reference No.	

References

1. SAINT Plus, Bruker AXS Inc.: Madison, WI, 2008; BRUKER AXS (v 6.14).
2. Bruker AXS Inc.: Madison, WI, 2008.
3. PLATON, A Multipurpose Crystallographic Tool; A. L. Spek, Utrecht University: Utrecht, Netherland, 2002.
4. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 a}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 a

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 b}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 c}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 12 d

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 e

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 f}$

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 g}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 g

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 i}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 i

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 j}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 k}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 k

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 121

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 121

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 m}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 m

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 n

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 12 o

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2 p}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 a

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 a

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 c

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 5 e

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $5 f$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 i

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 51

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 m

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 n

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 o

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 p

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 a

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 a

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1b

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 c

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 c

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 d

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 e

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 f

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 g

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 h}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 h

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 i}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 i

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 j}$

${ }^{13} \mathrm{C}$ NMR spectrum ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 j}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 k

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 11

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 11

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 m

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 m

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 n

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 n

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 o

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 o

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 p}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 p}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 q}$

${ }^{13} \mathrm{C}$ NMR spectrum ($\mathbf{1 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{7 q}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 r}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 r

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 s

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 s

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{5 q}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 q}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 r}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 r

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 q

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 r

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 s

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 t

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 t

8. Copies of ${ }^{19}$ F spectra of selected final compounds

${ }^{19} \mathrm{~F}$ NMR spectrum ($\mathbf{3 7 6 . 8 7} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 f

${ }^{19} \mathrm{~F}$ NMR spectrum ($\mathbf{3 7 6 . 8 7} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 h}$

${ }^{19} \mathrm{~F}$ NMR spectrum ($\mathbf{3 7 6 . 8 7} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 j}$

${ }^{19} \mathrm{~F}$ NMR spectrum ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 k

${ }^{19}$ F NMR spectrum ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 n

${ }^{19}$ F NMR spectrum ($376.87 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 p}$

9. HRMS data of final compounds

HRMS of compound 1a

HRMS of compound 1c

HRMS of compound 1 e

HRMS of compound 1f

HRMS of compound $\mathbf{1 g}$

HRMS of compound 1 h

1i

HRMS of compound $1 \mathbf{i}$

HRMS of compound $\mathbf{1 j}$

HRMS of compound $1 \mathbf{k}$

HRMS of compound 1m

HRMS of compound 1n

HRMS of compound 10

HRMS of compound 1p

HRMS of compound 1q

HRMS of compound $1 \mathbf{r}$

